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Introduction: Partial driving automation is not always reliable and requires that drivers
maintain readiness to take over control and manually operate the vehicle. Little is known
about differences in drivers’ arousal and cognitive demands under partial automation
and how it may make it difficult for drivers to transition from automated to manual
modes. This research examined whether there are differences in drivers’ arousal and
cognitive demands during manual versus partial automation driving.

Method: We compared arousal (using heart rate) and cognitive demands (using
the root mean square of successive differences in normal heartbeats; RMSSD, and
Detection Response Task; DRT) while 39 younger (M = 28.82 years) and 32 late-
middle-aged (M = 52.72 years) participants drove four partially automated vehicles
(Cadillac, Nissan Rogue, Tesla, and Volvo) on interstate highways. If compared to manual
driving, drivers’ arousal and cognitive demands were different under partial automation,
then corresponding differences in heart rate, RMSSD, and DRT would be expected.
Alternatively, if drivers’ arousal and cognitive demands were similar in manual and
partially automated driving, no difference in the two driving modes would be expected.

Results: Results suggest no significant differences in heart rate, BMSSD, or DRT
reaction time performance between manual and partially automated modes of driving for
either younger or late-middle-aged adults across the four test vehicles. A Bayes Factor
analysis suggested that heart rate, RMSSD, and DRT data showed extreme evidence in
favor of the null hypothesis.

Conclusion: This novel study conducted on real roads with a representative sample
provides important evidence of no difference in arousal and cognitive demands. Younger
and late-middle-aged motorists who are new to partial automation are able to maintain
arousal and cognitive demands comparable to manual driving while using the partially
automated technology. Drivers who are more experienced with partially automated
technology may respond differently than those with limited prior experience.
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INTRODUCTION

Some commercially available vehicles with partial vehicle
automation can support safe driving (e.g., Tesla-Autopilot,
Nissan-ProPilot, Volvo-Pilot Assist, and Cadillac-Supercruise).
However, partial vehicle automation is not always reliable,
requiring drivers to maintain readiness to take over vehicle
control at all times (SAE, 2016). If drivers’ cognitive demands
during partially automated driving are different from manual
driving mode, it may raise concerns about drivers cognitive
readiness to take over, should automation fail. In studying
cognitive demands during manual and partially automated
driving, it is important to consider driver’s arousal (Yerkes and
Dodson, 1908; Hebb, 1955; Broadhurst, 1959; Wekselblatt and
Niell, 2015). The concern with partially automated technology
is that it may lead to suboptimal arousal levels and cognitive
demands resulting in poor driving performance. This motivated
the study’s research question: Are there differences in drivers’
arousal and cognitive demands during manual versus partially
automated driving? A comparison of physiological arousal and
cognitive demands during the two modes of driving would help
understand potential differences (or lack thereof) in cognitive
demands and subsequent driving performance. The aim of the
current study was to investigate whether there are differences
in drivers’ arousal and cognitive demands during manual versus
partial automation driving on real highways.

Only limited research is currently available to understand
potential differences in drivers’ cognitive demands under partial
vehicle automation. Based on classic cognitive models of
attention (Kahneman, 1973; Wickens, 2002), driving-related
cognitive demands are defined as all cognitive and mental
processing resources required to perform a driving task. Some
studies have suggested that there may be significant cognitive
demands (e.g., workload) during automated driving compared
to manual driving (Solis-Marcos et al., 2018; Kim et al., 2020).
However, other research has found cognitive demands during
partially automated driving may actually be reduced (Biondi
et al, 2018; Heikoop et al, 2019; Zhai and Lu, 2019). By
contrast, other research suggests little or no difference (Sibi
et al,, 2017; Stapel et al., 2019; Calvi et al., 2020; Vérhelyi et al,,
2020). Note that Stapel et al. (2019) found no difference in
automation for inexperienced drivers; however, lower workload
was found with experienced drivers. A variety of factors can
help explain these inconsistent findings, including small sample
sizes limiting the likelihood of detecting a true effect; testing
only a single vehicle raising questions of ecological validity; and
use of self-reports administered after driving raising concerns of
retrospective report biases. Furthermore, most of the research on
this topic has been restricted to samples of younger adults that
limits the applicability of findings to the general public. Thus,
a clear understanding of whether and how partially automated
technology influences drivers’ arousal and cognitive demands
are still lacking.

Arousal is a heterogeneous construct that involves general
autonomic activation (e.g., Robbins and Everitt, 1995; Satpute
et al., 2019). Heart rate is a biomarker of arousal and they are
positively related (Berntson et al.,, 2007; Mauss and Robinson,

2010; Satpute et al., 2019). Heart rate is commonly used to
measure driving-related arousal changes (Lohani et al., 2019)
and it was used to operationalize arousal in the current
study. Moreover, in real-world driving (for a review see,
Lohani et al., 2019), multiple overlapping constructs dynamically
change simultaneously and interdependently (e.g., workload,
stress, boredom, distraction) resulting in net cognitive demands
experienced by a motorist that can be broadly categorized
along a low-to-high spectrum. Low cognitive demands may be
represented by a combination of constructs such as drowsiness
and boredom, while high cognitive demands may be represented
by mental workload and stress (Lohani et al., 2019). Cognitive
demands are associated with cardiac vagal control, which
represents the influence of the vagus nerve on heart functioning
(for a review, see Berntson et al., 2007; Laborde et al., 2017).
Cardiac vagal control can be indexed by vagally-mediated heart
rate variability (HRV), i.e., the temporal variability in adjacent
heartbeats (Malik, 1996; Berntson et al., 2007). According to the
neurovisceral integration model, the neural circuitry for cognitive
and autonomic regulation has an overlapping neurovisceral
mechanism (see Thayer et al., 2009; Smith et al., 2017), which
can explain the coupling between cognitive demands and vagally-
mediated HRV. Thus, vagally-mediated HRV can measure
changes in cognitive demands, such as mental effort, workload,
and attention (e.g., Mulder and Mulder, 1981; Mulder, 1985;

Thayer et al., 2009).
Indeed, vagally-mediated HRV has been shown to provide a

near-real-time objective measure of dynamic changes in cognitive
demands, making it a suitable measure for applied driving
research without disrupting the driving task (e.g., Lee et al,
2007; Liang et al., 2009; Mehler et al., 2011; Noda et al., 2015;
Sugie et al., 2016; Heine et al., 2017; Piotrowski and Szypulska,
2017; Cisler et al., 2019; Lohani et al., 2019). Some of these
studies found that cognitive state detection while driving was
better when vagally-mediated HRV was utilized in addition to
behavioral measures (e.g., Lenneman and Backs, 2009). Even
though a variety of measures of vagally-mediated HRV have been
used in applied research, the root mean square of successive
differences in normal heartbeats (RMSSD) has been found
to change more systematically with driving-related cognitive
demands (Mehler et al., 2011; Heine et al., 2017), and thus was
a suitable measure for the current study. In particular, RMSSD
decreases with an increase in cognitive demands while driving
(Mehler et al., 2011) due to the links between vagally-mediated
HRV and neural activity associated with cognitive regulation
(e.g., Thayer et al., 2009). Furthermore, a standard behavioral
method to assess cognitive demands in driving research is
the Detection Response Task (DRT; International Organization
for Standardization [ISO], 2016). Performance on the DRT
(International Organization for Standardization [ISO], 2016) is
a measure of driving-related cognitive demands due to visual
demands and driving difficulty (Bengler et al., 2012; Bruyas and
Dumont, 2013; Cooper et al., 2016). An increase in driving-
related cognitive demands is associated with increased reaction
time performance and decreased hit-rate on the DRT (Young
et al., 2013). At the same time, drowsiness and fatigue also
increase reaction time on this task (Gershon et al., 2009). DRT
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was included as a behavioral measure of cognitive demands in
the current study.

In prior research, we conducted a pilot study with 28 young
drivers (Mgge = 29.29 years) new to partial automation who
drove three partially automated vehicles on a flat and straight
section of interstate highway (Lohani et al., 2020). In this pilot
study, there were no differences between manual and partially
automated driving modes across outcomes: heart rate, RMSSD,
electroencephalogram (EEG) alpha, and theta power, and DRT
performance. The current study is a new follow-up study
designed to replicate and extend the earlier findings with a larger
and more representative sample of younger and late-middle-aged
drivers, partially automated vehicles (Cadillac, Nissan Rogue,
Tesla, and Volvo), and sections of roadway. The current research
measured heart rate to compare arousal and RMSSD and DRT
performance to compare cognitive demands under manual versus
partially automated driving.

Based on previous work, the current study considered three
alternative hypotheses. First, if partially automated driving leads
to high arousal and high cognitive demands (e.g., workload
and stress; Solis-Marcos et al., 2018; Kim et al., 2020), then,
a significant increase in heart rate, a decrease in RMSSD, and
an increase in the DRT reaction time rate would be expected
when compared to manual driving. Second, if partially automated
driving leads to low arousal and low cognitive demands (e.g.,
drowsiness and boredom; Biondi et al., 2018; Heikoop et al,
2019; Zhai and Lu, 2019), then a significant decrease in heart
rate, an increase in RMSSD, and an increase in DRT reaction
time would be expected when compared to manual driving.
Finally, if arousal and cognitive demands are similar under
manual and partially automated driving, then no differences
in the outcome measures would be expected (e.g., Sibi et al,
2017; Stapel et al., 2019; Calvi et al., 2020; Lohani et al., 2020;
Varhelyi et al., 2020). This prediction of the null hypothesis
has a compelling rationale and a meaningful interpretation that
would imply that manual and partially automated modes are
comparable in arousal and cognitive demands. However, some
limitations (e.g., small sample size, a non-representative sample
of people and vehicles, and inadequate statistics) can hamper
the ability to interpret evidence for a null hypothesis adequately.
Therefore, we designed the current study to allow for a fair test
of the null hypothesis by testing a larger and more representative
sample of drivers and vehicles. We bolstered the interpretation
by conducting the classic null-hypothesis significance testing
and a Bayesian alternative (Kruschke, 2011) to meaningfully
interpret whether the current dataset supported the null or the
alternative hypothesis.

MATERIALS AND METHODS

Participants

A total of 71 adults with no prior experience with partially
automated vehicles participated in this study. 39 participants
were younger (21-42 age range, Mg = 28.82 years, SDyge = 6.41,
13 females). 32 participants were late-middle-aged (43-64 age
range, Myge = 52.72 years, SDyg. = 6.33, 12 females). The study

protocol was in accordance with the Institutional Review Board at
the University of Utah. Participants had no previous experience
with partial automation, had a valid driver’s license, no at-fault
accidents in the past 2 years, drove at least an average of 10 h
per month, had no history of neurological disorders or heart
conditions, and were not pregnant. In addition, participants were
required to pass a 20 min online defensive driving course and
certification test. Upon arrival in the lab, eligible participants were
allowed to participate in the study only if they had slept at least
6 h the previous night and had their blood alcohol level at 0.0%,
which was verified using a BACtrac breathalyzer.

Measures

Psychophysiological data was continuously sampled at 2,000 Hz
using a portable wireless physiology system (Smart Center,
Biopac System Inc., United States) and Acgknowledge software
(Biopac System Inc., United States). This setup allowed real-time
data quality monitoring while participants drove on the highway.

Electrocardiography

The electrical activity of the heart was recorded by using
an electrocardiogram (ECG). After cleaning the site, standard
disposable electrodes were placed on the right collar bone and the
left and right end of the ribcage (Lead II configuration; Berntson
et al.,, 2007). During data collection, the ECG was monitored
by a research assistant who sat in the front passenger seat. Any
noticeable movements that could add artifacts (e.g., sneezes and
itch) were marked.

Standardized methods in accordance with recommended
guidelines for ECG data were followed (e.g., Malik, 1996;
Berntson et al., 1997, 2007; Peltola, 2012; Shaffer et al., 2014;
Laborde et al., 2017). Post data collection, the ECG data was
processed using AcqKnowledge software (Biopac System Inc.,
United States). The raw data was bandpass filtered at 1 and
35 Hz cutoffs. The software was used to detect R-wave peaks.
All R-wave peaks were visually inspected for accurate detection
and manually corrected if the software marked improbable
values. This included any artifacts generated by facial or head
movements (e.g., yawns or checking blind spots while driving).
After data cleaning, data were processed to calculate RMSSD
and heart rate for manual and partially automated driving tasks
for each vehicle operated by each participant. Based on the
recommended guidelines (Malik, 1996; Berntson et al., 1997;
Laborde et al., 2017), RMSSD was calculated using the same
length epochs (1 min) for the pre-condition baseline and the
main-condition periods (see the procedure for details). The
epochs were then averaged over the entire period to get average
RMSSD values during the pre-condition and main-condition
periods. For RMSSD and heart rate data, any values that exceeded
three standard deviations from the mean of normal distribution
were removed before analyses.

Detection Response Task (DRT)

To probe drivers’ cognitive demand, participants were asked to
perform a vibrotactile detection task, DRT. In line with the ISO
17488 guidelines (2016), a vibrotactor (a small vibration motor)
emitted a small vibration stimulus, similar to a vibrating cell
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phone. This stimulus was presented pseudo-randomly every 3-
5 s. Participants wore a vibrotractor that was taped to their left
biceps. A microswitch was attached to either the index or middle
finger of the left hand, which participants could press against the
steering wheel to respond to the onset of the stimulus. Instead of
the standard left collarbone placement, the left bicep was used to
avoid any potential interference with the ECG signal. A similar
approach has been successfully used in past work (e.g., Lohani
et al., 2020). Participants’ goal was to respond to the stimulus
onset as quickly as possible while driving (with priority always
given to safe driving practices). Response time in milliseconds
was recorded for each stimulus. The vibration stimulus was set
up to turn off after 1 s.

The average reaction time performance on DRT was calculated
for each participant in each vehicle in manual and partially
automated driving tasks. Any values that exceeded three standard
deviations from the mean of normal distribution were removed
before analyses. The hit-rate performance for the current sample
was at a ceiling level (~95% and above). The average proportion
of hit-rate during manual driving was 96% (SE = 0.003) and
during partially automated driving was 95% (SE = 0.004). Because
of a lack of variance in performance, the hit-rate was not
further analyzed.

Self-Reported Experiences With Automation

After driving partially automated vehicles, participants
responded to a list of questions about their experiences and
attitudes about partially automated vehicles. An example item
was “I was anxious and nervous when the automated driving
systems were on.” Participants indicated their agreement to
the following statements using a 5-point scale anchored by
completely disagree to completely agree.

Vehicles

We examined a representative sample of commercially available
vehicles for this study. A 2018 Cadillac CT6, 2019 Nissan Rogue,
2018 Tesla Model 3, and a 2018 Volvo XC90 were used in this
study. Each of these vehicles was equipped with the partial vehicle
automation that centered the vehicle within the lane (e.g., Lane
Centering) and maintained the following distance and speed
(e.g., Adaptive Cruise Control). These features, when activated
together, meet the definition of partial automation (SAE, 2016).

Procedure
Participants were sent a training document and a short video
about the partial automation features of the vehicle they would
drive for the day of the visit. Upon arrival in the lab, after
completing the consent form and inclusion criteria testing,
participants were set up for ECG data collection. Next, a research
assistant directed the participant to the designated vehicle in the
parking lot close to the lab. Participants were instructed that
they were driving commercially available vehicles, and we were
interested in examining the vehicular systems on real roads. They
were instructed to operate the vehicle as they would usually
drive on the road.

Before driving the vehicle, participants would familiarize
themselves with the vehicle and get trained on steps to activate

its partial automation features. They engaged the partially
automated systems during the training phase, and only when
they were comfortable operating the vehicle was the main part
of the study started. Participants were asked to keep their
hands on the wheel and monitor the road (as recommended
by most vehicle manufacturers). In the partial automation
condition, participants always had the automation engaged.
In rare instances, participants took control of the vehicle to
pull over for emergency vehicles, debris on the road, and
construction. Participants drove on the same road in manual
and partial automation (counterbalanced). As soon as possible,
partial automation was re-engaged. It is important to note
that participants drove on the same road in both manual and
partial automation (counterbalanced), so driving conditions were
equated as best as possible. Moreover, any section of the drive
where the driver had to deal with an event (e.g., pulling over for
an emergency vehicle) were excluded from the analyses (in both
manual and partial automation) to ensure a fair comparison.

Participants were also fitted with the DRT equipment and
trained on how to perform the DRT task while driving. ECG data
were monitored for quality. Next, they drove on a training route
with the research assistant in the passenger seat to ensure that
the participant could engage and disengage partial automation,
change lanes, and control the vehicle’s speed. After confirming
that participants understood how to use the partial automation
and the DRT task while driving safely, the study’s testing
phase was initiated.

For the testing phase, all participants drove comparable
distances on two highways (I-15 and I-80) in two modes (manual
and partial automation), with the order partially counterbalanced
across participants (leading to 4 experimental sessions in each
vehicle). The Average Annual Daily Travel (AADT) for I-
15 (N/S bound 4-5 lanes in each direction separated by a
median) is 175,000 vehicles and for 1-80 (E-W bound 2-3 lanes
in each direction separated by a median) is 19,000 vehicles
(Utah Department of Transportation). Because there were no
significant differences in outcomes between the two highways,
the data were averaged for the two highways. The manual and
partially automated conditions were also counterbalanced to
control for any unsystematic differences.

Each of the four experimental sessions was about 20 min
and began once the vehicle was at the posted speed limit.
The first 2 min of each session were used as the pre-
condition baseline measurement. The following 18 min of the
experimental session were the main condition during which
the DRT task was performed while participants drove in
manual or partial automation conditions (depending on the
order). Participants received a short rest break between each of
the four experimental sessions. The average value of RMSSD
(calculated by averaging 1 min epochs) in the pre-condition
baseline period was subtracted from the average value of the
main condition to account for any baseline differences within
participants. The average heart rate in the pre-condition baseline
was subtracted from the main condition. After accounting for
baseline differences and collapsing across the two highways, there
were two average values for each vehicle driven in manual and
partial automation.
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Data Analysis Plan

The primary research focus was to examine how automation
(manual versus partial automation) affects driver arousal and
cognitive demand. To address this question, two analytical
approaches were adopted - linear mixed-effects models and
Bayes Factor analysis. For each of the outcome measures, a linear
mixed-effects model was run with three fixed factors, automation
(manual and partially automated), age (younger or late-middle-
aged), and vehicle (Cadillac, Nissan Rogue, Tesla, and Volvo)
and participants as the random intercept. Note that preliminary
analyses were performed to determine if time should be included
as a factor in the model. We found that including time as a
factor in the model did not explain any significant variability. In
contrast to automation condition and age, we had no theoretical
or empirical rationale to include time in the models. Thus,
to keep a parsimonious model, time was not included in the
model because it did not explain significant variability in the
outcome variables.

Next, Bayes Factor analysis was conducted to adopt a
Bayesian alternative to evaluate how meaningful a significant
difference or a lack of significant difference was between
the manual and partial automation for each of the outcome
variables. This was done by comparing a full model with
automation, age, vehicle as predictors to a restricted model
without automation (e.g., Kruschke, 2011). The Bayes Factor
value is the ratio of the marginal likelihoods of the full
model and the restricted model (Lee and Wagenmakers, 2014).
The resulting Bayes factor value was interpreted using the
classification scheme such that a value higher than 1 is
interpreted as evidence in favor of the alternative hypothesis.
A Bayes Factor value between 1 and 3 provides anecdotal
evidence, 3-10 provides moderate evidence, 10-30 provides
strong evidence, 30-100 provides very strong evidence, and
a value more than 100 is extreme evidence in favor of
the alternative hypothesis. By contrast, a value lower than
1 is interpreted as evidence in favor of the null hypothesis.
Correspondingly, a value of 1-0.33 provides anecdotal evidence,
0.33-0.1 provides moderate evidence, 0.1-0.03 provides strong
evidence, 0.03-0.01 provides very strong evidence, and a value
less than 0.01 provides extreme evidence in favor of the
null hypothesis (Lee and Wagenmakers, 2014; Quintana and
Williams, 2018). All analyses were done by using the R language
for statistical computing (R Core Team, 2020). Mixed models
were fit using the Ime4 package (Bates et al, 2015), and

Bayes Factor values were calculated via the BayesFactor package
(Morey et al., 2018).

RESULTS

See Table 1 for descriptive statistics for the three outcome
variables as a function of age and vehicle. Figures 1-3 present
individual data points to complement the descriptive tables.
These include violin plots that are similar to box plots, but
in addition, they have the kernel probability density of all the
observed data. The mean values are also indicated by a dot in the
center of each distribution.

Age differences and gender differences were examined during
the pre-condition baseline and main condition. In the pre-
condition baseline values of RMSSD, there were significant
gender and age-related differences with higher mean values
for males (M = 29.5, SE = 1.76) than females (M = 22.7,
SE = 2.27), t(69) = 2.38, p = 0.02, and higher RMSSD values for
younger (M = 30.2, SE = 1.96) than late-middle-aged (M = 21.9,
SE = 2.10) drivers, t(69) = 2.89, p = 0.01. However, after
accounting for pre-condition values (average main condition -
average pre-condition baseline values), neither gender differences
(p = 0.19) nor age differences (p = 0.89) were significant. We
did not have specific hypotheses for gender-related differences in
driving manual and partially automated vehicles. Thus, gender
was not included as a factor in the models to test the study’s
research questions.

The Effect of Automation on Heart Rate

A linear mixed-effects model was run with a baseline-corrected
heart rate as the outcome. Neither the main effect of automation,
F(1, 320.48) = 0.05, p = 0.82, age, F(1, 60.71) = 0.69, p = 0.41, nor
vehicle, F(3, 355.24) = 0.42, p = 0.74 were significant. Likewise,
none of the 2-way or 3-way interactions were significant.

The Effect of Automation on RMSSD

A linear mixed-effects model examined how RMSSD varied as
a function of automation (manual and partially automated),
age (young or late-middle-aged), and vehicle (Cadillac, Nissan
Rogue, Tesla, and Volvo), and participants as the random
intercept. No main effect of automation was found, F(1,
321.99) = 1.76, p = 0.19. In addition, no main effect of age, F(1,
60.96) = 0.04, p = 0.84, or vehicle was found, F(3, 358.84) = 1.45,

TABLE 1 | Means (and Standard Error) for heart rate, RMSSD, and DRT reaction time as a function of automation (manual and partial automation), age (younger or

older), and vehicle (Cadillac, Nissan Rogue, Tesla, and Volvo).

Measure Automation Young Ooid
Cadillac Nissan Tesla Volvo Cadillac Nissan Tesla Volvo

Heart rate Manual 0.49 (0.32) 0.37 (0.32) 0.76 (0.34) 0.81(0.33) 0.58 (0.34) —0.11 (0.34) 0.38(0.33) 0.60 (0.34)

Partial automation 0.26 (0.33) 1.05 (0.32) 0.38 (0.393) 0.48 (0.33) 0.30 (0.34) 0.27 (0.33) 0.33(0.34) 0.55 (0.34)
RMSSD Manual —0.45(0.96) —0.28(0.96) 0.07 (1.01) —2.02 (0.98) 0.68 (1.02) —0.64(0.98) —2.72(0.96) —0.96 (1.00)

Partial automation ~ —0.49 (0.97) —-1.90(0.96) —-0.66(0.99) -2.36(0.97) —1.83(1.02) —0.25(0.98) -1.81(1.0) —1.71 (1.0
DRT Manual 437 (28.5) 443 (28.9) 455 (29.2) 480 (28.9) 498 (31.1) 495 (30.4) 498 (30.5) 523 (31.1)
reaction Partial automation 459 (28.5) 463 (28.9) 468 (29.2) 489 (28.9) 506 (31.4) 529 (30.4) 508 (30.5) 518 (31.1)
time
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FIGURE 1 | Heart rate change from baseline as a function of automation (manual and partial automation) and age (younger or older).
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FIGURE 2 | RMSSD change from baseline as a function of automation (manual and partial automation) and age (younger or older).
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FIGURE 3 | Reaction time (in ms) performance on the Detection Response Task as a function of automation (manual and partial automation) and age (younger or
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p =0.23. Neither the automation by age by vehicle interaction nor
any of the 2-way or 3-way interactions were significant.

The Effect of Automation on DRT

Reaction Time

A linear mixed-effects model with reaction time as the outcome
did not have a significant main effect of automation, F(I,
325.77) = 2.76, p = 0.10. Similarly, neither the main effects of
age, F(1, 73.77) = 1.77, p = 0.19, nor vehicle, F(3, 337.02) = 1.67,
p = 0.17 were significant. The 2-way and 3-way interactions were
also not significant.

Bayes Factor Analyses

In order to examine the effect of automation on RMSSD, heart
rate, and DRT reaction time, for each of these outcomes, a Bayes
factor analysis was conducted by running a full model with
main effects and interactions of automation, age, vehicle, and
participants as the random intercept. Next, a restricted model
was run without automation with main and interaction effects
of age and vehicles as predictors and participants as the random
intercept. These full and restricted models were compared to
calculate a Bayes Factor of 0.0002, 0.0004, and 0.0002 for heart
rate, RMSSD, and DRT reaction time, respectively (see Figure 4).
According to the Lee and Wagenmakers (2014) classification
scheme for interpreting Bayes factors, these values suggest
extreme evidence that favors the null hypothesis for the effect of
automation on heart rate, RMSSD, and DRT reaction time.

Self-Reported Driving Experience

All participants drove in the partially automated conditions
and their experiences on a 5-point scale (completed disagree
to completely agree) were analyzed by comparing the responses
to the midpoint. The results are reported in Table 2.
Participants could relax, but relative to manual driving, they
were neither less stressed nor bored when the automated driving
systems were activated. Participants reported not engaging in
unrelated activities while driving the automated systems, such as
daydreaming. Participants were well-calibrated in their trust in
the automated features of the vehicles. On the one hand, they
believed that it made traveling safer and enjoyable, and they
were not more anxious or nervous while driving it relative to
manual driving. At the same time, they showed restraint when
the driving conditions were challenging (e.g., curvy/hilly roads
and heavy traffic).

DISCUSSION

Lack of Differences Between Manual and
Partially Automated Modes

In order to examine the possible impact of partially automated
technology on drivers arousal and cognitive demand, it is
necessary to have sensitive near real-time measures that can
detect changes in real-world driving tasks. The current study
used heart rate (an arousal measure), RMSSD (a heart rate
variability based cognitive demands measure), and DRT (a
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FIGURE 4 | The Bayesian values were plotted for the three outcome variables. A value less than 0.01 (shaded region) provides extreme evidence in favor of the null
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TABLE 2 | Results from the driving experiences questionnaire.

Items Finding Statistic Mean (SE)
The driving experiences related questions
| was able to relax when the automated driving systems were on Agree t(210) = 5.32, p < 0.001 3.44 (0.08)
| was able to engage in more activities unrelated to driving when the automated driving systems were on Disagree t(210) = 6.35, p < 0.001 2.43 (0.09)
The automated driving system made traveling boring for me Disagree t(210) = 8.95, p < 0.001 2.26 (0.08)
The automated driving systems made traveling safer Agree t(210) = 5.46, p < 0.001 3.39 (0.07)
| was anxious and nervous when the automated driving systems were on Disagree t(210) = 5.69, p < 0.001 2.51(0.09)
The automated driving system made traveling more enjoyable Agree {(210) = 6.14, p < 0.001 3.47 (0.08)
The automated driving system took the fun out of driving Disagree t(210) = 5.59, p < 0.001 2.49 (0.09)
The automated driving system allowed me to think and daydream Disagree t(210) = 4.53, p < 0.001 2.61(0.09)
I was uncomfortable relinquishing control of the vehicle to the automated driving system on curvy and hilly roads ~ Agree {(210) = 5.31, p < 0.001 3.48 (0.09)
| was uncomfortable relinquishing control of the vehicle to the automated driving systems in heavier traffic Agree t(210) = 3.08, p = 0.002 3.28 (0.09)
| was concerned that the automated driving systems would shut off unexpectedly Not sig. t(210) = 0.10, p = 0.919 2.99 (0.09)
The automated driving system reduced the stress of driving Not sig. t(210) = 1.84, p = 0.067 3.16 (0.07)
Intentions to use and purchase automated driving systems
I would not feel comfortable using automated driving systems on most roads Disagree t(210) = 7.31, p < 0.001 2.39 (0.08)
If I was tired or distracted, | would rely heavily on automated driving systems Disagree t(210) = 2.46, p = 0.015 2.78 (0.09)
I would utilize the automated driving systems in a vehicle as much as possible Agree t(210) = 8.41, p < 0.001 3.68 (0.08)
| would not feel comfortable using the automated driving systems in a vehicle without monitoring it closely Agree t(210) = 13.16, p < 0.001 4.00 (0.08)
If I can afford it, | am going to buy or lease a car with automated driving systems Agree t(210) = 7.84, p < 0.001 3.67 (0.09)
| am going to make sure that the next car | buy, or lease has automated driving systems Not sig. t(210) = 1.84, p = 0.067 3.15(0.08)

behavioral performance task based cognitive demands measure)
to compare differences in drivers” arousal and cognitive demands
during manual versus partially automated driving. To our
knowledge, this study is the first effort to examine the partial
vehicle automation on arousal and cognitive demands with a
representative sample of younger and late-middle-aged drivers
and vehicles on real highways while their psychophysiological
and behavioral responses were assessed in real-time.

The results suggested that there were no differences in heart
rate and its variability or DRT reaction time performance

between manual and partially automated modes of driving
either in younger or late-middle-aged adults across the four test
vehicles. A Bayes Factor analysis on heart rate, RMSSD, and
DRT reaction time data showed extreme evidence in favor of the
null hypothesis, suggesting that drivers new to partial automation
maintain comparable levels of arousal and cognitive demands
during manual and partially automated driving as no evidence
of under or over-arousal and cognitive demands was found.
In another forthcoming paper (McDonnell et al, in review),
EEG alpha power and frontal theta (a central physiology-based
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index of visual engagement and mental workload) were also
found to show no significant difference between manual and
partially automated modes. Past research on potential cognitive
differences between manual and partial automation has been
mixed. Various methodological limitations can explain these
mixed findings, such as limited sample size, use of only self-report
measures, and the use of driving simulators or a single-vehicle.
The current study allowed for a fair test of the null hypothesis by
testing a large representative sample of drivers and vehicles with
sufficient sample size and a combination of reliable physiological
and behavioral measures.

The current findings support and extend previous research
that has found no difference between manual and partial
automation (e.g., Sibi et al., 2017; Stapel et al., 2019; Calvi et al,,
2020; Lohani et al., 2020; Varhelyi et al., 2020). Moreover, the pilot
study that examined young drivers operating three vehicles on
the highway also showed a similar pattern (Lohani et al., 2020).
Similar to the current study, the pilot study found no differences
across outcomes (heart rate, RMSSD, EEG alpha and theta power,
and DRT performance). Bayes Factor analysis had suggested that
there was strong evidence that arousal and cognitive demands
did not differ during manual and partially automated driving
(Lohani et al.,, 2020). With a single measure, null results are
harder to interpret, but replicable effects with multiple reliable
outcomes provide a more convincing interpretation of the
null hypothesis. Taken together, these findings provide strong
evidence that arousal and cognitive demands are similar during
manual versus partially automated conditions for drivers who are
new to partially automated technology.

A lack of differences between manual and partially automated
modes also suggests that the cognitive demands imposed
during manual driving are comparable to those imposed by
monitoring partial automation. Based on the Neurovisceral
Integration model (Thayer et al., 2009), these findings would
imply that neural activity associated with cognitive functioning
during manual and partially automated driving is comparable.
Self-reports from participants suggested that participants were
cognitively engaged in the driving process. This may be because
participants still have to monitor ongoing traffic conditions
and maintain cognitive readiness to take control of the vehicle.
Interestingly, the age group did not lead to any differences
in heart rate and RMSSD (after accounting for pre-condition
baseline) or DRT reaction time. This implies that late-middle-
aged drivers are able to use partially automated technology
similar to their younger counterparts and that they can benefit
from assistance provided by partially automated technology
without additional cognitive costs. While this study investigated
drivers between 21 and 64 years of age, future research should
examine potential differences in teenage drivers and drivers
older than 64 years of age to better understand driving partial
automation vehicles across the lifespan.

Limitations and Outstanding Questions

There are a few limitations of the current study. First, this study
focused on drivers with no prior experience with partial driving
automation. Drivers that are more experienced with partially
automated technology may respond differently to automated

vehicles than those with limited prior experience. The perceived
workload was reduced for automation-experienced drivers, while
it did not change from the manual mode for inexperienced
drivers (Stapel et al, 2019). Motorists may learn to accept
and trust the automation technology with additional driving
experience (Beggiato et al., 2015). Experienced drivers may
get better at calibrating their trust after understanding the
automation system’s limitations (Walker et al., 2018). However,
it is also possible that more trusting participants increase their
reliance on automation (Walker et al., 2019), resulting in poor
readiness to switch from automated to manual driving safely.
More work is needed to explore any associated risks.

Second, we had a research assistant sit in the passenger seat
next to the participant for safety reasons, and we cannot rule
out that this presence may have impacted drivers’ performance
and physiology. However, any confounding effects of social
presence were constant in both manual and partial automation
conditions across all the participants. Third, this study was
not explicitly designed to test gender differences. Factors
such as the different phases of the menstrual cycle were
not recorded or accounted for and could affect the RMSSD
data. Future work is needed to understand the effect this
may have on RMSSD. Fourth, this study did not examine
traffic conditions, and low and high traffic demands could
moderate the outcomes. Finally, it is possible that constantly
transitioning between manual and partially automated driving
modes could be a demanding task for some motorists. For
instance, one study found that older adults were slower at
switching between manual and partially automated modes
(Wu et al., 2019). Future research should examine transition-
related driving demands on motorists while driving partially
automated vehicles.

Benefits and Challenges of Adopting
HRYV Indices in Driving Safety

With advances in methodological developments, it is now
possible to collect high-quality psychophysiological data outside
traditional lab settings from research-grade equipment at
a low cost. This study conducted on real roads highlights
the applicability of heart rate variability to real-world
automation driving research. However, some caution is
warranted while interpreting HRV measurement. As is true
for most psychophysiological measures, HRV does not have
a one-to-one correspondence with a single psychological
construct (e.g., Cacioppo and Tassinary, 1990). HRV may
be sensitive to many cognitive factors that may occur
in real-world driving contexts. For example, over time,
drivers may become more relaxed or disengaged with the
driving task and both scenarios would lead to a lower-
arousal and a corresponding increase in HRV indices (Jasper
et al, 2016). Furthermore, there may be other factors (e.g.,
Laborde et al, 2017) while driving that can influence HRV
measurements, such as driving task-related factors (e.g., bad
traffic), driver-related factors (e.g., a driver has irregular
heartbeats or is on psychotropic medications), or concurrent
activities (talking, smoking, or caffeine intake). Because such
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factors may influence HRV indices and may vary across driving
conditions; thoughtful analyses of such effects in conjunction
with other measures (such as behavioral performance) is crucial
for accurate interpretations.

A challenge with HRV measurement is that it is susceptible
to artifacts that can result in inaccurate values. Some analytic
approaches have adopted shorter segments (e.g., 30 s) of data
to detect momentary effects of driving-related workload (Stuiver
et al., 2014). While preliminary solutions to handle noise and
artifacts have been proposed (e.g., Nowara et al, 2018; van
Gent et al, 2019; Brown et al., 2020), more work is needed
to develop near-real-time artifact detection methods that are
amenable to driving task-related changes. As in the current study,
we argue that a multi-method approach provides a more accurate
interpretation of cognitive demands in applied settings. Several
efforts in driving research have proposals to assess cognitive states
using a multi-method approach that seems promising (Fu et al.,
2016; Brouwer et al., 2017; Arico et al., 2018; Haouij et al., 2018;
Paredes et al., 2018; Rastgoo et al., 2018). The current findings
imply that RMSSD is a suitable measure that could be utilized in
multi-method studies to evaluate drivers’ cognitive demand.

CONCLUSION

This investigation was conducted on real roads with a large and
representative sample of younger and late-middle-aged motorists
to compare manual and partially automated driving. The current
findings show important evidence of no difference in arousal
and cognitive demands (extreme evidence in favor of the null
hypothesis), suggesting that drivers maintain similar levels of
arousal and cognitive demands during manual and partially
automated driving. These theoretically relevant results imply
that younger and late-middle-aged motorists who are new to
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