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Sound therapy is one of the most common first-line treatments for idiopathic tinnitus.
We aimed to investigate the brain structural and functional alterations between patients
with idiopathic tinnitus without hearing loss (HL) and healthy controls (HCs) and between
patients before and after sound therapy (narrow band noise). Structural and resting-state
functional images were acquired from 13 tinnitus patients without HL and 18 HCs before
and after 6 months of narrow band sound therapy (only patients received the treatment).
Voxel-based morphometry (VBM) and independent component analysis (ICA) were
conducted to separately investigate the brain structural and functional changes.
Associations between brain changes and clinical variables were also performed. After
the treatment, the % improvement of THI score was −1.30% (± 63.40%). Compared
with HCs, tinnitus patients showed gray matter and white matter atrophy in the left
middle temporal gyrus at baseline, and the gray matter volume was further reduced
after the treatment. The patients also showed increased white matter volume in the
cingulum (cingulate), right calcarine, left rolandic operculum, and left parietal and frontal
lobes. Additionally, compared with HCs, tinnitus patients exhibited positive [medial visual
network (mVN) and sensorimotor network (SMN), mVN and auditory network (AN)]
and negative [mVN and lateral visual network (lVN)] internetwork functional connectivity
(FC) at baseline and negative [left frontoparietal network (LFPN) and dorsal attention
network (DAN), AN and posterior default mode network (pDMN)] internetwork FC after
the narrow band sound therapy. The patients also showed negative [LFPN and right
frontoparietal network (RFPN), LFPN and RFPN, anterior default mode network (aDMN)
and AN, aDMN and DAN] internetwork FC after the treatment when compared with
baseline. Our findings suggest that although the outcomes of idiopathic tinnitus patients
without HL were not very good when the improvement of THI scores was used as an
evaluation indicator, the patients experienced significant differences in auditory-related
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and non-auditory-related brain reorganization before and after the narrow band sound
therapy, that is, sound therapy may have a significant effect on brain reorganization in
patients with idiopathic tinnitus. This study may provide some new useful information for
the understanding of mechanisms underlying idiopathic tinnitus.

Keywords: tinnitus without hearing loss, structural and functional reorganization, voxel-based morphometry,
independent component analysis, clinical variables

INTRODUCTION

Tinnitus is a phantom sound without an external source, which
affects 10–15% of the adult population, and it seriously affects
the quality of patients’ lives (Sereda et al., 2018). Prior studies
have shown that tinnitus is caused by alterations in the brain
(Eggermont and Roberts, 2004) and is associated with specific
learning processes allowing increased awareness and continuous
appraisal (i.e., tinnitus sensitization and centralization) (Zenner
and Zalaman, 2004; Noreña and Farley, 2013). Moreover, many
studies to date have shown significant brain structural and
functional remodeling in tinnitus patients (Chen et al., 2015,
2020, 2021; Ryu et al., 2016; Schmidt et al., 2017). Therefore, it is
very important to reverse tinnitus-related abnormal brain neural
activity or reorganization.

To date, many treatment modalities have been applied to
tinnitus patients, such as drug therapy, cognitive behavioral
therapy (CBT), tinnitus counseling, cochlear implants (CIs),
tinnitus retraining therapy, hearing aids, brain stimulation, and
sound therapy (Langguth et al., 2013; Zenner et al., 2017; Sereda
et al., 2018; Bae et al., 2020). There is no satisfying treatment
that can benefit all patients (Langguth et al., 2013). However,
of the abovementioned treatment methods, sound therapy, such
as using a noise generator with an unmodulated frequency or
involving the use of a recorded noise or a special noise source
or mask device (Jastreboff, 1999; Oishi et al., 2013), has been
widely suggested for the management of tinnitus in many studies
(Jastreboff, 1999; Oishi et al., 2013; Han et al., 2019a,b; Lv et al.,
2020). Meanwhile, according to meta-analytic evidence (Sereda
et al., 2018), sound therapy is the first-line treatment method in
UK audiology departments for tinnitus patients (together with
hearing aids and information and advice) (Hobson et al., 2012;
Hoare et al., 2014; Sereda et al., 2015; Tutaj et al., 2018) and
was even listed as an option in the clinical guidelines (Henry
et al., 2002; Tunkel et al., 2014). During this treatment, the
generated sound will be set based on tinnitus features, including
its pitch, loudness, and minimum masking level. This sound
reduces the contrast between the tinnitus and the environment,
diminishes sensitivity to tinnitus, and promotes habituation to
the tinnitus sensation (Makar et al., 2017). Narrowband noise is
the most commonly used and effective sound therapy method
(Henry et al., 2002). However, to the best of our knowledge,

Abbreviations: HL, hearing loss; VBM, voxel-based morphometry; ICA,
independent component analysis; HC, healthy control; FC, functional
connectivity; CBT, cognitive behavioral therapy; CI, cochlear implant; THI,
tinnitus handicap inventory; CSF, cerebrospinal fluid; GMV, gray matter volume;
WMV, white matter volume; MNI, Montreal Neurological Institute; RSN,
resting-state network; ROI, region of interest; MTG, middle temporal gyrus.

few studies to date have explored the effect of sound therapy on
brain remodeling in idiopathic tinnitus. Almost all studies have
focused only on alterations in brain function after treatment.
These studies have suggested that sound therapy achieved
good outcomes when taking improvements in tinnitus handicap
inventory (THI) scores as an evaluation standard (Han et al.,
2019a,b; Lv et al., 2020). For example, Han et al. (2019b) and
Lv et al. (2020) have indicated that sound therapy significantly
changed or even had a normalizing effect on the abnormal
functional connectivity (FC) in the brains of patients with
idiopathic tinnitus and that the changed FC was correlated with
the severity of tinnitus.

Moreover, although there are many studies on brain structural
and functional changes in tinnitus patients at present (Aldhafeeri
et al., 2012; Seydell-Greenwald et al., 2014; Chen et al., 2015;
Ryu et al., 2016; Han et al., 2020), many of these subjects had
different degrees of hearing loss (HL) (Aldhafeeri et al., 2012;
Seydell-Greenwald et al., 2014; Ryu et al., 2016; Han et al.,
2020). Although some researchers have noticed that HL may
have an impact on the results, their studies were mainly on brain
reorganization in patients without any treatment (Husain et al.,
2011; Benson et al., 2014; Schmidt et al., 2017). To date, there are
few studies on the changes in both brain structure and function
in tinnitus patients without HL after sound therapy.

Therefore, based on the above studies, to explore the brain
alterations between tinnitus patients and healthy controls (HCs)
and between patients before and after sound therapy, in the
present study, we combined voxel-based morphometry (VBM)
and independent component analysis (ICA) in patients with
tinnitus in the early stage (duration less than 48 months) without
HL before and after sound therapy and further explored their
relationships with clinical variables. We defined subjects with a
duration of fewer than 48 months being in the early stage, which
is consistent with our previous studies (Liu et al., 2018; Chen
et al., 2020).

MATERIALS AND METHODS

Participants
Thirteen patients with untreated persistent idiopathic tinnitus
and 18 HCs were enrolled in this study. All the patients
had persistent idiopathic tinnitus, and the duration had been
persistent for more than 6 months and less than 48 months,
without any history of associated brain diseases confirmed by
conventional magnetic resonance imaging (MRI), no preexisting
mental or cognitive disorder, and no MRI contradictions.
Tinnitus was present as a single high/low-pitched sound and 2
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high/low-pitched sounds without any rhythm. All the patients
were defined as tinnitus without HL based on audiogram results,
which was defined as more than 25 dB HL at frequencies ranging
from 250 to 8 kHz (0.250, 0.500, 1, 2, 3, 4, 6, and 8 kHz) in a
pure-tone audiometry (PTA) examination. All the patients in this
study were without pulsatile tinnitus, sudden deafness, Ménière’s
disease, hyperacusis on physical examination, otosclerosis, and
other neurological diseases. We asked all the patients to complete
the THI (Newman et al., 1996) and a visual analog scale (VAS)
to assess the severity of disease at the time of admission. We also
evaluated the severity of depression and distress of the patients
at that time. Moreover, we assessed the hearing of the HCs, and
all of them had normal hearing. Other exclusion criteria for the
tinnitus patients were also applied with the HCs.

The study protocol was approved by the institutional review
board (IRB) of Beijing Friendship Hospital, Capital Medical
University, Beijing, China. All the subjects were informed of the
purpose of the study and gave written consent in accordance with
the Declaration of Helsinki. The registration number of the study
on ClinicalTrials.gov is NCT03764826.

Sound Therapy and Clinical Evaluation
The sound therapy applied is a customized personal sound
therapy based on patients’ tinnitus features. We used the
special tinnitus therapeutic instrument: eMasker R© (Micro-DSP
Technology Co., Ltd), which is a customized personal sound
therapy device based on tinnitus characteristic test results. We
advise patients to use it in a quiet environment to achieve the
best therapeutic effect. First, to characterize the tinnitus and
prepare for treatment, the audiologists in our group examined
all the patients for tinnitus loudness matching, pitch matching,
minimum masking level, and residual inhibition. Then, we
applied narrow band noise (that was used for treatment) to treat
tinnitus for 6 months, 20 min each time, three times per day. The
loudness of sound we applied for each patient was set as 5 dB
over the tinnitus loudness. The frequency was set as a 1 kHz
narrow band while setting the tinnitus frequency as the middle
point of the delivered sound (i.e., tinnitus frequency ± 0.5 kHz,
for example, tinnitus frequency = 3 kHz, low sound cut = 2.5 kHz,
high sound cut = 3.5 kHz). In this procedure, we used the THI
scores to assess the severity of tinnitus before and after treatment.
In our study, consistent with prior research, a reduction in THI
scores to 16 points or a reduction of 17 points or more was
considered effective treatment (Zeman et al., 2011). Therefore,
we defined the primary outcome of this study as THI score
changes. The HCs were not given any particular kind of sound
exposure during the study. We also calculated 1 THI scores and
improvement in THI scores in all patients with tinnitus, which
were defined as follows: 1 THI score = THI on admission—
THI follow-up; % improvement in THI score = (THI score at
6 months follow-up—THI score on admission) ÷ THI score on
admission × 100%.

Image Acquisition
Structural and functional imaging data of the idiopathic tinnitus
patients at baseline (without any treatment) and after treatment
(6 months) and from HCs were obtained using a 3.0T MRI

system (Prisma, Siemens, Erlangen, Germany) with a 64-channel
phase-array head coil. During the scanning process, we used
tight but comfortable foam padding to minimize head motion
and earplugs to reduce scanner noise. All the participants
were asked to stay awake, close their eyes, breathe evenly,
and try to avoid specific thoughts. We used a conventional
brain axial T2 sequence before the structural and functional
scans to exclude any visible brain abnormalities. Using a
3D magnetization-prepared rapid gradient-echo sequence (MP-
RAGE), we obtained high-resolution three-dimensional (3D)
structural T1-weighted images. The parameters were as follows:
repetition time (TR) = 2,530 ms; echo time (TE) = 2.98 ms;
inversion time (TI) = 1,100 ms; FA = 7◦; number of slices = 192;
slice thickness = 1 mm, bandwidth = 240 Hz/Px; field of
view (FOV) = 256 × 256 mm2; and matrix = 256 × 256,
resulting in an isotropic voxel size of 1 × 1 × 1 mm3. In
addition, we also obtained resting-state functional images of
all participants using an echo-planar imaging (EPI) sequence.
The scanning parameters were as follows: 33 axial slices with
a slice thickness = 3.5 mm and interslice gap = 1 mm,
TR = 2,000 ms; TE = 30 ms; FA = 90◦; bandwidth = 2,368 Hz/Px;
FOV = 224 × 224 mm2; and matrix = 64 × 64. The
latter parameters resulted in an isotropic voxel size of
3.5 × 3.5 × 3.5 mm3. The total number of volumes
acquired was 240.

Processing of Structural Images and
Voxel-Based Morphometry Analysis
We performed postprocessing of the structural data using
CAT121 implemented in Statistical Parametric Mapping (SPM)
software (version 12)2. SPM 12 was installed in MATLAB
2016a (Math Works, Natick, MA, United States). First, all the
structural images were screened for movement artifacts. Next, the
structural images were segmented into gray matter, white matter,
and cerebrospinal fluid (CSF) areas using the unified standard
segmentation option in SPM12. The individual gray matter
and white matter components were then normalized into the
standard Montreal Neurological Institute (MNI) space using the
Diffeomorphic Anatomical Registration through Exponentiated
Lie algebra (DARTEL) algorithm (Ashburner, 2007) after
segmentation. The normalized gray matter and white matter
components were modulated to generate the relative gray matter
volume (GMV) and white matter volume (WMV) by multiplying
by the non-linear part of the deformation field at the DARTEL
step. The Gaussian kernel used to smooth the resulting GMV and
WMV images was 6 mm full-width at half-maximum (FWHM).

Preprocessing of Resting-State
Functional Images
We used the batch-processing tool Data Processing and Analysis
for (Resting-State) Brain Imaging (DPABI)3 (Yan et al., 2016)
to preprocess the resting-state functional MRI (rs-fMRI) data,

1http://www.neuro.uni-jena.de
2https://www.fil.ion.ucl.ac.uk/spm
3http://www.rfmri.org/dpabi
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which is based on SPM12. First, to allow for steady-state
magnetization and stabilization of the subject, we removed
the first 10 volumes of each functional time series of all the
participants. After that, we conducted slice timing correction
on the remaining 230 volumes. Head motion between volumes
was evaluated and corrected using rigid body registration,
and we excluded datasets with maximum translation exceeding
2.5 mm, maximum rotation exceeding 2.5◦ or mean framewise
displacement (FD) >0.3 (Yan et al., 2013). Next, based on the
standard stereotaxic coordinate system, we spatially normalized
the corrected fMRI images to an MNI template brain. Then,
each voxel was resampled to isotropic 3 mm × 3 mm × 3 mm.
After that, to remove the possible variances from the time course
of each voxel (including the WM and CSF signal and Friston-
24 head motion parameters), the 26 nuisance covariates were
regressed out. Finally, the Gaussian smoothing kernel for the
rs-fMRI images was a 6-mm FWHM.

ICA Analysis
We performed ICA through GIG-ICA using GIFT software
(version 3.0b)4. The main steps included data reduction,
application of the ICA algorithm, and back-reconstruction
for each subject. In the present study, we performed group
independent component analysis (GICA) 100 times on tinnitus
patients and HCs using 20 and 30 components separately. During
this process, through visual inspection and previous reports (see
the “Results” section for details), we identified nine components
as meaningful resting-state networks (RSNs). We also obtained
the individual-level components using back-reconstruction and
transformed the subject-specific spatial maps to z scores.

Intranetwork Functional Connectivity
Analysis
The main process was consistent with a previous study (Chen
et al., 2018). To generate a sample-specific spatial map for
each component, each ICA component was entered into a
random-effect one-sample t-test using a family wise error (FWE)
correction (p < 0.05) with a cluster size of >100 voxels (Song
et al., 2013; Wang et al., 2014). We compared the differences
in intranetwork FC between the tinnitus patients and HCs at
baseline and after treatment using a two-sample t-test and applied
a paired t-test to compare intranetwork FC between patients
before and after treatment [false discovery rate (FDR) corrected
p < 0.05]. Using a general linear model (GLM), we extracted and
compared intranetwork FC of each region of interest (ROI) with
a significant difference between groups, with age and sex serving
as covariates. For the ROI-based analyses, we used Cohen’s d
(Parker and Hagan-Burke, 2007) to determine the effect size of
each comparison.

Internetwork Functional Connectivity
Analysis
During the process of the internetwork FC analysis, first, by
averaging the time courses of all voxels within the sample-specific

4http://mialab.mrn.org/software/gift/

RSN mask of each subject, we calculated the mean time course of
each RSN. Then, we calculated Pearson’s correlation coefficients
of the mean time courses between all pairs of RSNs for each
subject and then converted them to z-values using Fisher’s r-to-z
transformation to improve normality. For each group, individual
z-values were entered into a random-effect one-sample t-test to
determine whether the correlation between each pair of RSNs
was statistically significant (p < 0.05). Intergroup comparisons
were carried out only if the internetwork FC of each group
was statistically significant (p < 0.05). We performed GLM with
age and sex as covariates to determine whether the pairs of
internetwork FC were significantly different (p < 0.05) between
the patients and HCs at baseline and after treatments using a two-
sample t-test and between the patients before and after treatment
using a paired t-test.

Statistical Analyses
During the statistical analysis process, we assessed all the data for
normality using the Kolmogorov–Smirnov test. If the data were
identified as not normally distributed, we applied non-parametric
tests. First, we applied the voxel wise two-sample t-test and paired
t-test in SPM12 to compare the whole-brain GMV and WMV
differences between the tinnitus patients and HCs at baseline
and after treatment and between the patients before and after
narrow band sound therapy (voxel-level uncorrected p < 0.001,
non-stationary cluster-level FWE correction with p < 0.05), and
age and sex served as nuisance covariates. Next, the mean GMV,
WMV, and FC values of each cluster that showed statistical

TABLE 1 | Demographic and clinical data of the tinnitus patients and
healthy controls.

Demographic Tinnitus
(baseline,
n = 13)

Tinnitus
(6 months,

n = 13)

Control
(n = 18)

P-value

Age, years 42.23 (± 13.98) 45.33
(± 9.64)

0.470a

gender 6 males, 7
females

9 males, 9
females

0.561b

THI score 53.38 (± 28.10) 45.85
(± 25.16)

NA 0.379c

1 THI score 7.54 (± 29.78) NA NA

% improvement
of THI score

−1.30%
(±63.40%)

NA

Duration,
months

≥6 and ≤48 NA NA

Type# 7: 2: 3: 1 NA NA

Tinnitus pitch 250∼8,000 Hz NA NA

Laterality 3 right, 4 left, 6
bilateral

NA NA

Normal hearing All All NA

THI, Tinnitus Handicap Inventory, M THI score = THI baseline – THI treated , NA: not
applicable.
aTwo-sample t-tests.
bChi-square test.
cPaired-samples t-tests.
#1 single high-pitched sound vs. 1 single low-pitched sound vs. 2 high pitched
sounds vs. 2 low pitched sounds.
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significance were extracted for subsequent analyses. Then, we
conducted a partial correlation analysis to explore any potential
associations between brain alterations (intra/internetwork level)
and clinical variables in tinnitus patients after removing age
and sex effects (FDR p < 0.05). The last steps were performed
using IBM SPSS Statistics version 23.0 (IBM Inc., Armonk,
NY, United States).

GMV, WMV, and FC results were presented using MRIcron5,
BrainNet Viewer6 (Xia et al., 2013) and xjView7.

RESULTS

Demographic Data
Table 1 shows detailed demographic data of the 13 tinnitus
patients with persistent idiopathic tinnitus characteristics and
18 HCs. We acquired the THI scores before and after narrow
band sound therapy for all patients. In this study, the outcome of
tinnitus patients was considered poor after sound therapy when
taking THI score improvements as the evaluative measurement.

5https://www.nitrc.org/projects/mricron
6http://www.nitrc.org/projects/bnv/
7https://www.alivelearn.net/xjview/

Brain Structural Changes Between the
Patients and HCs at Baseline and After
Treatment and Between the Patients
Before and After Treatment
Compared with the HCs, the tinnitus patients showed decreased
GMV (Figure 1 and Table 2) and WMV (Figure 2 and Table 2)
in the left middle temporal gyrus (MTG) at baseline, and the
GMV was even further reduced after treatment (non-stationary
cluster-level FWE correction with p < 0.05) (although the trend
in the WMV reductions showed a decrease, the P-value was
uncorrected). Additionally, the patients showed increased WMV
in the cingulum (cingulate), left parietal and frontal lobes, right
calcarine, and left rolandic operculum after treatment compared
with the baseline (non-stationary cluster-level FWE correction
with p < 0.05) (Figure 3 and Table 2).

Resting-State Network Functional
Connectivity Changes Between the
Patients and HCs at Baseline and After
Treatment and Between the Patients
Before and After Treatment
The nine RSNs identified in our study were as follows: the
auditory network (AN), the anterior (aDMN), and posterior

FIGURE 1 | Intergroup differences in GMV between tinnitus patients without HL and HCs before and after sound therapy. At baseline, compared with the HCs, the
patients with tinnitus without HL exhibited reduced GMV in the left MTG. After sound therapy (treated), the tinnitus patients continued to show decreased GMV in the
same region, and the volume of gray matter was further reduced (corrected at the non-stationary cluster level with FWE P < 0.05). HL, hearing loss, HC, healthy
control, MTG, middle temporal gyrus, FWE, family wise error, GMV, gray matter volume. The color bar represents the extent of reduction in GMV.

Frontiers in Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 573858

https://www.nitrc.org/projects/mricron
http://www.nitrc.org/projects/bnv/
https://www.alivelearn.net/xjview/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-573858 March 7, 2021 Time: 16:51 # 6

Chen et al. Brain Reorganization After Sound Therapy

TABLE 2 | Difference in gray/white matter volume between the tinnitus patients
and healthy controls and between patients before and after sound therapy.

Anatomical region MNI coordinate Voxel Peak

size T-value
x y z

Gray matter (FWE cluster p < 0.05)

Gray matter volume (baseline)

Tinnitus patients < Healthy controls

Left middle temporal gyrus −65 −3 −24 690 5.06

Gray matter volume (after treatment)

Tinnitus patients < Healthy controls

Left middle temporal gyrus −65 −3 −23 831 5.18

White matter

White matter volume (baseline)

Tinnitus patients < Healthy controls

Left middle temporal gyrus (FWE
cluster p < 0.05)

−60 2 −29 373 5.39

White matter volume (after treatment)

Tinnitus patients < Healthy controls

Left middle temporal gyrus
(uncorrected)

−60 2 −29 362 5.49

White matter volume (FWE cluster
P < 0.05)

Tinnitus patients (baseline) < Tinnitus
patients (after treatment)

Cingulum_Mid_L (aal) −8 −27 39 110 8.40

Calcarine_R (aal) 24 −51 15 65 7.98

Cingulum_Mid_R (aal) 8 −30 44 115 6.50

Rolandic_Oper_L (aal) −45 −6 15 113 6.06

Left parietal and frontal lobe −29 −41 44 1,345 8.04

MNI, Montreal Neurological Institute; FWE, family wise error; L, left; R, right.

(pDMN) default mode networks, the left (LFPN) and right
(RFPN) frontoparietal networks, the medial (mVN) and lateral
(lVN) visual networks, the sensorimotor network (SMN), and the
dorsal attention network (DAN) (Figures 4A–C). The locations
of these RSNs were in line with some prior studies (Mantini et al.,
2007; Smith et al., 2009; Du et al., 2015; Ma et al., 2016).

Altered Functional Connectivity Within
and Between Resting-State Networks
We found that the tinnitus patients exhibited a decreased (i.e.,
positive) (mVN and lVN, p = 0.007) or an increased (i.e.,
less negative) (mVN and SMN, p = 0.018; mVN and AN,
p = 0.035) internetwork FC at baseline when compared with HCs
(Figure 4A and Table 3). Additionally, compared with the HCs,
the patients showed a decreased (i.e., positive) (AN and pDMN,
p = 0.008; DAN and LFPN, p = 0.005) internetwork FC after
treatment (Figure 4B and Table 3). Meanwhile, tinnitus patients
also exhibited an increased (i.e., less negative) (LFPN and pDMN,
p = 0.023; LFPN and RFPN, p = 0.030; aDMN and AN, p = 0.037;
aDMN and DAN, p = 0.008) internetwork FC after treatment
compared with baseline (Figure 4C and Table 3). However,
we did not observe any intranetwork FC changes between the
patients and HCs at baseline or after treatment or between the
patients before and after treatment within the nine RSNs.

Correlations Between the Brain
Structural and Functional Changes and
Extent of THI Score Changes
We performed partial correlations between the GMV, WMV, and
internetwork FC values and the THI scores, 1 THI scores, %
improvement in THI scores, and other clinical variables (such
as duration and VAS scores) in patients with tinnitus after
controlling for age and sex. We did not detect any associations
among these variables (p > 0.05).

DISCUSSION

In the present study, all the patients had poor outcomes after the
treatment when using improvements or changes in THI scores
as the evaluation standard, which define a THI score reduced
to 16 points or a reduction of 17 points or more as an effective
treatment or good outcome (Zeman et al., 2011). Moreover, in
the classic frequencies (from 250 – 8 kHz: 0.250, 0.500, 1, 2, 3,
4, 6, and 8 kHz), all the patients in this study were identified as
tinnitus without HL, which is in line with one of our previous
studies (Chen et al., 2020), although we cannot eliminate the
possibility of hidden HL currently. Combining VBM and ICA
analyses, we found significant brain gray/white matter atrophy in
the auditory-related cortex at baseline, and the GMV was further
reduced after sound therapy. Additionally, patients showed
increased WMV in some regions that are not directly related to
auditory function after treatment compared with baseline. More
importantly, tinnitus patients showed significantly changes in
internetwork FC in auditory-related and non-auditory-related
networks at baseline or after sound therapy when compared
with HCs or in the comparison of the patients before and after
treatment. Therefore, although the idiopathic tinnitus patients
group without HL with poor outcomes, narrow band sound
therapy may have a significant effect on brain reorganization in
patients with tinnitus. In this study, we chose narrow band noise
as the applied sound therapy as it is a commonly used kind of
sound therapy with high cost-effectiveness (Henry et al., 2002).
It promotes habituation to the tinnitus sensation, diminishes the
sensitivity of tinnitus, and reduces the contrast between tinnitus
and the environment (Lv et al., 2020).

Auditory-Related Brain Structural and
Functional Alterations Between the
Patients and HCs and Between the
Patients Before and After Sound Therapy
The temporal gyrus is closely related to auditory function,
especially the posterior MTG, which is part of the auditory
primary cortex. Studies have shown that tinnitus can cause
significant cortical changes in the MTG (Boyen et al., 2013;
Pereira-Jorge et al., 2018). For example, Boyen et al. (2013)
found that the change in gray matter in the auditory primary
cortex (including the MTG) was correlated with tinnitus rather
than with HL, and they speculated that the continuous sensation
of an internal sound, such as the tinnitus percept, may cause
the changes in the MTG. Consistent with previous studies, our
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FIGURE 2 | Intergroup differences in WMV between the tinnitus patients without HL and HCs before and after sound therapy. At baseline, compared with the HCs,
the patients with tinnitus without HL exhibited reduced WMV in the left MTG (corrected at non-stationary cluster level with FWE p < 0.05). After sound therapy
(treated), the brain region with decreased WMV was still the same area, but the trend in the WMV reduction had diminished (uncorrected). HL, hearing loss, HC,
healthy control, MTG, middle temporal gyrus, FWE, family wise error, WMV, white matter volume. The color bar represents the extent of reduction in WMV.

FIGURE 3 | Intergroup differences in WMV between the tinnitus patients before and after sound therapy. Compared with baseline, after sound therapy, the patients
with tinnitus exhibited increased WMV in the cingulum (cingulate), right calcarine, left rolandic operculum, and left parietal and frontal lobes (corrected at the
non-stationary cluster level with FWE p < 0.05). FWE, family wise error, WMV, white matter volume. The color bar represents the extent of reduction in WMV.

findings suggested that tinnitus without HL can cause significant
brain structural changes in the auditory cortex, although we
cannot eliminate the possible effect of hidden or slight HL on the
brain alterations. More interestingly, after the narrow band sound
therapy, we found that the GMV in the MTG was further reduced,

while the trend for further decreases in WMV in the same area
was diminished, but the P-value with the WMV was uncorrected.

In addition to the auditory-related brain structural changes,
we also observed increased (i.e., negative) internetwork FC
between the AN and mVN in the patients with tinnitus than
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FIGURE 4 | Intergroup differences in internetwork FC between the tinnitus patients and HCs and between the patients before and after sound therapy.
(A) Compared with the HCs, the tinnitus patients exhibited a decreased (i.e., positive) (mVN and lVN) or an increased (i.e., less negative) (mVN and SMN; mVN and
AN) internetwork FC at baseline. (B) Compared with HCs, tinnitus patients showed a decreased (i.e., positive) (AN and pDMN; DAN and LFPN) internetwork FC after
sound therapy. (C) Compared with the patients at baseline, the tinnitus patients exhibited increased (i.e., negative) (LFPN and pDMN; LFPN and RFPN; aDMN and
AN; aDMN and DAN) internetwork FC after sound therapy. AN, auditory network; aDMN, anterior default mode network; pDMN, posterior default mode network;
LFPN, left frontoparietal network; RFPN, right frontoparietal network; lVN, lateral visual network; mVN, medial visual network; SMN, sensorimotor network; DAN,
dorsal attention network; FC, functional connectivity, HC, healthy control.The red line represents positive FC; the green line represents negative FC.

the HCs before treatment. The AN and VN are independent
processing systems for auditory and visual functions. In tinnitus
patients, the increased internetwork FC between the two
processing networks may reflect abnormal large-scale functional
interactions between them. The FC changes between AN and
mVN at baseline may be a compensatory effect caused by tinnitus,
as phantom auditory sensations also activate visual areas (Zhou
et al., 2019). However, after sound therapy, we did not find any
network-level FC changes between the AN and VN; meanwhile,
we found decreased level (i.e., positive) and increased levels (i.e.,
negative) internetwork FC between the DMN and AN in patients
when compared with the HCs or patients at baseline. The DMN,
including the medial prefrontal cortex and anterior cingulum
(cingulate) cortex as well as the posterior cingulum (cingulate)
cortex and precuneus, is associated with both cognitive and
emotional control (Whitfield-Gabrieli et al., 2011). Moreover,
it is most active at rest and shows reduced activity when a
subject enters a task-based state involving attention or goal-
directed behavior (Shulman et al., 1997). The DMN connectivity
changes in our study after treatment were consistent with some
studies that reported DMN dysfunction (Schmidt et al., 2013;
Lanting et al., 2016). Lanting et al. (2016) believed that the

DMN somehow plays a role in “hearing” internally generated
sound (whether it is meaningful, e.g., in schizophrenia patients,
or meaningless, e.g., in tinnitus patients).

Combined with previous studies, these findings indicated that
significant differences exist in the abnormal changes in auditory-
related brain structure and function before and after the narrow
band sound therapy (compared with HCs or patients at baseline).

Non-Auditory-Related Brain Structural
and Functional Alterations Between the
Patients and HCs and Between the
Patients Before and After Sound Therapy
In addition to the auditory-related structural and functional
changes, we also observed a significant increase in WMV
in the cingulum (cingulate), right calcarine, left rolandic
operculum, and the left parietal and frontal lobes in the
patients after treatment compared with baseline. The Cingulum
(cingulate) plays a large role in several large-scale networks
in which tinnitus is involved; that is, tinnitus emerges as a
function of several large-scale networks that bind together many
aspects of salience, memory, perception, distress, and audition
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TABLE 3 | Intergroup differences in the inter-network functional connectivity.

Functional Baseline Treated Patients pre

connectivity (HCs-Patients) (HCs-Patients) – Patients pos

t p t p t p

mVN-SMN −2.511 0.018 −0.285 0.778 0.511 0.614

mVN-AN −2.219 0.035 0.842 0.407 0.219 0.829

mVN-lVN 2.904 0.007 0.637 0.529 −0.448 0.658

LFPN-pDMN 0.162 0.873 −0.150 0.882 −2.404 0.023

LFPN-RFPN 0.999 0.326 1.504 0.143 −2.312 0.030

aDMN-AN −0.671 0.508 0.772 0.446 −2.216 0.037

aDMN-DAN −0.044 0.966 −0.023 0.982 −2.904 0.008

pDMN-AN 0.500 0.621 2.836 0.008 0.218 0.830

LFPN-DAN 0.500 0.623 3.033 0.005 −0.079 0.937

mVN, medial vision network; SMN, sensorimotor network; AN, auditory network;
lVN, lateral network; LFPN, left frontoparietal network; RFPN, right frontoparietal
network; aDMN, anterior default mode network; pDMN, posterior default mode
network; DAN, dorsal attention network; HCs, healthy controls.
The bold values indicate significant differences between the tinnitus patients and
HCs at baseline and after sound therapy and the differences between the tinnitus
patients before and after the treatment (p < 0.05).

(De Ridder et al., 2011; Ridder et al., 2011; Schecklmann et al.,
2012; Meyer et al., 2016). We believe that the increase in
WMV in the cingulum (cingulate) indicates that tinnitus is
closely related to dysfunction of the limbic system, which is
in line with one of our prior studies (Chen et al., 2020). The
calcarine cortex is an important part of the primary visual
cortex, and it is the main relay station that transfers the signals
coming from the retina. Some studies have shown that there
is a close or even direct connection between the auditory
and visual regions/subnetworks (Iurilli et al., 2012; Ibrahim
et al., 2016). Thus, changes in the calcarine cortex may result
from patients attending to phantom auditory sensations and
having the visual areas contemporaneously activated (Zhou
et al., 2019). Additionally, we found increased WMV in the
rolandic operculum, which may correlate with tinnitus-related
distress (Krick et al., 2015). Additionally, Job et al. (2012)
found overactivity in the rolandic operculum; they speculated
that this region was associated with middle ear proprioception,
and changes in this region may suggest a hypothesis that
tinnitus could arise as a proprioceptive illusion associated
with widespread emotional and somatosensory dysfunction.
Meanwhile, we found an increase in WMV in the left parietal
and frontal lobes as the main parts of the frontoparietal
network (FPN), and we believe that these areas play a large
role in the process of decision-making and cognitive control
(Vincent et al., 2008).

In addition to these changes in brain white matter, we
also found significant differences from before to after sound
therapy in the interactions among several RSNs that are not
directly related to auditory function. For instance, at baseline, we
found increased (i.e., less negative) and decreased (i.e., positive)
internetwork FC between the mVN and the SMN and lVN,
respectively. The VN and SMN are two independent systems that
separately process visual and sensorimotor functions and play a
role in the limbic system. A previous study on stroke suggested

that the significantly changed internetwork FC between the two
networks may reflect abnormal large-scale functional interactions
among functional networks (Wang et al., 2014). Additionally,
the vision network is divided into the mVN and lVN. The
mVN includes primary visual areas, while the lVN encompasses
non-primary regions of the visual cortex (Beckmann et al.,
2005). We speculated that because of the increased compensatory
stimulation between the auditory and visual networks caused by
tinnitus, the functional interaction within the visual network is
weakened. Although the exact mechanism underlying abnormal
internetwork FC remains unclear, it may be the result of
impairments in the thalamus, as mentioned above (Lv et al.,
2020). After the treatment, we found decreased (i.e., positive)
internetwork FC between the LFPN and DAN and increased (i.e.,
negative) internetwork FC between the LFPN and RFPN and
among the LFPN, DMN, and DAN. According to a previous ICA
study, the FPN is a lateralized network and has been commonly
identified as an independent RSN (Smith et al., 2009). It primarily
consists of two main parts: the dorsolateral prefrontal cortex and
the posterior parietal cortex (several cognition/language areas),
and it supports decision-making and cognitive control functions
(Vincent et al., 2008). Few studies have reported tinnitus-related
changes in the LFPN or RFPN (Lanting et al., 2016). Studies
on stroke have proven that weakened connectivity of the FPN
may represent a functional disconnection (Nomura et al., 2010)
in brain regions that may underlie the cognitive impairments
observed in these patients (Stebbins et al., 2008; Gottesman and
Hillis, 2010). Therefore, the increased or decreased internetwork
FC among the LFPN, RFPN, and DAN indicated that after
tinnitus, the brain activity and functional connections in brain
regions related to executive control, advanced cognition, and
language are in an abnormal or dysfunctional state when
compared with baseline. Meanwhile, we also observed increased
internetwork FC between the DMN and DAN. The DAN is
involved in visual attention (Gitelman, 2003), and the increased
FC in our study was consistent with Schmidt et al. (2013), as
they suggested that this increase in FC could be a compensatory
attempt to handle the phantom stimulus, by delegating that
process to non-attention-processing regions, such as the limbic
system (Golm et al., 2013; Ooms et al., 2013).

These results suggest that in addition to auditory-related
brain reorganization, there were also significant differences in the
abnormal changes in non-auditory-related brain reorganization
before and after sound therapy (narrow band noise). However, in
the present study, we failed to find any intranetwork FC changes
in tinnitus patients before and after sound therapy, which may
have been due to the small sample size. Studies with a larger
sample size are needed in the future. Although patients in this
study with different sided tinnitus, the brain changes we found
were only seen on the left side in some regions and on the
right side in other areas, which is consistent with some previous
studies (Husain et al., 2011; Chen et al., 2017, 2020; Liu et al.,
2018; Besteher et al., 2019; Han et al., 2019a). We speculated the
reason may be that many brain areas can be divided into several
subregions based on their functions and the function of the right
or left side of some regions in the brain is different while the exact
mechanism is still not very clear.
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Limitations
There are several limitations in our study. First, the sample size
of our study was relatively small, and we recruited only right-
handed subjects. Second, as a longitudinal study, we scanned the
HCs only once. In future studies, we need to follow up with the
HCs for the same period (6 months) as the patients and scan them
twice (at baseline and after 6 months of follow-up). Third, in this
study, we recruited only tinnitus patients without HL and HCs.
We will recruit tinnitus patients with and without HL in future
studies. Fourth, we didn’t apply any sham therapy on patients
and HCs, which we will apply to them in future studies. Fifth, the
definition of tinnitus patients without HL was that there is no HL
in the generally recognized frequencies (250–8 kHz: 0.250, 0.500,
1, 2, 3, 4, 6, and 8 kHz); thus, we cannot eliminate the possibility
of hidden or slight HL in other frequency ranges currently.

CONCLUSION

In conclusion, we found that significant differences exist in
auditory-related and non-auditory-related brain functional and
structural alterations in tinnitus patients without HL before and
after sound therapy (narrowband stimulation), especially changes
in white matter and internetwork FC, although the outcome of all
the patients may not be very good after the treatment. Therefore,
we supposed that sound therapy, especially the narrow band
noise, may have a significant effect on brain reorganization in
patients with idiopathic tinnitus without HL. It may advance the
understanding of the neural pathophysiological mechanisms of
idiopathic tinnitus after sound therapy.
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