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Spiking neural networks (SNNs) are a computational tool in which the information

is coded into spikes, as in some parts of the brain, differently from conventional

neural networks (NNs) that compute over real-numbers. Therefore, SNNs can

implement intelligent information extraction in real-time at the edge of data acquisition

and correspond to a complementary solution to conventional NNs working for

cloud-computing. Both NN classes face hardware constraints due to limited computing

parallelism and separation of logic and memory. Emerging memory devices, like resistive

switching memories, phase change memories, or memristive devices in general are

strong candidates to remove these hurdles for NN applications. The well-established

training procedures of conventional NNs helped in defining the desiderata for memristive

device dynamics implementing synaptic units. The generally agreed requirements are

a linear evolution of memristive conductance upon stimulation with train of identical

pulses and a symmetric conductance change for conductance increase and decrease.

Conversely, little work has been done to understand the main properties of memristive

devices supporting efficient SNN operation. The reason lies in the lack of a background

theory for their training. As a consequence, requirements for NNs have been taken as

a reference to develop memristive devices for SNNs. In the present work, we show

that, for efficient CMOS/memristive SNNs, the requirements for synaptic memristive

dynamics are very different from the needs of a conventional NN. System-level

simulations of a SNN trained to classify hand-written digit images through a spike timing

dependent plasticity protocol are performed considering various linear and non-linear

plausible synaptic memristive dynamics. We consider memristive dynamics bounded by

artificial hard conductance values and limited by the natural dynamics evolution toward

asymptotic values (soft-boundaries). We quantitatively analyze the impact of resolution

and non-linearity properties of the synapses on the network training and classification

performance. Finally, we demonstrate that the non-linear synapses with hard boundary

values enable higher classification performance and realize the best trade-off between

classification accuracy and required training time. With reference to the obtained results,

we discuss howmemristive devices with non-linear dynamics constitute a technologically

convenient solution for the development of on-line SNN training.

Keywords: spiking neural network, MNIST, neuromorphic, analog memory, STDP, memristive synapse, memristor,

memristive devices
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FIGURE 6 | (A,B) Weight contrast at the end of the training as a function of the parameters η and λ, for the L-HB, NL-SB, and NL-HB cases. (C) Classification

accuracy, CA, as a function of the weight contrast. The symbols color follow the resolution value, η, according to the color bar reported on the right side of panel.

Figure 6A shows that the L-HB case results in about the same
contrast for every resolution, while in the NL-SB case the same
synaptic resolution can give very different weight contrasts,
depending on the non-linearity, λ (Figure 6B). The NL-HB case
is the most interesting, because the additional parameter Nstop

allows to increase the contrast either by reducing the resolution,
as shown by the filled triangles in Figure 6A, or by reducing
the non-linearity at equal resolution, as shown by the empty

triangles in Figure 6B. Finally, Figure 6C reports the CA as a
function of the weight contrast. It shows that L-HB synapses
(squares) are all characterized by high contrast but only those
with high resolution achieve high classification accuracy (please
notice, again, that the symbol color is indicative of the synaptic
resolution η, according to the color reported on the right-side of
the figure). NL-SB synapses (circles) achieve high CA only when
the weight dynamics develops a high contrast. This is obtained
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by reducing the non-linearity (please compare with Figure 6B).
The classification results of the NL-HB synapses (triangles) are
almost independent from the weight contrast obtained at the end
of the training.

The results of Figures 4, 6 constitute already a relevant result
with respect to the state of the art. Indeed, linear synaptic
dynamics is often considered as the best solution for any kind
of hardware neural network, so that large efforts are spent to
improve linearity of memristor dynamics (Wang et al., 2016;
Bousoulas et al., 2017; Chen et al., 2019). Such belief may have
raised as a generalization of the results of exemplary works
on NN accelerators trained by back propagation of the error
generalized to other networks and other training protocols (Burr
et al., 2015; Fumarola et al., 2018). As a matter of fact, as
mentioned above and shown in Figure 6B, linearity improves
weight contrast and sustains the specialization of the network.
However, it has been demonstrated that non-linear synapses
improve memory lifetime and memory capacity of a network
in which the rates of potentiation and depression events are
not perfectly balanced (Fusi and Abbott, 2007). Furthermore,
van Rossum et al. (2000) pointed out that STDP tends to make
potentiated synapses more and more potentiated. Indeed, as a
synapse is strengthened, its correlation with the post-synaptic
neurons increases thus leading to a further potentiation. Van
Rossum et al. demonstrated that this destabilizing tendency of
STDP can be profitably counterbalanced by introducing weight-
dependent plasticity (i.e., a non-linear dynamics) which produces
a certain competition among synapses. The results in Figures 4, 6
can be generically ascribed to a different balance between contrast
decrease, increase of memory lifetime, and synaptic competition
with increasing non-linearity.

This result marks a difference with respect to memristor-
based neural network accelerators trained by global error back-
propagation for which the achievement of high weight contrast
and bi-modal weight distribution taking advantage of the full
weight range is fundamental for a successful training (Sidler et al.,
2016; Fumarola et al., 2018).

Another important aspect to consider is the duration of the
training process, which for some applications must be reduced
to a minimum. To evaluate it, we define the parameter 1train as
the fraction of training images required to reach 99% of the final
classification accuracy over the total number of digits available
for training, ntot (with ntot = 60,000 here). In symbols,

1train =
ntrain(CA = 99%CAmax)

ntot
, (6)

The parameter 1train is shown as a function of η and λ in
Figures 7A,B, respectively. Figure 7A indicates a correlation
between the synapse resolution and 1train. The correlation is
somehow expected in case of a strong tendency to the formation
of a bi-modal weight distribution, i.e., linear synapses (squares).
Indeed, if the weight values tend to concentrate at the boundary
values, the number of steps required to move the weight values
from a generic initial one to the boundary scales with the synapse
resolution. In agreement with this interpretation, the correlation
between 1train and η is not perfect for the non-linear cases,

because for the same resolution very different 1train values are
obtained, as shown in Figure 7A in particular for the NL-SB cases
(filled circles). Interestingly, the evolution of 1train as a function
of λ follows opposite trends for soft and hard bound cases (also
considering only the points at equal resolution, empty triangles
and filled circles), as visible in Figure 7B. It is worth noticing
that NL-SB and NL-HB with 500 levels resolution also show
the same evolution of contrast as a function of non-linearity,
as shown by filled circles and empty triangles in Figure 6B.
Therefore, the opposite trends of 1train as a function of non-
linearity cannot be explained by the need to develop, during
training, a weight contrast that scales differently with non-
linearity for NL-SB and NL-HB dynamics. On the contrary,
the classification accuracy of NL-SB and NL-HB dynamics with
the same 500 levels resolution follows opposite trends as a
function of non-linearity, as indicated in Figure 4B (though
the change for the NL-HB case is very modest). Therefore,
the fact that both accuracy and training time follow opposite
trends as a function of non-linearity can be an indication that,
for non-linear dynamics, the training time is influenced by
the maximum classification accuracy allowed by the particular
synaptic dynamics. Finally, also considering the training time,
the NL-HB cases (triangles) demonstrate more versatility than
the other dynamics in reducing the training duration either by
reducing the resolution, η (Figure 7A), or increasing the non-
linearity, λ (Figure 7B).

All the results are summarized in Figure 8. Figure 8A reports
the classification accuracy as a function of the training duration,
1train, for the various dynamics. The usual increase of CA
with η is evident for the L-HB case, demonstrating that an
increase in synaptic resolution produces a higher classification
accuracy at the expense of longer training duration. This fact
can be appreciated reminding that the symbol color follows the
resolution, η, in agreement with the color bar on the right-hand
side of the Figure 8. The saturation visible at high 1train may
be just due to the fact that, during training, further CA increase
takes longer and longer time. In Figure 8A, no general trend can
be appreciated for NL-SB and NL-HB synapses. For instance,
some NL-SB cases present long training times associated to a
degraded CA as a consequence of the effect of the non-linearity,
according to Figures 4, 7. In addition, for the NL-HB cases, the
CA shows a limited dependence on1train. In particular, the point
corresponding to the lowest training duration, interestingly,
guarantees almost the same classification performances as the
points requiring a longer training. This case could be considered
as the one realizing the best trade-off between classification
accuracy and required training time. As a matter of principle,
some applications may require both to maximize the CA and to
minimize 1train (i.e., maximize 1 − 1train). For this reason, we
can define the SNN efficiency, ǫ, as

ǫ =
CA+ (1− 1train)

2
, (7)

which is normalized between 0 and 1. ǫ values are shown
in Figures 8B,C as a function of η and λ, respectively (all
the achieved values of the performance metrics and a figure
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FIGURE 7 | Training duration, Ntrain, as a function of the parameter η (A) and λ (B), for the L-HB, NL-SB, and NL-HB cases. The symbols colors in follow the

classification accuracy, CA, in (A) and the resolution value, η, in (B) according to the color bars reported on the right sides of the panels.

reporting the efficiency as a function of accuracy are reported
in the Supplementary Material). The maximum efficiency is
reached by the NL-HB case with the lowest resolution and the
highest non-linearity (top- and left-most triangle in Figure 8B

and top- and right-most triangle in Figure 8C, with η = 90
and λ = 0.047). It corresponds to the dynamics with α =

0.03 in Figure 2C, which grants a classification accuracy that
is only slightly affected by resolution and non-linearity, as
shown in Figure 4. Such highly non-linear and highly weight-
dependent NL-HB dynamics resembles a NL-SB one and may
endow the network with longer memory lifetime (Fusi and
Abbott, 2007) and a higher synaptic competition within a
STDP training framework (van Rossum et al., 2000), resulting
in an improved synaptic contrast (right-most filled triangle in
Figure 6C). Furthermore, the maximum efficiency dynamics
takes advantage of a short training time justified by its low
resolution, as shown in Figure 7A. In turn, for the L-HB cases
(squares), the efficiency is degraded with increasing resolution
as a consequence of the increase of the training duration, as
shown in Figure 7A. The non-linearity, instead, deteriorates the
efficiency of the NL-SB dynamics (circles in Figure 7C) because
it both increases the training duration (Figure 7B) and reduces
the classification accuracy (Figure 7).

4. CONCLUSIONS

In conclusion, we analyzed the impact of the synaptic
weight dynamics on the performances of a two-layer fully-
connected SNN compatible with a hybrid CMOS/memristive
implementation and trained through an unsupervised STDP
protocol. We chose weight dynamics that can be realized, at
least as a matter of principle, through memristive technology.
We found that synapses with non-linear dynamics and hard
weight boundary values (NL-HB synapses) give performance
advantages for a SNN with STDP-based learning in various
aspects. First, NL-HB synapses guarantee the best classification
accuracy among the investigated dynamics (see Figures 3, 4,
8A) over all the investigated range of resolution, η. It is worth
noticing that this is a significant result in the context of the
present literature. Indeed, it has been extensively demonstrated
in several publications (Chen et al., 2015; Ambrogio et al., 2018;
Fumarola et al., 2018; Moon et al., 2018) that linear synapses
enable the best classification accuracy of neuromorphic systems
that implement in hardware the back-propagation of the global
error. This result has been extended, as a supposedly natural
consequence, as holding true for SNNs. However, few recent
works from the present authors (La Barbera et al., 2018; Brivio
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FIGURE 8 | (A) Classification accuracy, CA, as a function of the training duration, 1train, for the various dynamics. (B) Efficiency as a function of the resolution, η, and

(C) efficiency as a function of the non-linearity, λ. The symbols colors follow the resolution value, η, according to the color bars reported on the right sides of the panels.

et al., 2019a) have given indications that non-linear synapses can
perform better than linear ones for SNNs, which resulted in an
interesting debate (Berg et al., 2019). In the present work, we put
on firmer and quantitative basis the role of non-linearity on the
performances of unsupervised and STDP-based SNNs.

Furthermore, for applications in which the training duration
has to be minimized, the NL-HB dynamics also realized the best

trade-off between classification accuracy and training duration,
in agreement with the mathematical definition of efficiency given
above (see Figure 8).

All these results are ascribed to the fact that the NL-HB
dynamics produces a distinct behavior of the SNN, with respect
to L-HB and NL-SB dynamics. Indeed, in case of hard-bounds,
the classification accuracy and the weight contrast (ability to

Frontiers in Neuroscience | www.frontiersin.org 13 February 2021 | Volume 15 | Article 580909

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Brivio et al. Non-linear Synaptic Dynamics for SNNs

take advantage of a wide portion of the available weight range)
is minimally affected by the non-linearity (compare NL-SB and
NL-HB cases in Figures 4, 6). Moreover, the non-linearity of
NL-HB synapses tends to reduce SNN training duration, in
clear opposition with the trend of the soft-bound synapses
(Figure 7B). This is the reason for the low training duration for
the highly non-linear hard bound synapses, which results in a
high efficiency, ǫ, according to the definition above (Figure 8).

In addition, it is interesting to make some considerations
from a technological point of view. Memristive devices are
characterized by an intrinsic non-linear conductance dynamics.
More precisely, we have recently shown that the NL-SB
dynamics is the model that faithfully describes the behavior of
filamentary memristive devices (Frascaroli et al., 2018; Brivio
et al., 2019a). On the other hand, technological efforts have
been mainly focused on developing memristive synaptic devices
with high resolution and low non-linearity because these are
the requirement for hardware neural networks relying on back-
propagation of the error. The linear dynamics is usually obtained
by truncating the non-linear dynamics in the linear regime. This
solution however limits the synapse resolution to a lower values
with respect to those that can be obtained with a more complete
non-linear dynamics. In fact, in the present study, the dynamics
free parameters have been set to realistic values in particular
for the non-linear cases. On the contrary, resolutions of 200
and 500 levels can hardly be obtained over a linear conductance
evolution (Wang et al., 2016; Bousoulas et al., 2017; Chen et al.,
2019). For instance, in one of the best literature results, Wang
et al. (2016) reports a nearly linear dynamics over 300 pulses,
indicating a resolution close to 300 levels. However, their data is
best fitted with a NL-HB models with α = 0.004, γ = 1.02 and a
resolution of about 266 levels. Therefore, according to our results,
in the case of SNNs with STDP-based unsupervised training,
higher classification accuracy values, or efficiency values, can
be obtained with non-linear hard-bound synapses relaxing the
requirements on resolution and non-linearity for memristive
devices. Therefore, high performances for STDP-based SNNs can
be obtained with moderately challenging device engineering by
embracing, instead of facing, their intrinsic non-linear dynamics.
It is worth specifying that simulations have intentionally been
performed neglecting any source of variability in the synaptic
elements in order to isolate the very effect of synaptic dynamics.
From an experimental point of view, the various dynamics may

be affected more or less seriously by noise and variability. In
particular, we can expect the linear dynamics, being the most
challenging in real devices as stated above, to be the most affected
by noise and variability. However, a methodological experimental
investigation on highly optimized devices is required in order
to take into account the different role of dynamics-dependent
variability in the simulations.

Finally, the present paper defines a methodology to assess the
impact of synaptic dynamics on the performances of a neural
network and provides the basis for future works applied to
different training protocols, network architectures, applications,
and different synaptic dynamics features, e.g., asymmetry
between weight depression and potentiation processes and
potentially different dynamics evolution, size of the readout layer
and, as mentioned above, the impact of dynamics-specific noise
and variability features, all of which can have an impact on the
trade-offs pointed out in the manuscript.
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