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Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs),
often subjectively perceived as sleepiness. Their main characteristic is a slowing in
frequency in the electroencephalogram (EEG), similar to stage N1 sleep according to
standard criteria. The maintenance of wakefulness test (MWT) is often used in a clinical
setting to assess vigilance. Scoring of the MWT in most sleep-wake centers is limited
to classical definition of sleep (30 s epochs), and MSEs are mostly not considered
in the absence of established scoring criteria defining MSEs but also because of the
laborious work. We aimed for automatic detection of MSEs with machine learning, i.e.,
with deep learning based on raw EEG and EOG data as input. We analyzed MWT
data of 76 patients. Experts visually scored wakefulness, and according to recently
developed scoring criteria MSEs, microsleep episode candidates (MSEc), and episodes
of drowsiness (ED). We implemented segmentation algorithms based on convolutional
neural networks (CNNs) and a combination of a CNN with a long-short term memory
(LSTM) network. A LSTM network is a type of a recurrent neural network which has
a memory for past events and takes them into account. Data of 53 patients were
used for training of the classifiers, 12 for validation and 11 for testing. Our algorithms
showed a good performance close to human experts. The detection was very good
for wakefulness and MSEs and poor for MSEc and ED, similar to the low inter-
expert reliability for these borderline segments. We performed a visualization of the
internal representation of the data by the artificial neuronal network performing best
using t-distributed stochastic neighbor embedding (t-SNE). Visualization revealed that
MSEs and wakefulness were mostly separable, though not entirely, and MSEc and
ED largely intersected with the two main classes. We provide a proof of principle
that it is feasible to reliably detect MSEs with deep neuronal networks based on raw
EEG and EOG data with a performance close to that of human experts. The code of
the algorithms (https://github.com/alexander-malafeev/microsleep-detection) and data
(https://zenodo.org/record/3251716) are available.
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INTRODUCTION

Excessive daytime sleepiness (EDS) is a common complaint of
many patients (Harrison and Horne, 1996; Hara et al., 2004;
Ford et al., 2015; Hayley et al., 2015) and also reported by the
general population when sleep is chronically curtailed. Accurate
diagnosis of the underlying disorders often requires objective
evaluation of nocturnal sleep and daytime sleepiness in these
patients. State of the art methods to evaluate sleepiness are the
Multiple Sleep Latency Test (MSLT) (Carskadon, 1986) and the
Maintenance of Wakefulness Test (MWT) (Mitler et al., 1982).

Microsleep episodes (MSEs) are considered to be an
objective sign of excessive daytime sleepiness (EDS) (Hertig-
Godeschalk et al., 2020). The MWT is the primarily
used test to quantify the ability to maintain wakefulness
despite the presence of increased sleep pressure subjectively
perceived as EDS.

In most of the studies, the latency to sleep stage N1 or any
other stages of sleep is used as a definition for objective sleepiness
(Correa et al., 2014; Sauvet et al., 2014; Sriraam et al., 2016).
However, it is well accepted that signs of sleepiness appear much
earlier, not only in the EEG but also in behavioral changes and
performance lapses.

Therefore, more sensitive and systematic, but still practically
useful definitions of objective sleepiness are needed. The recently
developed Bern continuous and high-resolution wake-sleep
(BERN) scoring criteria for assessing the wake-sleep transition
zone represent such an approach (Hertig-Godeschalk et al.,
2020). The criteria were developed for visual scoring of MSEs as
short as 1 s, which is time consuming. Moreover, no generally
accepted scoring criteria exist so far. Thus, tools for automated
analysis of such data would be very useful for both clinicians
and researchers in order to reduce the workload and the
subjectivity of scoring.

In a study subsequent to the development of the BERN
scoring criteria, we developed algorithms for machine learning
based automatic detection MSEs using manually engineered
features mainly derived from spectral information of the
electroencephalogram (EEG) (Skorucak et al., 2020b).

Another interesting approach was taken by authors of the
Vigilance Algorithm Leipzig (VIGALL) (Olbrich et al., 2012).
They established scoring criteria for 7 vigilance stages (1 s
resolution; from fully awake to sleep) and developed an algorithm
for the automatic scoring of these stages.

The aim of this work was to implement a deep learning
approach using raw data as input. We think that such an
algorithm resembles human scoring, which is mainly based on
visual pattern recognition. It has also been shown that deep
learning methods perform better than classical machine learning
(ML) methods on various types of data (Goodfellow et al., 2016),
including EEG data (Davidson et al., 2006; Tsinalis et al., 2016;
Supratak et al., 2017; Chambon et al., 2018; Malafeev et al., 2018).
Automatic sleep classification has been extensively developed
mainly due to the advantages in machine learning, and especially
in deep learning (Tsinalis et al., 2016; Supratak et al., 2017;
Chambon et al., 2018; Malafeev et al., 2018; Fiorillo et al., 2019;
Mousavi et al., 2019).

Our Contribution
We developed several artificial neural networks, which work with
raw data as input and compared their performance with the inter-
rater agreement of two experts. Note that inter-rater agreement
was computed only for five recordings, which were scored by two
different experts from the same sleep center. It is also important
to note that the selection of the recordings for double scoring
was not totally random: only recordings containing MSEs were
randomly selected for double scoring. Our networks showed
similar agreement to a human expert as the inter-rater agreement
between two human experts. We also performed visualization of
the hidden representation of the data by one of the networks,
the one performing best, using a t-distributed stochastic neighbor
embedding (t-SNE) method (van der Maaten and Hinton, 2008).

MATERIALS AND METHODS

Data
MWT data from 76 patients with EDS recorded at approximately
15:00 were retrospectively analyzed. The suspected diagnosis
widely varied between patients (Table 1) and included sleep
apnea, narcolepsy, idiopathic hypersomnia, non-organic
hypersomnia, and insomnia (Skorucak et al., 2020b). Patients
were not stratified into subgroups because only few patients
were available with a certain suspected diagnosis due to
their low prevalence. Among other data, recordings included
EEG, electrooculogram (EOG), and video recordings of the
face (Hertig-Godeschalk et al., 2020; Skorucak et al., 2020b).
Electrophysiological signals were sampled at 200 Hz [band pass
filter 0.3–70 Hz; 50 Hz notch filter; RemLogicTM (Embla Systems
LLC)] and exported in the European data format (EDF) for
post processing.

MSEs were visually scored by a sleep expert using both
occipital EEG derivations referenced to contralateral mastoid
electrodes (i.e., channels O1M2 and O2M1), two EOG channels,
both referenced to the left mastoid electrode (i.e., channels E1M1
and E2M1), and video recordings of the face. Video recordings
were not used for automatic detection algorithm, only EEG and
EOG data were considered. MSEs were defined as 1–15 s in
duration with a clear slowing in the EEG resulting in a theta
dominance resembling non-rapid eye movement (NREM) sleep
stage 1 (N1), while at least an 80% eye closure was observed in
the video recording. MSEs were typically preceded by slow eye
movements, visible in the EOG. Apart from clear wakefulness
and MSEs, two poorly defined EEG patterns were categorized
as microsleep episode candidates (MSEc; not fulfilling all of the
criteria for a MSE, e.g., eyes were closed less than 80%) and
episodes of drowsiness (ED; even more vague, not clear wake or
MSE or MSEc) (Hertig-Godeschalk et al., 2020). Approximately
2/3 of the recordings were checked by another expert and
differences were resolved by discussion. The beginning and the
end of each episode was marked continuously, i.e., with the
resolution of the recording (1/200 s).

Each MWT lasted 40 min and was supposed to be terminated
earlier if consolidated sleep occurred (Hertig-Godeschalk et al.,
2020; Skorucak et al., 2020b). However, if the technician missed
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TABLE 1 | Demographics, diagnosis and fraction of time spent in the four stages
of patients contributing to the training, validation, and test set: total number of
patients (N), number of males/females, mean age and standard deviation, number
of patients with a suspected diagnosis of sleep apnea, idiopathic hypersomnia,
non-organic hypersomnia, narcolepsy, insomnia, EDS with unclear cause,
excessive tiredness, and others, and the fraction of time spent in wake,
MSEs, MSEc, and ED.

Training Validation Testing

N 53 12 11

Male/Female 35/18 6/6 9/2

Age (mean ± SD years) 45.99 ± 18.17 44.64 ± 20.56 44.92 ± 14.48

Sleep apnea 20 0 3

Idiopathic hypersomnia 2 1 1

Non-organic hypersomnia 1 0 0

Narcolepsy 4 1 1

Insomnia 1 0 0

EDS with unclear cause 18 4 4

Excessive tiredness 2 3 2

Others 5 3 0

Fraction of time in

Wake 0.89 0.85 0.91

MSEs 0.08 0.09 0.05

MSEc 0.01 0.01 0.01

ED 0.02 0.05 0.03

terminating the recording, data from the entire recording were
used for training, validation and testing (i.e., also including sleep
episodes lasting longer than 15 s; basically, sleep stage N1) to
obtain as much data as possible as the fraction of time covered by
MSEs is small (5–8%; Table 1). In total, 1,262 MSEs and segments
of sleep were scored.

Preprocessing
The signals were bandpass filtered with a Fourier filter in
the band 0.5–45 Hz (FFT of EEG followed by setting of
frequencies < 0.5 Hz and > 45 Hz to 0 and then performing an
inverse FFT). This step is considered as signal conditioning and is
necessary for the application to future data that are recorded with
different devices. We still refer to it as raw data as no features were
derived for the classification.

For each training sample, we used one occipital EEG
derivation and two EOG channels. The EEG derivation for each
training sample was chosen randomly out of two derivations
(O1M2 or O2M1) and we assigned the corresponding scoring.
Thus, we effectively doubled our training set by using both
EEG channels as independent signals. Since both EEG signals
were similar and most of MSEs were observed in both channels
simultaneously we did not gain completely new examples
by this procedure, but it served as data augmentation. Data
augmentation is commonly referred to slight changes to the
data, such as additional noise, cropping or warping. It helps to
avoid overfitting of the networks (Perez and Wang, 2017). Video
recordings were not used for automatic classification. For the
validation and testing we detected the events using only EEG
channel O1M2, the two EOG channels (E1M1 and E2M1), and
the corresponding expert scoring.

ML Methods
Many pattern recognition problems are easy to solve for a
human expert (for example object recognition in images), but
it is incredibly hard to define explicit decision rules for such
tasks. Machine learning methods are proven to be very efficient
for pattern recognition tasks (Murphy, 2012; Bishop, 2016;
Goodfellow et al., 2016), including EEG data (Davidson et al.,
2006; Tsinalis et al., 2016; Supratak et al., 2017; Chambon
et al., 2018; Malafeev et al., 2018; Stephansen et al., 2018; Phan
et al., 2019). The idea behind machine learning is to let the
algorithm learn the patterns in the data. This can be achieved
either in a supervised way, i.e., when there are labels attached
to each datapoint, or an unsupervised way, when there are
no labels and the algorithm should find the structure in the
data on its own. A typical example of unsupervised learning
is clustering (Xu and Wunsch, 2005), and the most common
example of supervised learning is classification (Bishop, 2016).
In this work, we are aiming to detect MSEs. This problem can
be solved in different ways. For example, one can solve it as
object detection problem (Dalal and Triggs, 2005; Girshick, 2015;
Ren et al., 2015; Liu et al., 2016; Redmon et al., 2016), where
the objects are MSEs. Since the MSEs are not overlapping it
can also be considered a segmentation problem. Further, we can
also represent it as a classification problem for every sample,
i.e., we classify each sample of a recording as one of the four
classes: wake, MSE, MSEc or ED. We have chosen to use the
classification approach.

Classification
We developed and implemented automatic classification
algorithms (supervised learning) based on a Convolutional
Neural Network (CNN) (LeCun and Bengio, 1995). Such a
network uses small filters, and every layer of the network has its
own set of filters. Each filter is convolved with an input to the
layer, i.e., the filter is moved across the input and a similarity
measure is computed for every position and stored in a new
matrix. Matrices corresponding to all filters are stacked together
and this stack is the input for the next layer. We used small
filters based on empirical knowledge. Further, it was shown that
deep networks with small filters perform best (Simonyan and
Zisserman, 2014). We applied a small number of filters in the
first layers of the network and more filters in later layers. This
is a common approach used in computer vision (Simonyan and
Zisserman, 2014). Filters in the first layers have a small receptive
field and usually detect simple patterns, thus, there is no need
for many filters in the first layers. The layers located deeper have
larger receptive fields, thus they detect more complex patterns,
and it makes sense to increase the number of filters to extract the
maximal amount of information from the signal. It is common
to use the number of filters equal to a power of two. We used
a similar approach and choose the number of filters as in our
previous EEG analysis paper (Malafeev et al., 2018). Also the
same ladder of convolutional layers was used in Simonyan and
Zisserman (2014) and other works on computer vision. The
number of layers was chosen such that the last layer’s receptive
field covers the whole input window.
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Since we wanted to assign a label to each sample of the
signal, we ran the classification algorithm on a sliding window.
The stride of the sliding window was equal to the segmentation
resolution, i.e., one sample. We could have used a larger
stride and predicted a label not for every sample but for
example every 100 samples. Resolution would be lower, but
computational expenses would be reduced, and the algorithm
would be faster. However, we wanted to avoid coarsening of the
expert’s segmentation resolution (please note that this was done
for CNN-LSTM network architecture; see below). Our CNNs
predicted the label for the central point of each window. We could
minimize the fringe effect in this way, i.e., the different amount
of information available at the edge and in the middle of the
window. The amount of information available at the edge is lower
than in the middle, thus, we chose to work with a sliding window.
The idea of using a convolutional neural network on a sliding
window is illustrated in Figure 1A and its structure in Figure 2A.

We also implemented a combination of convolutional and
recurrent neural networks (RNN; Figure 1B) to test whether
performance could be considerably improved as RNN take into
account the temporal structure of the data (Hochreiter and
Schmidhuber, 1997). We wanted the network to see a certain
window, it can be achieved either by using a CNN with large
input size or a combination of CNN and LSTM. In the latter
case we have an input window size with a much smaller number
of parameters. We first processed the signals with a CNN with
a 1 s window. The windows were overlapping, and the stride
was equal to 50 samples (0.25 s). We chose relatively large
stride to speed up this network. As a consequence of the large
stride, we predicted the label every 50 samples, and the resulting
resolution of the prediction was lower than the resolution of
the other networks used. We do not think this is a problem
since the MSEs are 1–15 s long by definition. Next, we used
a recurrent neural network, namely a long-short term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) network. The
LSTM network received the vectors resulting from the CNN as
input (Figure 2B) and the output was a sequence of labels (MSE,
Wake, ED, or MSEc). Each label was assigned to the center of the
corresponding CNN window.

Most of our networks were convolutional networks working
with a sliding window (CNN) and one network was a
combination of convolutional and LSTM networks (CNN-
LSTM network).

Architecture of the Networks
Figure 2 (A: CNN and B: CNN-LSTM) illustrates the
network architectures.

Raw EEG and EOGs (in µV) served as the input data for CNNs
and they were divided by 100 and clipped to the range [−1; 1]
to keep weights and gradients small. For CNN-LSTM network
similar procedure was performed, however, we first added 100 to
the signals, divided them by 200 and clipped them in the range [0;
1]. In the first layer of the network, we added some Gaussian noise
(SD = 0.0005) to increase robustness of the network to noise.

Convolutional blocks are the basic parts of the networks. They
are composed of convolution followed by batch normalization,

activation and max-pooling, i.e., filtering, non-linear activation
and reduction of the size of the tensors (Figure 2 and Table 2).

We first explored different network configurations based on
our previous experience with sleep stage scoring (Malafeev et al.,
2018) and decided to investigate the ones finally implemented in
detail. However, the parameter space is infinite, and we do not
claim that our choice is the best one. Some of the blocks were
repeated many times because we want to make the network deep
and would like to end up with a vector of size 1 in the temporal
dimension (i.e., the receptive field of the last layer covers the
whole input window) and a large size in the dimension of the
filters (that these filters can contain large amount of information
about the input window). Thus, some of the blocks are repeated
different number of times depending on the size of the sliding
window, i.e., for each doubling of the window size, we repeated
the block one more time to increase the depth of the network
accordingly: 3 times for 2 s, 4 times for 4 s, 5 times for 8 s, 6 times
for 16 s, and 7 times for 32 s windows. In the end we applied
5 different window sizes. We limited the length of the sliding
window to the range of 2–32 s because we explicitly did not want
the networks to learn MSE duration criteria, only the underlying
EEG patterns. For practical applications, duration criteria can
easily be applied post hoc. We also tested a network (16 s long
window) with a single EEG channel as input instead of an EEG
channel stacked together with the two EOG channels. To account
for the imbalance between the stages (Table 1), weights inversely
proportional to the frequency of a class were generally applied.
To test for the impact of the weighting, an additional network
(16 s long window) was trained with equal weights. This resulted
in seven CNN networks and one CNN-LSTM network, in total 8
different network configurations to explore.

The notations used in Figure 2 and the corresponding
parameters are summarized in Table 2. For the parameter values
applied see the corresponding values in Figure 2.

Performance Evaluation
There are several methods to evaluate the performance of
a classification algorithm. The simplest one is to find the
proportion of correctly classified examples, a metric called
accuracy. While it might be a good measure when we have nearly
the same number of examples of each class, it is a very poor
measure in case the dataset contains predominantly examples of
one class. In our case the most frequent class was wakefulness.
Imagine that 90% of the data is labeled as wakefulness, then a
classifier, which labels all the data as wake would result in 90%
accuracy, but such a classifier would be useless.

One can compute measures such as sensitivity and specificity.
These measures consider both true positive and true negative
results. In this case we need two numbers to characterize an
algorithm. However, it is more convenient to have a single
number to measure performance. Many different single-number
measures exist but they always capture only partial information
about the quality of an algorithm.

We used Cohen’s Kappa (Cohen, 1960) to measure the quality
of the algorithms. This measure compares the output of the
classifier with one that would give random answers with the
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FIGURE 1 | Illustration of the idea behind the segmentation (classification) with a CNN (A) and CNN-LSTM (B) network. A sliding window was used in the case of
CNN only networks. Microsleep episodes were inferred corresponding to the middle of the window on every step (sampling resolution). In case of CNN-LSTM
network a sequence of overlapping windows (classified by a CNN) with the stride of 0.25 s inferring microsleep corresponding to the middle window in the sequence
(LSTM classification). Thus, the resulting resolution of the detection was 0.25 s. Green bars: scored MSEs; red bar in (A) classified MSE; red and blue squares in (B)
classification of a sample or window.

probabilities of classes taken according to the proportion of
examples of a corresponding class in the original data.

The main disadvantage of Cohen’s Kappa is the fact that if
our data contains only one class, kappa will be equal to zero. For
example, a kappa for a particular subject who was always awake,
and the algorithm correctly classified the entire recording as wake
will be equal to zero. This would indicate a very bad performance,
despite the fact, that such a segmentation is correct.

There are two important aspects regarding the computation
of Cohen’s Kappa in this work. First, we could not compute
kappa for each patient since in some recordings not all classes
were present. Thus, we concatenated all the recordings and
then computed kappa resulting in an overall performance. As a
consequence, error bars are not available. Second, we computed
kappa for each class separately. To compute kappa for a particular
class k, we assigned the labels of the examples of the class k to 1
and all other labels to 0 and then computed kappa. We repeated
this step for each class.

Training, Validation, and Testing
As mentioned above, our data comprised 76 MWT recordings,
one recording per patient. The data was split into three parts:
70% training (n = 53), 15% validation (n = 12), and 15% testing
(n = 11). Only the best performing network was additionally
evaluated using the test dataset. The demographic data, diagnosis

and fraction of time spent in the four stages of the patients
contributing to the three parts are provided in Table 1. Most of
the time the patients were awake (85–91% of the time) and in
5–9% of the time MSEs occurred.

We used the Keras package (v 2.2.0) (Chollet Fao, 2015) with
the Tensorflow (v 1.8.0) (Abadi et al., 2016) backend to train the
networks and Python 3.5.2 to run the scripts. Data conversion
and filtering was performed with Matlab 2018b.

We trained the networks using the Adam (Adaptive
momentum estimation) optimization algorithm (Kingma and Ba,
2014) with Nesterov momentum (Nesterov, 1983) (Nadam in
Keras with the default parameters, learning rate 0.002). For the
CNN-LSTM network gradient clipping at a value of the gradient
norm equal to 1 was applied.

The batch size (stack of input windows) for CNN networks
was equal to 200 and 128 for CNN-LSTM network. The
input windows were selected randomly for each batch
without repetitions.

We trained every CNN network for 3 training iterations
and the CNN-LSTM network for 8 iterations. Here we use the
term training iteration instead of commonly used training epoch
because epoch is reserved for scoring epoch in the literature
on sleep analyses. It appeared that the performance reached its
maximum already after only one training iteration and did not
improve further. This is not surprising given that our dataset
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FIGURE 2 | Structure of the CNN (A) and the CNN-LSTM (B) networks. Input is on top, output at the bottom. Since we applied several configurations of the CNN
networks the repetitions of the last convolutional and pooling blocks were different. The number of channels in the input may differ for the networks using either an
EEG and two EOG channels or a single EEG channel only. See sections “Architecture of the Networks” and “Materials and Methods” and Table 2 for the description
of the different layers.

included a frame for every sample of the signal. It produced
a lot of redundant data because the frames corresponding to
consecutive samples differ only in the first and the last values
and thus are almost identical. Thus, our networks were able to
converge within one training iteration.

Visualization
Our data contained 4 classes defined by an expert and it was
interesting to see how they are represented in the feature space.
We took the best performing network (with 3 input channels
and a 16 s window) as we used it for solving the classification
problem and added one more convolutional layer with 64 filters
of size 3. The reason to use an additional layer was to reduce
the size of the resulting feature vector. We used the output of
the last convolutional layer as a feature vector. The length of the
vector was 64, which is large. Thus, it was not realistic to look at
the data points in this 64-dimensional space. Fortunately, there
are many dimensionality reduction methods available. We have

chosen the t-distributed stochastic neighbor embedding (t-SNE)
(van der Maaten and Hinton, 2008) to project the data into a 2D
space. This mapping preserves the distance ratios between the
data points. In this way we can see whether separable clusters
of data points exist. It should, however, be kept in mind that
this mapping is reflecting the representation of the data by the
network (internal representation) and not any sort of ground
truth. Thus, the visualization might differ if another network
structure is employed.

RESULTS

How Our Algorithms Performed in
Classification
Detection of the different classes in one recording with one of
the networks (CNN 16s) and the corresponding expert scoring
are illustrated in Figure 3. A good match between the algorithm
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TABLE 2 | Description of the different layers and notions used in the architecture of the networks (Figure 2).

Layers Description

Convolution, N 3 × 1 filters; strides 1 × 1 Convolutional layer (LeCun and Bengio, 1995) with N filters of size 3 × 1, i.e., one-dimensional filters of the length 3 and
the convolution had a stride of length 1. The weights of convolutional filters were initialized with a Glorot normal
distribution (Glorot and Bengio, 2010)

BatchNorm Batch normalization is a way to speed up training and regularize the network (Ioffe and Szegedy, 2015)

ReLU Rectified linear unit (Hahnloser et al., 2000), a non-linear activation function. It makes the activations of a network
sparse and prevents vanishing of the gradients (Hahnloser et al., 2000)

Max-pooling; pool_size 2 × 1 Max-pooling layer (Fukushima and Miyake, 1982) with pooling size 2. It takes a maximum out of every 2 elements of a
tensor. Thus, the size of the resulting tensor will be reduced by a factor of 2. Max-pooling allows us to reduce the size of
the vector, retain most useful information and it also has the property of shift invariance

Flatten Layer which resizes the input tensor and produces a one-dimensional vector with the same number of elements

Dropout (p = q) Dropout layer (Srivastava et al., 2014). It switches off a fraction q of the neurons in the previous layer in the training
phase. Dropout is a good way to regularize the networks, i.e., prevent overfitting (Srivastava et al., 2014)

Dense (N = n) Densely connected layer with n neurons

Softmax (N = n) Densely connected layer with n neurons and a special activation function which produces a probability distribution with
n values (Bishop, 2016). The sum of these values is equal to 1, n is equal to number of classes we want to predict (in
our case it was 4) and every output value is the probability that the sample belongs to the corresponding class

LSTM (N = n) Long short-term memory layer (Hochreiter and Schmidhuber, 1997) with the size of hidden states equal to n. It has a
memory and can use information about the past to make decisions in a current timepoint

For the parameters applied see the corresponding values in Figure 2.

and the expert scoring for wakefulness and MSEs can be seen, but
the detection of MSEc and ED was not successful. Performance
of the network on the other patients in the validation dataset are
illustrated in Supplementary Figure S1 and of patients of the test
set in Supplementary Figure S2.

Our algorithms resulted in Cohen’s Kappa coefficients close
to the ones resulting from the scoring of two experts (5
recordings were scored by two experts; Figure 4). Importantly,
our algorithms did not produce any substantial amount of
false positive MSE detections in most of the recordings (except
one recording). A small number of false positives (high
precision) is especially important for recordings, which do not
contain any MSEs.

Cohen’s Kappa of the algorithms and of the inter-rater
agreement was good for MSEs and wakefulness (∼0.7), but
negligibly low for MSEc and ED (<0.1). The results for the
different network configurations are illustrated in Figure 4 and
summarized in Table 3. We suggest that the CNN with a 16 s
window is an optimal network, as we did not observe any further
improvement with a 32 s window (Figure 4 and Table 3).

The agreement between the experts for MSEc was higher
than the agreement between the algorithm (CNN 16 s) and an
expert (MSEc—0.04). Kappa for ED was the same (0.06) when
computed between experts and between the algorithm and an
expert. Cohen’s kappa for both MSEc and ED was very low
(<0.1) for both interrater comparison and the comparison of an
algorithm with an expert. Such level of agreement is negligible
(McHugh, 2012). There were five recordings in the validation
dataset which contained a very small amount of MSEs or none
at all (Supplementary Figure S1). The CNN with a 16 s window
detected a substantial amount of false positive MSEs in one of the
patients (recording uXdB).

The performance of MSE detection with the best of our
CNNs was slightly better than the one with the CNN-LSTM
architecture. It might be due to different resolution of detection.

We cannot be sure that this result would hold if the temporal
resolution had been the same. The quality of segmentation was
dependent on the length of the window. We think that the
optimal length of the window is 16 s since we did not see
further improvements with a 32 s long window. The network
with uniformly weighted classes (CNN 16s_u; Figure 4) did not
perform better than the ones with balanced weights. The CNN
which did not use the ocular channels as an input, i.e., used
only a single EEG channel as input, performed worse than a
similar network with three input channels (1 EEG and 2 EOG).
This suggests that ocular channels contain information important
for the MSE detection, most likely slow eye movements, eye
blinks and saccades.

We evaluated only the best (optimal) performing algorithm,
the CNN with a 16 s window with the test dataset. Evaluation
resulted in the following Cohen’s kappa values: W—0.59; MSE—
0.69; MSEc—0.05; ED—0.11. These results were very close
to the ones resulting from the validation dataset (Table 3),
and thus suggest, that there was no substantial overfitting to
the validation dataset. Again, we observed no substantial false
positive MSE detections in the test dataset, except for one
recording (patient f8H5; Supplementary Figure S2). Overall,
there were six recordings with no or very little MSEs in the
test dataset and five of them were scored nearly perfectly by
the algorithm (CNN 16s). Moreover, the recordings with a
substantial amount of MSEs were scored with very high quality
(Supplementary Figure S2).

Why Did the Algorithm Not Perform
Equally Well for All Classes?
Visualization (t-SNE) and analysis of the internal representation
of the data in our network (CNN 16s) revealed as expected
for the training data of artificial neural networks, that in the
representation of training data all four stages form clearly
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FIGURE 3 | Expert (top) and automatic soring with one algorithm (CNN with 16-s window; bottom) of an MWT (40 min) in one patient of the validation set (patient
y5We). A good match between the algorithm and an expert scoring for wakefulness (W) and microsleep episodes (MSE) are evident, but a poor match for episodes
of drowsiness (ED) and microsleep episode candidates (MSEc). Scoring was performed with the resolution of one sample; for the illustration, we coarsened the result
to a resolution of 0.5 s (100 samples), i.e., the most frequent class within an interval was plotted. Results for other patients of the validation set are illustrated in
Supplementary Figure S1, those of the test set in Supplementary Figure S2.

FIGURE 4 | Cohen’s kappa of different algorithms along with the agreement between two experts. W, wakefulness; MSE, microsleep episodes; MSEc, microsleep
candidates; ED, episodes of drowsiness. Experts: agreement between two experts computed based on five recordings containing MSEs. 2–16s: comparison
between one expert and convolutional neural networks (CNNs) with window lengths 2, 4, 8, and 16 s. 16s_u: CNN with a 16s window and uniformly weighted
classes. 16s_1c: CNN with 16s window and only one EEG channel as input. 32s: CNN with a 32s window. CNN_LSTM: CNN combined with a long-short term
memory (LSTM) architecture; it has only two classes because this network was trained to detect only MSEs, everything else was considered as wakefulness. If not
mentioned otherwise, one occipital EEG channel and two ocular channels served as input for the networks. Kappa of the neural networks was computed using the
validation dataset (12 recordings). The data of all recordings were concatenated to estimate the overall kappa.
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TABLE 3 | Cohen’s kappa computed on the validation dataset (n = 12) using
different network architectures.

W MSE MSEc ED

Experts 0.71 0.80 0.09 0.06

2s 0.58 0.61 0.02 0.05

4s 0.62 0.65 0.03 0.07

8s 0.63 0.67 0.07 0.11

16s 0.67 0.69 0.04 0.06

16s_u 0.67 0.69 0.03 0.07

16s_1c 0.58 0.64 0.03 0.02

32s 0.66 0.69 0.02 0.07

CNN_LSTM 0.65 0.65

See Figure 4 for the meaning of the network labels.

separated clusters except for very few data points (Figure 5A
and Supplementary Figure S3). However, in the representation
of validation data generally the four classes are not separable. In
most cases there were two clear clusters representing wakefulness
and MSEs with a smooth transition between them (Figure 5B
and Supplementary Figure S4). However, most MSEc and ED
were on the interface between these two classes, which explains
why they cannot be reliably identified by the algorithm. In some
cases (Supplementary Figure S3; patient IhpU), we observed not
only a cloud of MSEs, which was connected with the cloud of
wakefulness but additionally a second clearly separable cluster.
This distinct cluster may not represent MSEs but sleep episodes
longer than 15 s which were marked as microsleep by the expert
(see section “Discussion”).

DISCUSSION

Our algorithms reliably identified MSEs and wakefulness with
a performance close to a human expert and did not produce
any substantial amount of false positive MSEs detection in
recordings of patients, indicating that reliable automatic MSE
detection is feasible based on raw EEG and EOG data recorded
during the MWT in a clinical setting. In one of the recordings
(uXdB; Supplementary Figure S2) we observed a considerable
amount of false positive MSE detections. We do not yet have an
explanation why this happened. Visual inspection of recording
uXdB revealed that it was quite noisy. Thus, it would make sense
to test the algorithm on more data, especially noisy ones to check
if noise poses a problem for the algorithm.

We provide a proof of principle that reliable automatic
detection of MSEs using raw data is feasible and of a high
quality. The performance of the CNN with a 16 s window on
validation and test data was very similar indicating that there
was no substantial overfitting, and the algorithm performs well
independent of any disorder or medication. However, we would
need more recordings double scored by independent experts,
and overall larger datasets to draw a final conclusion. Further,
evaluation of the algorithms on data of healthy subjects and
subjects recorded in a driving simulator should be performed
(Skorucak et al., 2020a).

Performance of our raw data based approach was similar to
the feature-based ones (Skorucak et al., 2020b). The feature-
based algorithms of Skorucak et al. (2020b) detected only bilateral
occurring MSEs, i.e., MSEs occurring in both occipital EEG
channels simultaneously and was not trained to detect MSEc
and ED. It is easier to detect MSEs occurring bilaterally (i.e., in
two channels) than detecting them based in a single channel.
Moreover, the feature-based algorithms worked with a 0.2 s
resolution, and the subdivision into training and testing data sets
were different, i.e., randomization of individuals was different
and there was only a test set (no subdivision into validation
and test). Thus, a direct comparison of the algorithms must
be made with care. The feature based artificial neural network
(Skorucak et al., 2020b) detected wake and MSEs with kappa
values of 0.65 and 0.75, respectively (recalculated as described
in “Performance evaluation”). The same algorithm applied to
MWT recordings of healthy subjects after sleep deprivation
(Skorucak et al., 2020a) revealed kappa values of 0.61 and 0.65,
respectively. Taken together, with our approach (best performing
16-s network) we achieved a similar performance (validation:
0.67 and 0.69; testing: 0.59 and 0.69). In the feature-based
approach (Skorucak et al., 2020b), EEG recordings had first to
be cleaned of electrocardiography (ECG) artifacts to be able to
reliably classify the data as the features were mainly derived from
EEG spectra. Human scorers, however, were not distracted by
these artifacts. Similarly, our raw data based approached worked
well without prior ECG artifact removal. Generally, we expect
that raw data based algorithms would be more robust and better
transferable to other datasets and might be better suited for
on-line processing.

Performance of the CNN algorithms depended on the length
of the sliding window. We think that 16 s is an optimal window
size because we did not observe further improvement with a
32 s compared to a 16 s window. Even the network with a 2 s
long window performed reasonably well. This is an interesting
observation because an expert needs to see 10–20 s of the signals
to score MSEs. Further, training with a 16-s window and weights
inversely proportional to the stage prevalence or with equal
weights resulted in the same performance (Figure 4 and Table 3)
indicating that the low prevalence of MSEs (Table 1) was not an
issue; MSEc and ED could not be detected with both weightings.

One EEG and two EOG channels served as input of the
classifiers, except for one case. Classification based on a single
EEG derivation (16s_1c) worked well, suggesting that the
occipital EEG contains substantial information to score MSEs
at least for our conservatively defined MSEs as short as 1 s
(Hertig-Godeschalk et al., 2020). Nevertheless, a similar network,
which used also EOG signals as input, performed better. This was
expected since the eye closure is a criterion for expert scoring.
Moreover, eye blinks or saccades might be correlated with
wakefulness providing additional information for the algorithm.

Borderline segments between clear wakefulness and MSEs that
were particularly difficult to score were categorized as MSEc or
as ED (Hertig-Godeschalk et al., 2020) in the BERN microsleep
scoring criteria. Both, experts and algorithms performed bad
in scoring these borderline segments (Figure 4 and Table 3).
After visualizing the internal representation of the data in the
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FIGURE 5 | T-distributed stochastic neighbor embedding (t-SNE) was used to illustrate the data and their classification mapped into a 2D space (last layer of the
CNN 16s; arbitrary units). (A) Mapping of training data (patient Nzhl). All stages form clearly separated clusters except for very few data points as expected for the
training data of artificial neural networks. (B) Mapping of validation data (patient y5We; same data as in Figure 3). Basically, two large clusters corresponding to W
and MSE are visible which do not completely separate. MSEc and ED do not form clusters and are not separable from W and MSE. Thus, it illustrates why our
algorithms could not score MSEc and ED reliably. Wakefulness (W): blue; microsleep episodes (MSE): red; microsleep episode candidates (MSEc) green; episodes of
drowsiness (ED): magenta. For the convenience we illustrated only every hundredth datapoint (sample). Please note that this figure only shows the internal
representation of the data in this specific network. Further data are illustrated in supporting information, for training and validation separately (Supplementary
Figures S3, S4).

neural network we came up with a hypothesis why this might
be the case (Figure 5 and Supplementary Figures S3, S4).
Visualization (t-SNE) of the internal representation of the data
in one of the networks (CNN 16 s) revealed that generally the
4 classes were not completely separable. In most cases there
was a smooth transition between the clusters of wakefulness
and of MSEs (Figure 5B and Supplementary Figure S4). Most
MSEc and ED were at the interface between MSE and wake
and overlapped with them considerably. This explains why
they cannot be reliably identified neither by the algorithm nor
by an expert. Thus, in contrast to MSEs, MSEc and ED are
currently far from being practically applicable. Please note that
this visualization only reflects representation of the data in the
particular neural network. For other networks the representation
might be different.

In some cases (Supplementary Figure S3; patient IhpU), we
observed not only a cluster of MSEs, which was connected with
the cluster of wakefulness but also a second clearly separable
cluster of MSEs. These distinct clusters may not represent MSEs,
but sleep episodes longer than 15 s (stage 1), which were marked
as MSEs by the expert as the occurrence of consolidated sleep
was missed by the technician and the recording continued leading
to MSEs lasting longer than 15 s. Note, that we observed such a
cluster only in the training dataset. We did not observe this in the
validation dataset but observed several clusters of points marked
as wakefulness Supplementary Figure S4.

Cohen’s kappa was somewhat higher for the inter-rater
agreement. However, it is important to note that the interrater

agreement was assessed on only five recordings, which were
not selected completely randomly. The experts randomly
selected only recordings, which contained MSEs. Moreover, the
experts were trained in the same laboratory and the second
expert checked the scoring of the first one for about 2/3
of the recordings.

Our CNNs performed classification for every sample, thus the
detected episodes are likely to be fragmented. This issue can be
easily solved with median filtering or splitting the results into
consecutive intervals and assigning the most frequent class to all
samples in the corresponding interval. We used latter approach
for the visualization in Figure 3 using 0.5 s long intervals.
Additionally, classification was performed based on a sliding
window shifted by one sample.

The use of occipital EEG channels was based on clinical
experience since features of the MSEs are often best visible in
this brain region (Hertig-Godeschalk et al., 2020). In particular,
the alpha rhythm observed during rest with eyes closed is best
observed over occipital brain areas. Further, the transition to
sleep is accompanied by a slowing of the EEG, i.e., a loss of alpha
activity and a shift to theta activity which again is best seen in
occipital derivations (Hertig-Godeschalk et al., 2020). Given the
local aspects of sleep, future development of algorithms should
take other brain regions into account.

As a result of this work, we provide a proof of principle that
reliable automatic MSE detection with deep neuronal networks
working with raw EEG and EOG data as input is feasible with a
quality close to the one of human experts. Deep neural networks
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may also be used as a tool to visualize data and thus, foster their
interpretation and gain new insights.
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