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Pain and depression are leading causes of disability and of profound social and
economic burden. Their impact is aggravated by their chronicity and comorbidity and
the insufficient efficacy of current treatments. Morphological and functional metabolism
studies link chronic pain and depressive disorders to dysfunctional neuroplastic changes
in fronto-limbic brain regions that control emotional responses to painful injuries
and stressful events. Glutamate modulators are emerging new therapies targeting
dysfunctional brain areas implicated in the generation and maintenance of chronic
pain and depression. Here, we report the effects of two clinically approved glutamate
modulators: acetyl-L-carnitine (ALCAR) and S,R(±)ketamine (KET). ALCAR is a natural
neurotrophic compound currently marketed for the treatment of neuropathies. KET is the
prototypical non-competitive antagonist at N-methyl-D-aspartate glutamate receptors
and a clinically approved anesthetic. Although they differ in pharmacological profiles,
ALCAR and KET both modulate aminergic and glutamatergic neurotransmissions and
pain and mood. We assessed in rats the effects of ALCAR and KET on cerebral
metabolic rates for glucose (rCMRglc) and assessed clinically the effects of ALCAR in
chronic pain and of KET in post-operative pain. ALCAR and KET increased rCMRglc at
similar degrees in prefrontal, somatosensory, and cingulate cortices, and KET increased
rCMRglc at a different, much larger, degree in limbic and dopaminergic areas. While
rCMRglc increases in prefrontal cortical areas have been associated with analgesic
and antidepressant effects of ALCAR and KET, the marked metabolic increases KET
induces in limbic and dopaminergic areas have been related to its psychotomimetic
and abuse properties. In patients with chronic neuropathic pain, ALCAR (1,000 mg/day)
yielded to a fast (2 weeks) improvement of mood and then of pain and quality of life. In
day-surgery patients, KET improved dischargeability and satisfaction. In obese patients
undergoing bariatric surgery, a single, low dose of KET (0.5 mg/kg) at induction of
anesthesia determined a very fast (hours) amelioration of post-operative depression and
pain and an opioid-sparing effect. These findings indicate that ALCAR and KET, two
non-selective glutamate modulators, still offer viable therapeutic options in comorbid
pain and depression.
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INTRODUCTION

Chronic pain and depression are leading causes of disability
that are frequently encountered comorbidly in a variety of
clinical conditions, sharing genetic and psychological risk factors,
a relapsing-chronic course, and neurobiological features (Bair
et al., 2003; Meyer et al., 2007; Kroenke et al., 2011; Global
Burden of Disease Study 2013 Collaborators, 2015; D’Amato
et al., 2016; Freo et al., 2019a,b). In the chronic pain patient,
the presence of a major depression is associated with reduced
function, poorer outcome, and expanded health-care costs; in the
depressed patient, pain is a frequent presenting symptom and a
predictor of treatment response (Bair et al., 2003; Meyer et al.,
2007; Kroenke et al., 2011; D’Amato et al., 2016).

Because of global aging, the prevalence of pain, depression,
and comorbid pain and depression is expected to increase
(Molton and Terrill, 2014; Chui et al., 2015). As currently
available therapies do not work for many patients, new
pharmacological approaches are deemed essential. Glutamate
drugs are emerging treatments for pain and depression (Henter
et al., 2017; Pereira and Goudet, 2019). Newly developed,
receptor-selective glutamate compounds are often hampered by
the uncertain toxicity and the tolerability profile; older, non-
selective agents are available for different routes of administration
[i.e., oral (PO), intramuscular (IM), and intravenous (IV)] and
continue to be investigated actively (Henter et al., 2017; Pereira
and Goudet, 2019).

We assessed the effects of two clinical glutamate modulators,
acetyl-L-carnitine (ALCAR) and ketamine (KET), on regional
glucose cerebral metabolism and on patients with comorbid pain
and depression. This review summarizes our pre-clinical and
clinical research on ALCAR and KET.

PAIN AND DEPRESSION

According to the International Association for the Study of Pain,
pain can be roughly classified on the basis of mechanism as
nociceptive, neuropathic, or nociplastic pain. Nociceptive pain
reflects the normal functioning of the somatosensory systems
responding in a stimulus-dependent manner to an actual or
potential damage of non-neuronal tissue and is treated with
conventional non-steroidal anti-inflammatory and/or opioid
analgesics (Freynhagen et al., 2019). In contrast to nociceptive
pain, neuropathic pain is induced by a lesion or disease of
the somatosensory nervous system that generates and maintains
spontaneous pain and positive and negative sensory disturbances,
independently from stimuli (Freynhagen et al., 2019; Scholz et al.,
2019). Neuropathic pain worsens cognitive and mood functions
and quality of life and is treated with antiepileptic and/or
antidepressant drugs targeting the abnormal somatosensory
nervous systems (Nicholson and Verma, 2004; Fornasari, 2017).
Recently, the International Association for the Study of Pain
defined nociplastic pain as pain occurring from an altered
nociception in spite of no evidence of any tissue damage
(Freynhagen et al., 2019). Multiple pain mechanisms may
be active at the same time in the single patient, making

diagnosis and treatment more difficult (Freynhagen et al., 2019).
Finally, pain is considered chronic if it lasts longer than the
3 months’ healing time.

Neuropathic pain is often chronic, and neuropathic symptoms
(i.e., “component”) are frequently reported and aggravate painful,
non-primary neurological conditions in spite of no demonstrable
neuronal injury (Freo et al., 2019b, 2020; Freynhagen et al., 2019;
Scholz et al., 2019). Because of the loss of protective features and
the damage they cause, chronic and neuropathic pain are viewed
as “disease states” (Costigan et al., 2009).

Although they often coexist and complicate each other’s
outcome, the exact relation between chronic pain and depression
has yet to be elucidated (Bair et al., 2003; Sheng et al., 2017).
Most studies report an increased sensitivity to experimental pain
and, therefore, a decreased pain threshold in depressed compared
to non-depressed subjects especially when emotional aspects of
experimental pain are taken into account (Ushinsky et al., 2013);
probably because of an altered sensation, unexplained pain is
common in depression and is often the presenting and prevailing
symptom (Bair et al., 2003). Stressful events may facilitate
chronification of both pain and of negative/depressed mood;
personal experiences such emotional strain, childhood traumatic
experiences and post-traumatic stress disorder, and negative
social and work experiences are associated with a higher risk of
developing depression and/or chronic pain; personal attitudes
such as catastrophizing and low self-efficacy are also risk factors
of developing either or both states (O’Sullivan, 2004; Edwards
et al., 2016). In a large genetic study, different pain phenotypes
presented robust and positive genetic correlations with each
other as well as with depression, suggesting common underlying
genetic factors between pain and depression (Meng et al.,
2020). Because it has a much higher incidence, approximately
tenfold, than other mental disorders, evolutionary and pain
psychologists have attempted to explain pain and depression
in terms of behavioral adaptiveness. In this contest, Baliki and
Apkarian (2015) support that nociception is essential to protect
individuals from injury not only by inducing conscious pain and
active avoidance behaviors but also by modulating automatic
motor behaviors continuously and in the absence of overt pain.
Similarly, a negative mood may be reconceptualized as a psychic
pain that may be protective against environmental dangers
in complex and hierarchical societies and promote healing;
even persistent pain after an injury may have an adaptational
value in that it favors survival after injuries that impair motor
functions and increase vulnerability (Gałecki and Talarowska,
2017). In contrast, within the evolutionary framework, chronic
pain beyond normal healing and chronic or relapsing depression
are viewed as maladaptive processes which are maintained by
neuropathological abnormalities.

GLUTAMATE DRUGS

Neuroplasticity
Neuroplasticity indicates the brain’s ability to change over time
and, more specifically, the ability of strengthening or weakening
the synaptic signals between neurons in response to a variety of
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physiological stimuli such as behavioral, cognitive, and motor
activities, as well as after pathological events such as painful or
stressful conditions and neurological diseases (Lucassen et al.,
2014; Pelletier et al., 2015). In chronic pain and depression,
morphological and functional neuroplastic changes were found
most pronounced in fronto-limbic regions (Mutso et al., 2012;
Khan et al., 2014; Ezzati et al., 2019). The human prefrontal cortex
is phylogenetically a recent brain area that matures late during
development and is pivotal in the acquisition of motivational
properties of different types of rewarding and aversive stimuli
which include self-reference, self-appraisal, and emotion and
mood control (Teffer and Semendeferi, 2012).

In chronic pain and depression, chronic exposure to stress is
a common factor that may produce long-lasting changes (i.e.,
maladaptive neuroplasticity) in highly sensitive brain areas such
as the prefrontal cortex and the hippocampus and in their
functional connections, which may underlie the cognitive and
behavioral impairments accompanying these conditions (Teffer
and Semendeferi, 2012; Lucassen et al., 2014). For example,
in comparison to healthy controls, a group of patients with
chronic low back pain performing a simple visual attention task
presented a reduced deactivation in regions of the default mode
network; similarly, patients with a major depressive or a bipolar
disorder while performing a n-back working memory task failed
to deactivate the medial prefrontal cortex (Baliki et al., 2008;
Rodríguez-Cano et al., 2017). The default mode, attention, and
salience networks are all disrupted in pain and depression (Shao
et al., 2018; van Ettinger-Veenstra et al., 2019). Conversely, the
deep brain stimulation of the cingulate cortex relieved patients
suffering from an intense neuropathic pain as well as patients
with a severe treatment-resistant depression (Boccard et al., 2016;
Zhang et al., 2018).

Treating pain improves depressive symptoms and vice versa
(Skolasky et al., 2012; Rahman et al., 2020). Because the incidence
of depressive and pain symptoms is increasing in parallel with
the aging of the world population, it is particularly important
to develop strategies that target both disorders to minimize
polypharmacy and optimize therapeutic outcomes (Solhaug et al.,
2012; Molton and Terrill, 2014). Although therapeutic options
are available for chronic pain and depression, less than 50% of
all patients treated for chronic pain report a clinically meaningful
(i.e., ≥50%) pain relief with current analgesic treatments, and
only about 50–60% of patients with major depressive disorders
achieved remission after an adequate course with conventional
antidepressants. The efficacy of treatments of comorbid pain
and depression has been less studied, but it is well known
that these two conditions worsen each other’s severity and
therapeutic response.

Glutamate is the most abundant excitatory neurotransmitter
in the central nervous system of adult mammals and has a
major role in neuroplasticity (Henter et al., 2017; Pereira and
Goudet, 2019). Glutamate acts through eight ionotropic and
metabotropic receptor subtypes (mGluR1–mGluR8) that have
been classified into three groups: Group I receptors (mGluR1
and mGluR5) are coupled to Gαq proteins and phospholipase C
and are involved in central sensitization and pain chronification;
Group II receptors (mGluR2/mGluR3) and Group III receptors

(mGluR4 and mGluR6–mGluR8) are coupled to Gαi/o proteins
and inhibit adenylate cyclase; their activation is effective against
nociceptive and neuropathic pain (Zammataro et al., 2011;
Henter et al., 2017; Pereira and Goudet, 2019).

Glutamate competitive and non-competitive ligands, binding
to the same or to a different receptor site of the endogenous
ligand, have been on development for at least three decades.
Trials on stroke and traumatic brain injuries with competitive
glutamate or glycine antagonists (i.e., selfotel, aptiganel, eliprodil,
licostinel, and gavestinel) have failed (Ikonomidou and Turski,
2002). Recent trials with glutamate agents to treat pain and
depression yielded promising but sometimes inconsistent results;
non-selective glutamate modulators such as ALCAR and KET
can still be of interest to glutamate research (Gould et al., 2019;
Pereira and Goudet, 2019).

ALCAR
Acetyl-L-carnitine (γ-trimethyl-β-acetylbutyrrobetaine) is
an acetyl ester of carnitine, an endogenous molecule with
pleiotropic biological and pharmacological activities on central
and peripheral nervous systems (Chiechio et al., 2017). ALCAR
has a key role in neuronal metabolism (i.e., β-oxidation, glycogen
production, glucose utilization, and ammonia cycle), growth,
plasticity, and regeneration; ALCAR is actively taken up by the
brain and modulates the release of aminergic neurotransmitters
and the biosynthesis and release of glutamate (Kuratsune et al.,
2002; Tolu et al., 2002; Tanaka et al., 2003; Freo et al., 2009;
Smeland et al., 2012; Chiechio et al., 2017; Wang et al., 2014;
Burks et al., 2019). Exogenous ALCAR may increase neurogenesis
in prefrontal–limbic areas via a selective upregulation of mGluR2
receptors, by acting as histone acetylator on transcription factors
of the nuclear factor (NF)-kappa B family (Chiechio et al., 2006;
Nasca et al., 2013).

In experiment animals, ALCAR is neuroprotective against
hypoxia, nerve and spinal cord injury, and neurotoxins
such as amphetamines and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (Chiechio et al., 2017; Burks et al., 2019).
In humans, low plasma levels of ALCAR have been associated
with an increased vulnerability to chronic pain and depression.
Specifically, circulating ALCAR was found to be reduced in
patients with severe osteoarthritis pain that did not improve
after a total joint replacement (Costello et al., 2020). ALCAR
was found to be reduced also in the plasma and the brain of
patients with chronic fatigue or major depressive disorder and,
more markedly, when depression was severe, treatment resistant
or associated with history of childhood trauma or neglect
(Kuratsune et al., 2002; Nasca et al., 2018; Post, 2018; Pu et al.,
2020).

Given its excellent, long-term safety profile, ALCAR has
been studied in several neurological and psychiatric conditions,
confirming a strong antineuropathic activity in toxic and
traumatic painful neuropathies (Onofrj et al., 2013; Chiechio
et al., 2017). Specifically, ALCAR improved the function of
peripheral nerves by reducing sensory neuronal loss and
by enhancing nerve regeneration and conduction velocity
(Onofrj et al., 2013; Cruccu et al., 2017). Administration
of ALCAR has consistently shown good tolerability and
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efficacy in dysthymic disorder and on depressive symptoms
associated with fibromyalgia or minimal hepatic encephalopathy
(Wang et al., 2014).

Ketamine
Ketamine is an arylcycloalkylamine structurally analogue to
phencyclidine (PCP, angel dust), an approved anesthetic and the
prototypical, non-competitive N-methyl-D-aspartate receptor-
glutamate (NMDA) antagonist.

In addition to NMDA antagonism, however, KET has a
myriad of effects on neurotransmitters which include the
following: increase of synaptic concentrations of acetylcholine
in the spinal cortex, hippocampus, and neocortices; increase
of glutamate, serotonin, and noradrenaline in the prefrontal
cortex; increase of dopamine in the basal ganglia and neocortices;
activation of synaptogenic α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors; and activation of
synaptogenic intracellular signaling, including mammalian
target of rapamycin complex (TORC1) (Freo and Ori, 2002b,
2003; Cohen et al., 2018). Behaviorally, KET has almost unique,
dose-dependent effects on the central nervous system. Different
from most general anesthetics, at high, anesthetic doses, KET
and few other congeners produce a “dissociative anesthesia”
during which patients may appear awake and maintain
spontaneous eye movements and respiratory drive although they
are relatively insensitive to sensory stimulation (Cohen et al.,
2018). At lower subanesthetic doses, KET promotes arousal
from anesthesia and has strong antidepressant and analgesic
activities (Hambrecht-Wiedbusch et al., 2017; Cohen et al.,
2018). After a low intravenous dose of KET (0.5 mg/kg), most
patients with a major depressive disorder reported a very fast,
within hours, improvement of depressive symptoms that lasted
for 7–10 days (Cohen et al., 2018). The antidepressant effects
of KET were replicated in patients with treatment-resistant or
bipolar depression, suggesting that KET may be effective on a
wider range of depressed patients (Romeo et al., 2015).

In addition, low-dose KET has been beneficial on large
numbers of patients suffering from oncological and non-
oncological pain (Cohen et al., 2018; Orhurhu et al., 2019).
The consensus guidelines recently elaborated by the American
Society of Regional Anesthesia and Pain Medicine, the American
Academy of Pain Medicine, and the American Society of
Anesthesiologists support the use of KET for chronic pain,
but with different degrees of evidence for different conditions
and dose ranges (Cohen et al., 2018). Adverse events of KET
were similar to those of placebo, with higher dosages and more
frequent infusions being associated with greater risks (Cohen
et al., 2018). However, not all authors agree and dismiss KET
adverse events as anecdotal. In clinical practice, using KET
for chronic pain or depression is still limited by intravenous
administration and its potential neurotoxic and toxic effects
(Jevtovic-Todorovic et al., 2001; Liao et al., 2010; Orhurhu et al.,
2020). However, intranasal and oral administration as well as the
discovery of antidepressant activity and lower psychotomimetic
effect of isomers and metabolites of KET may foster a wider and
longer-term clinical use of KET in the future (Zanos et al., 2016).
Because S(+)KET has higher affinity for NMDA receptors than

R(−)KET, S(+)KET has been developed and later approved by
the Food and Drug Administration as a clinical antidepressant
(Hashimoto, 2019). However, in animal models of depression,
R(−)KET has shown longer-lasting antidepressant effects and
lesser adverse effects than S(+)KET and is currently being
investigated as a promising antidepressant (Hashimoto, 2019).

CEREBRAL METABOLISM STUDIES

The regional cerebral metabolic rates for glucose (rCMRglc)
were measured using the quantitative autoradiographic [14C]2-
deoxy-D-glucose technique in groups of five to seven male,
Fischer-344, conscious rats at 30 min after IV administration of
saline or ALCAR 250–750 mg/kg and at 20 min after IV saline
or KET 20 mg/kg (Ori et al., 2002; Freo and Ori, 2004). The
[14C]2-deoxy-D-glucose procedure has been detailed previously
(Freo and Ori, 2002a, 2004, 2009).

Acetyl-L-carnitine dose-dependently increased rCMRglc in
the prefrontal, cingulate, and somatosensory cortices, in the
cortical amygdala and in the accumbens, diagonal band, dorsal
raphe, and locus coeruleus nuclei (ANOVA and unpaired t-test,
P < 0.05) (Figure 1; Ori et al., 2002). Acetate and carnitine
alone had no effect on cerebral metabolism, indicating that
rCMRglc increases by ALCAR are independent from its effects
on mitochondrial metabolism (Ori et al., 2002). KET [S,R(±)-
ketamine] increased rCMRglc similarly to ALCAR in cortical
areas, to a lesser extent in serotoninergic raphe nuclei and to a
much greater extent in hippocampal regions and dopaminergic
nuclei (average percentage increase 32.2 ± 11.4 vs. 20.0 ± 23.0;
P < 0.01) (Freo and Ori, 2004). Using functional magnetic
resonance imaging in paralyzed, mechanically ventilated rats,
Masaki and coworkers reported that S,R(±)KET 10 mg/kg and
S(+)KET 10 mg/kg increased the regional cerebral blood flow
signal in the basal ganglia and cortical regions in a similar
fashion to that in MK801 (Masaki et al., 2019); in contrast,
the same dose of R(−)KET produced no noticeable behavioral
change and a widespread decrease of regional cerebral blood flow
(Freo and Ori, 2004; Masaki et al., 2019). In GluN2D-knockout
mice, KET failed to increase the [14C]-2-deoxy-D-glucose uptake
as well as the cortical gamma-band power, suggesting that
prefrontal cortical activations are mediated by mGluR2 receptors
(Sapkota et al., 2016). Furthermore, in humans, KET increased
the [18F]-fluorodeoxy-D-glucose uptake in the prefrontal cortex
in a correlative fashion to post-treatment antidepressant effects
(Li et al., 2016). Finally, the antidepressant effects of KET
continuing beyond its pharmacokinetic half-life was associated
with persistent activation of the frontal supplementary motor and
cingulate cortices (Chen et al., 2018).

While the rCMRglc effects of KET were similar to those of
other non-competitive NMDA antagonists, they differ markedly
from the small rCMRglc changes induced by competitive NMDA
receptor antagonists (i.e., AP7, CGP39551, CPP, and CGS19755),
which have demonstrated relatively modest antidepressant effects
and to actually counteract KET-induced dopamine activations
(French, 1992; Sharkey et al., 1996; Iadarola et al., 2015). Pre-
clinical and (Freo and Ori, 2002a,b) human studies have reported
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FIGURE 1 | Effect of ALCAR and KET on rCMRglc. Bars are mean rCMRglc differences (percent) from saline controls in groups of 5–7 Fischer-344, male rats at
30 min after IV administration of ALCAR 500 mg (hatched) and 20 min after IV KET 20 mg (solid). ALCAR difference from saline control: ∗P < 0.05; ALCAR difference
from KET: #P < 0.05.

abnormalities of glutamatergic systems in depression (Jiménez-
Sánchez et al., 2016); conversely, enhancement of glutamate
neurotransmission in the prefrontal cortex is considered
necessary and sufficient for the antidepressant properties of
glutamate drugs (Fukumoto et al., 2016; Highland et al., 2019).
However, ALCAR and KET differ in their mechanisms of
action and can lead to prefrontal activation in two different
manners: ALCAR may do so directly via upregulation of mGluR2
receptors, KET may act indirectly via an NMDA antagonism
on GABA inhibitory neurons, and the subsequent disinhibition
of pyramidal cortical neurons (Moghaddam et al., 1997).
Enhanced AMPA/glutamate transmission by KET stimulates,
in turn, release of adrenaline and serotonin, which may
contribute to KET antidepressant effects (Fukumoto et al., 2016;
Jiménez-Sánchez et al., 2016).

Compared to ALCAR, KET determined greater rCMRglc
increases in dopaminergic nuclei (i.e., accumbens and substantia
nigra, pars reticulata and compacta, nuclei: 233, 138, and
346%, respectively, P < 0.01) and in hippocampal areas (i.e.,
dorsal CA3 and dentate gyrus: 233 and 200%, respectively,
P < 0.01), which are among the largest metabolic activations
ever reported (Sharkey et al., 1996). However, they are
consistent with the marked increases KET elicits also on

electrical activity in the ventral tegmental area, extracellular
concentrations of dopamine in the nucleus accumbens and
prefrontal cortex, and hyperlocomotion by the dopamine
D2/3 receptor agonist quinpirole (Witkin et al., 2016). KET
dopaminergic activations were prevented by dopaminergic
neuroleptics and an AMPA receptor antagonist, indicating
AMPA-dependent effects (Duncan et al., 2003; Witkin et al.,
2016). While the role of dopaminergic and glutamatergic
activations in KET antidepressant actions remains questionable,
the large rCMRglc increase KET induces in mesolimbic areas
likely reflects dopamine “surges” that mediate natural and drug
rewards and, possibly, the abuse liability of KET (Kokkinou et al.,
2018; Volkow et al., 2019). In contrast, ALCAR increases much
less dopamine release and rCMRglc; although it is faster than
conventional selective serotonin and/or norepinephrine reuptake
inhibitor and tricyclic antidepressants, ALCAR is a less potent
and slower antidepressant than KET and is devoid of abuse risk
(Tolu et al., 2002; Romeo et al., 2015; Chiechio et al., 2017).

In experiment animals, KET has potential neuroprotective
properties in stroke, neurotrauma, subarachnoid hemorrhage,
and status epilepticus; however, KET has been reported to cause
also some worrisome neurotoxic damage, which, interestingly,
can be counteracted by ALCAR (Jevtovic-Todorovic et al., 2001;
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Liao et al., 2010; Robinson et al., 2016; Bell, 2017;
Orhurhu et al., 2020).

Acetyl-L-carnitine increased rCMRglc to a similar extent
in most brain areas in young and aged rats and to a
larger extent in the limbic regions of aged rats (Freo et al.,
2009). Following its chronic administration, ALCAR determined
larger rCMRglc increases in hippocampal areas, which are
crucial to attention and memory functions (Freo et al., 2009).
Because ALCAR is endowed with cholinomimetic properties,
its positive effects on attention and memory were ascribed
to ALCAR cholinergic agonism (Battistin et al., 1989; Jeong
et al., 2017). However, as the limbic regions are electrically and
metabolically hyporesponsive to acute cholinergic muscarinic
stimulation and to chronic cholinergic treatment, a non-
cholinergic mechanism for memory-enhancing effects of ALCAR
is likely (Freo et al., 2009). During aging, the glutamate
neurotransmission undergoes complex changes within the
hippocampus, which include increases of glutamate-induced
phosphoinositol hydrolysis, of densities of glutamate receptors
(i.e., mGluR2, mGluR3, and mGluR5) and of their mRNAs,
all of which have been interpreted as compensatory for age-
related alteration of glutamate neurotransmission (Griego and
Galván, 2020). The aging cognitive decline has been associated
with weakened synaptic strength in prefrontal and hippocampal
regions. Interestingly, riluzole, a glutamate release inhibitor
and glutamate antagonist, was shown to increase glutamatergic
activity in the hippocampus, preventing thus cognitive decline
during aging (Pereira et al., 2014). Hence, ALCAR may also
have a positive effect on cognitive functions by activating the
hippocampal glutamatergic mechanisms.

CLINICAL STUDIES

Effects of ALCAR on Chronic Pain
Chronic pain and depression often coexist, requiring frequent
or continuous treatments (Freo et al., 2019a). Multi-pathologies
and multi-therapies make it challenging especially in the elderly
and frail population. In comorbid chronic pain and depression,
ALCAR may be useful because of its analgesic and antidepressant
properties and high long-term tolerability (Chiechio et al., 2017).

We investigated the effects of ALCAR in painful neuropathies
and radiculopathies that were unresponsive or poorly responsive
(i.e., ≤30% pain relief) to previous therapies in 28 patients (17
females and 11 males; age 66.4 ± 10.1 years; pain duration
16 ± 21 months) (Freo et al., 2019a). The primary outcome
was pain intensity after a 4-month treatment with ALCAR
500 mg BID that was given initially IM for an average of
57 ± 9 days and then PO. Patients were assessed for the 24-
h average pain with a 0–10 numerical rating scale (NRS) (pain
rating, 0 = no pain, 1–3 = mild, 4–6 = moderate, and 7–
10 = severe pain), for neuropathic pain symptoms with the
painDETECT questionnaire [<12 = negative (nociceptive pain),
13–18 = uncertain (mixed pain), ≥19 = positive (neuropathic
pain)], for depressive symptoms with the Hospital Anxiety and
Depression Scale (HADS) (<7 = no depression, 8–10 = mild, 11–
15 = moderate, and 16–21 = severe depression), and for quality of

life with the 12-item Short Form Health Survey (SF-12), physical
and mental components (Freo et al., 2019a,b).

At baseline, all patients reported a moderate-to-severe, 24-h
average pain (NRS ≥ 4/10), 60% of patients reported symptoms
of a mild-to-moderate depression (HADS ≥ 8), and 57% had
a positive painDETECT score (≥12) for neuropathic pain
(Freo et al., 2019a). The 4-month treatment with ALCAR was
associated with a reduction of pain and depression (Figure 2).
Pain intensity significantly improved from baseline to month
1 of treatment (pain NRS from 7.4 ± 1.5 to 5.6 ± 1.7;
means ± standard deviation, Kruskal–Wallis and Wilcoxon’s
test, P < 0.01) and depressive symptoms improved already at
week 2 of treatment (HADS scores from 8.8 ± 4.4 to 6.1 ± 3.4,
P < 0.01) (Figure 2; Freo et al., 2019a). Compared to baseline, at
month 4 outcome, a moderate (30–49%) pain improvement was
observed in 11 patients and a substantial (≥50%) improvement
in 8 patients. The painDETECT score for neuropathic pain
decreased from baseline to month 4 outcome from 12.6 ± 6.0
to 5.0 ± 0.9 (P < 0.01); the SF-12 mental component increased
from 44.1 ± 4.5 to 53.5 ± 5.1 (P < 0.01) and the SF-12 physical
component from 35.3 ± 3.5 to 39.4 ± 5.2 (not significant).
Five patients discontinued treatment because of lack of efficacy
or unwillingness to continue treatment; no adverse effect was
recorded (Freo et al., 2019a).

Reportedly, ALCAR improved pain and nerve function in
experimental and clinical neuropathies of different etiologies
with therapeutic effects being ascribed mainly to ALCAR
neuroprotective and neuroregenerative properties (Li et al.,
2015). However, although in peripheral neuropathies, depression
is common and noradrenaline–serotonin reuptake inhibitor
and tricyclic antidepressants are first-line treatments, depressive
symptoms are not always measured. Pain and depression have
a biunivocal relation with worsening or improvement in one
variable predicting subsequent changes in severity of the other
(Kroenke et al., 2011; D’Amato et al., 2016). As such, rapid-
acting antidepressant and analgesic drugs have been a major
breakthrough (Chiechio et al., 2017). In our patients, ALCAR
improved depressive symptoms earlier than pain symptoms,
suggesting that the antidepressant activity of ALCAR may
anticipate and contribute to its analgesic properties.

Chronic neuropathic pain and depression are age-dependent,
highly comorbid disorders that complicate courses and outcomes
(Dworkin et al., 2003; Brouwer et al., 2015; Hanewinckel et al.,
2016; Freo et al., 2019b). Therapeutic responses are often poor
and limited by concurrent therapies. The elderly population is
at increased risk for adverse events from antidepressants and
anticonvulsants that may worsen stability, balance, and cognition
(Dworkin et al., 2003; Brouwer et al., 2015; Hanewinckel et al.,
2016). Because of its high tolerability and the positive effect it
has on pain, depression, and cognition, ALCAR should be in
the therapeutic armamentarium for treating comorbid pain and
depression, especially in the elderly population.

Effects of KET on Post-operative Pain
Almost unique among general anesthetics, the NMDA antagonist
KET has anesthetic properties with low cardiovascular and
respiratory depression (Cohen et al., 2018). KET is also clinically
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FIGURE 2 | Effects of ALCAR on chronic pain and depression. Points are
means ± standard deviation of 24-h average pain NRS scores (above) and
depression HADS scores (below) from pre-treatment baseline to month 4
treatment in 28 patients receiving ALCAR 500 mg BID IM/PO for chronic
neuropathy or radiculopathy pain. Significantly different from baseline:
*P < 0.05; **P < 0.01.

attractive because it has strong analgesic and antidepressant
activities and may prevent central sensitization and hyperalgesia
(Freo and Ori, 2003; Ori et al., 2003; García-Henares et al., 2018).
Hence, KET is of interest for patients prone to anesthesia-induced
respiratory impairment or suffering from chronic pain and/or
depression or, more, for patients presenting with all these clinical
features such as the morbidly obese (Freo and Ori, 2003; Ori et al.,
2003; Carron et al., 2012; García-Henares et al., 2018).

In fact, overweight and obesity are frequently associated with
an obstructive apnea syndrome and/or to a depressive disorder
that places patients at risk, respectively, of post-operative critical
events and of post-operative complications and prolonged stay
(Luppino et al., 2010; Ghoneim and O’Hara, 2016; Subramani
et al., 2017; Nijland et al., 2020). Obesity is associated with higher
rates of chronic pain and higher scores of post-operative pain,
which are both challenging to treat in this patient population
(Belcaid and Eipe, 2019; Mills et al., 2019). As opioids may
induce ventilatory impairment, multimodal opioid- and muscle
relaxant-sparing techniques are being investigated to improve the
safety of analgesia in obese patients; in this regard, KET may
present specific advantages (Ori et al., 2003; Dalsasso et al., 2005;
Freo et al., 2011; Carron et al., 2012; García-Henares et al., 2018;
Aronsohn et al., 2019).

The effects of KET as the main anesthetic agent were
determined in 500 patients (172 males and 328 females, ASA I–
II, age 53.9 ± 12.2 years, weight 76.1 ± 22.5 kg) undergoing an
opioid-free anesthesia for day surgery including breast surgery,
laparoscopy, superficial excision of minor lesions, thoracoscopy,
appendectomy, and proctology (Dalsasso et al., 2005). At
induction, patients received IV midazolam 0.03–0.05 mg/kg,
clonidine 150 µg, and KET 0.4 mg/kg; the latter was repeated
as needed during surgery (mean total dose 0.6 ± 0.2 mg/kg).
Anesthesia was maintained with nitrous oxide and sevoflurane.
Seventy-four percent of patients were eligible to discharge
from the operating theater by 30 min, and all patients were
dischargeable by 1 h. Patients did not complain of hallucinations,
while presenting a high rate of satisfaction at the Iowa Satisfaction
with Anesthesia Scale (Dalsasso et al., 2005).

The post-operative effects of KET were assessed in 41 obese
patients (26 females and 15 males; age 42.7 ± 10.7 years;
body mass index 44.5 ± 7.2) undergoing laparoscopic gastric
banding or sleeve gastrectomy with the primary outcomes
being post-operative pain and depression (Freo, 2020). All
patients were pre-medicated with midazolam and induced
with IV propofol 1.5 mg/kg and fentanyl 1–2 µg/kg and
maintained with sevoflurane 1–2%; patients were randomized
to receive at induction either saline or KET [S,R(±)ketamine
0.5 mg/kg by ideal body weight]. Baseline demographic features
(i.e., age, education, body mass index, comorbidities, and
medical therapies), times of anesthesia and surgery, and average
propofol dosages were similar between groups; average fentanyl
dosage was higher in the saline control than in the KET
group (i.e., 341 ± 109 and 192 ± 67 mg, P < 0.01)
(Freo, 2020).

At pre-operative baseline, in the control and the KET groups,
seven and eight patients reported moderate-to-severe pain
(NRS≥ 4/10), and 9 and 10 patients presented mild-to-moderate
depressive symptoms in the Hamilton Depression Rating Scaling
(HAMD), respectively (Freo, 2020). Pain scores were significantly
lower at post-operative hours 6 and 12 in KET-treated patients
than in controls and then subsided in both groups (Figure 3).
Pain improvement was less in non-depressed than depressed
patients (mean intergroup difference at post-operative day 1,
−33 and −51%, P < 0.05) (Freo, 2020). HAMD scores were
significantly lower in the KET-pre-treated patients at the post-
operative days 1 and 3 (HAMD scores in saline and KET groups at
baseline: 6.7± 5.7 and 7.1± 5.7; at post-operative day 1: 6.7± 5.7
and 3.4 ± 2.6; at post-operative day 3: 7.0 ± 5.6 and 3.7 ± 2.9;
Friedman’s and Mann–Whitney U tests, P < 0.01) (Figure 4;
Freo, 2020).

A recent Cochrane meta-analysis review concluded that
perioperative intravenous KET reduces post-operative pain
and nausea and analgesic consumption (Brinck et al., 2017);
however, not all studies are consistent with these findings. In
a recent randomized controlled study (RCT) on 100 obese
patients, of whom 22 with history of depression and 13 with
history of chronic pain, undergoing laparoscopic gastric bypass
or gastrectomy, post-operative infusion of KET (0.4 mg/kg,
ideal body weight) was not superior to placebo on post-
operative pain and mood assessed with a pain Visual Analogue
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FIGURE 3 | Effects of KET on post-operative pain in obese bariatric patients.
Points are means ± standard deviations of NRS scores of pain in the first 36 h
after bariatric surgery in 41 obese patients who had received either saline
(broken line) or KET 0.5 mg/kg (continuous line) at induction of anesthesia.
Significantly different from saline controls: **P < 0.01.

Scale, the Beck Depression Inventory and the Montgomery–
Asberg Depression Rating Scale; KET, however, improved
the affective and the total score of the short-form McGill
Pain Questionnaire starting on post-operative day 2 (Wang
et al., 2019). In the PODCAST multicenter RCT on 672
older adults (i.e., >60 years) undergoing cardiac and non-
cardiac surgery, pre-incisional KET (0.5 or 1 mg/kg) did not
decrease post-operative pain, delirium, or depressed mood
(Avidan et al., 2017).

Most negative studies focused on post-operative pain.
Analgesic effects of KET are considered use dependent: the worst
the pain, the more efficient KET will be as analgesic (Robu
and Lavand’homme, 2019). The same may hold true for its
antidepressant effect. KET has a plasma half-life of 2.3 ± 0.5 h
with a duration of action of IV bolus of 5–10 min (Cohen
et al., 2018). KET has a rapid and potent antidepressant effect
that peaks at 24–48 h after administration and could have a
larger impact on patients with mood disorders (Cohen et al.,
2018). Consistently, Kudoh et al. (2002) reported that KET
significantly improved mood and pain on post-operative day
1 in depressed patients undergoing orthopedic surgery. In a
second double-blind RCT, KET 0.5 mg/kg IV bolus followed
by a 30 min infusion of 0.25 mg/kg/h increased mood and
serum brain-derived neurotrophic factor, which is a marker of
major depressive disorders and treatment response (Jiang et al.,
2016). It is therefore possible that the analgesic effect of KET
is contributed at least in part by its antidepressant activities. In
our sample, 15 patients (37%) had at least a mild-to-moderate
depression, and nine patients were on chronic antidepressant
therapy; large-cohort studies indicated that the prevalence of
subclinical depression ranges from 1 to 17% (Heo et al., 2006),
which suggests that obese patients with mood disorders may
especially benefit from KET treatment.

Ketamine is endowed with a peculiar profile with multiple
pharmacological activities that may result from different

FIGURE 4 | Effects of KET on depression in obese bariatric patients. Columns
are means ± standard deviations of HAMD scores from baseline to
post-operative day 7 in 41 bariatric patients who had received either saline
(hatched columns) or KET 0.5 mg/kg (solid columns) at induction of
anesthesia. Significantly different from saline controls: ∗P < 0.05; ∗∗P < 0.01.

underlying mechanisms. Other NMDA antagonists (i.e., MK801
and memantine) do not have the same anesthetic, analgesic, and
antidepressant effects of KET, leaving open the question of its
mechanisms of action (Kelland et al., 1993; Gould et al., 2019;
Robu and Lavand’homme, 2019). Besides the glutamate system,
KET interacts with several other neurotransmitter systems (Jelen
et al., 2020). For example, the administration of the insulin
growth factor small-interfering RNA blocks KET antidepressant
effects in the mouse learned helplessness model of depression
(Grieco et al., 2016). In rodents, activation of AMPA receptors by
the KET metabolite (2R,6R)-hydroxynorketamine has initially
been thought essential to replicate KET antidepressant effects
while administration of 2,3-dihydroxy-6-nitro-7-sulfamoyl-
benzo[f]quinoxaline-2,3-dione (NBQX), an AMPA receptor
antagonist, blocks KET effects (Zanos et al., 2016). However,
in subsequent investigations in rodent models of depression,
(2R,6R)-hydroxynorketamine did not exhibit antidepressant-like
effects and increased aggressive behavior (Yang et al., 2019).
The brain-derived neurotrophic factor (BDNF) and its receptor,
tyrosine kinase receptor B (TrkB), are essential and common
mechanisms for the antidepressant effects of both the parent
molecules of ketamines [i.e., S,R(±)ketamine, S(+)ketamine,
and R(−)ketamine] and their active metabolites [i.e., (2R,6R)-
hydroxynorketamine and of S(+)norketamine] (Yang et al.,
2019). In patients with treatment-resistant depression, naltrexone
50 mg blocked the antidepressant but not the dissociative effects
of KET, suggesting that the opioid system may also be required
for KET antidepressant activities (Williams et al., 2018). Other
works, however, have shown that naltrexone pre-treatment
did not affect the antidepressant activities of KET in depressed
individuals (Marton et al., 2019; Yoon et al., 2019; Zhang and
Hashimoto, 2019).
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ALCAR AND KET AS GLUTAMATE
DRUGS FOR PAIN AND DEPRESSION

The excitatory actions of glutamate in the central nervous
system have been recognized in the early 1950s (Curtis and
Watkins, 1960). Since the discovery of neurotoxic effects of
massive glutamate release, glutamate antagonists have been
trialed in massive neuronal damage (i.e., stroke and brain and
spinal cord trauma), with disappointing results (Ikonomidou
and Turski, 2002). Later, it was shown that glutamate is actually
essential to physiological neuroplasticity underlying learning
and memory, as well recovery from brain stroke or trauma
(Ikonomidou and Turski, 2002).

The report of the fast antidepressant effects of KET, a
non-selective glutamate agent, fostered interest in the role of
glutamate in specific neurological functions (Henter et al.,
2017; Pereira and Goudet, 2019). Reportedly, glutamate is
involved in maladaptive neuroplastic processes contributing
to generation and maintenance of pain and mood disorders
(Riggs and Gould, 2021). Frontal areas are critical for top-
down cognitive modulation of pain and pain-related emotions
(Thompson and Neugebauer, 2019). A lower level of frontal
activity has been linked to higher pain and low mood, and
conversely, an increased frontal activity has been linked to
analgesic and antidepressant effects (Thompson and Neugebauer,
2019). Furthermore, glutamate concentrations are reduced in
frontal areas in experimental and clinical pain (Thompson and
Neugebauer, 2019), and a frontal glutamatergic dysfunction
has been implicated in depression as well (Moriguchi et al.,
2019). Therefore, modulation of glutamate neurotransmission is
a current research target for pain and depression (Pereira and
Goudet, 2019; Riggs and Gould, 2021).

The number of glutamate-receptor-selective agents has been
fast growing, but the clinical safety still remains an issue for
most new agents (Henter et al., 2017; Pereira and Goudet, 2019).
Also, more generally, development of non-glutamate drugs for
pain and depression has been plagued by failures in advanced
human trials. As a consequence, older glutamate drugs are
being reassessed.

Acetyl-L-carnitine and KET are non-selective, clinical
glutamate modulators which have been shown to improve pain

and depressed mood in different experimental and clinical
settings; they share the common properties of increasing
brain glutamate concentration and neurotransmission and of
activating rCMRglc in frontal areas and subcortical aminergic
nuclei (Toth et al., 1993; Moghaddam et al., 1997; Fukumoto
et al., 2016; Jiménez-Sánchez et al., 2016). These findings are
consistent with frontal and brainstem activations occurring
during opioid, placebo (Petrovic et al., 2002), and other types
of analgesia and in individuals resilient to depression (Ong et al.,
2019; Fischer et al., 2021). Prefrontal and frontal cortices are
pivotal components of the “pain matrix” and of the fronto-
limbic, frontostriatal, and default-mode networks that regulate
pain perception, emotionally driven behaviors, and attention
allocation (Li et al., 2018; Ong et al., 2019). A prefrontal
dysfunction/hypofunction has been associated with abnormal
pain processing and with loss of pleasure, motivational energy,
cognitive abilities, and speed. In contrast, increased frontal
activation and/or normalization of abnormal connectivity have
been associated with improvement of pain and of sad mood (Li
et al., 2018; Ong et al., 2019). ALCAR and KET also activated
brainstem nuclei (locus coeruleus, diagonal band, and raphe
nuclei) which send aminergic projections to cortical areas and
spinal dorsal horns that are involved in pain and mood control
(Freo et al., 2010; Khan and Stroman, 2015).

Altogether, the findings indicate that non-selective, clinical
glutamate modulators such as ALCAR and KET can still provide
therapeutic benefits and generate hypotheses on glutamate drug
actions in neuropsychiatric conditions.
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