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Purpose: Recently, we developed a novel active learning framework, qVFM, to map
visual functions in the visual field. The method has been implemented and validated
in measuring light sensitivity and contrast sensitivity visual field maps (VFMs) of normal
observers. In this study, we evaluated the performance of the gVFM method in mapping
the light sensitivity VFM of simulated patients with peripheral scotoma, glaucoma, age-
related macular degeneration (AMD), and cataract.

Methods: For each simulated patient, we sampled 100 locations (60 x 60 degrees) of
the visual field and compared the performance of the qVFM method with a procedure
that tests each location independently (the gYN method) in a cued Yes/No task.
Two different switch modules, the distribution sampling method (DSM) and parameter
delivering method (PDM), were implemented in the gVFM method. Simulated runs of
1,200 trials were used to compare the accuracy and precision of the gVFM-DSM,
qVFM-PDM and gYN methods.

Results: The gVFM method with both switch modules can provide accurate, precise,
and efficient assessments of the light sensitivity VFM for the simulated patients, with the
qVFM-PDM method better at detecting VFM deficits in the simulated glaucoma.

Conclusions: The gVFM method can be used to characterize residual vision of
simulated ophthalmic patients. The study sets the stage for further investigation with
real patients and potential translation of the method into clinical practice.

Keywords: Bayesian adaptive testing, active learning, perimetry, visual-field map, scotoma, glaucoma, age-
related macular degeneration, cataract

INTRODUCTION

Standard automated perimetry (SAP) (Goldmann, 1945a,b; Harms, 1952; Aulhorn and Harms,
1972; Lachenmayr et al., 1994; Rogers and Landers, 2005; Milner and Goodale, 2006; Strasburger
etal., 2011) is used to assess the light sensitivity visual field map (VFM) in routine clinical eye exams
to detect and manage a number of eye diseases that cause visual field deficits, including glaucoma
(Caprioli, 1991; Smith et al., 1996; Ng et al., 2012), peripheral scotoma caused by a number of
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TABLE 1 | Parameters of the normal observer: EPA (unit: degree/+/dB), EPB (unit:
degree/~/dB), EPZ (unit: dB), SLA (unit: dB/degree), SLB (unit: dB/degree), and .

pathogenesis (Portney and Krohn, 1978; Fendrich et al., 1992),

age-related macular degeneration (AMD) (Anderson et al., 2011;

Luu et al, 2013), cataract (Radius, 1978; Lam et al., 1991),

Parameters EPA EPB EPZ SLA SLB N . i

retinitis pigmentosa (Jacobson et al., 1986; Iannaccone et al.,
Value 81.0 41.1 24.3 0.020 0.032 120 1995), cytomegalovirus retinitis (Bachman et al., 1992; Thorne
SD 2.4 2.9 0.62 0.035 0.045 0.14

etal, 2011), stroke (Townend et al., 2007), and other neurological

In this study, the dB

values were calculated as —10 x log10[luminance

deficits (Papageorgiou et al., 2007). However, the assessment of

12

(in asb)/10000]. VEM based on SAP is very noisy (Heijl et al., 1989). To improve
Observer VFM qVFM 300 trials RMSE CLv
i sl ©®509 ' T @579 |

©
E 10 A0 @ 429 @ 578 ~
o . . )
- °
u 10 10
b | ||
© :
£ . .
[}
(3]
=)
)
(O)

22 -30 20 -10 o 10 20 0 -0 -20 -10 o 10 20 E

20 20 20

18 D -0 10
E o o

16 < 10 10

14 L o

30 F

10
-
unit: dB O
©
S
1]
-
1]
(&)
f_“ A0 10 4 @ 267 ®_qVFM'DSM @ 164 o~
£ . m o —r— @ ®———qVFM-PDM @
o . . @353 |@®— — —q¥N ®248 |°
4 ’ 2
30 2 -0 0 0 20 0% 2 0 10 20 30 200 400 600 800 1000 2‘00 40;;6‘00 8(;0 10‘00 0
Degree Degree Trial Number Trial Number

FIGURE 1 | Summary results from the five simulated observers across 200 runs. The true VFM of each simulated observer (monocular) is presented in the first
column with an achromatic colormap. The estimated VFMs obtained with the qVFM-PDM method after 300 trials are presented in the second column. The
corresponding root mean squared error (RMSE) and corrected loss variance (CLV) of the estimates as functions of trial number are shown in the third and fourth
columns. The trial numbers needed to achieve 1 dB RMSE and 1 dB? within CLV are shown in the corresponding subplots for the three methods.
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FIGURE 2 | Simulation results | of the scotoma observer across 200 runs. The true VFM of the simulated observer (monocular) is presented in the first column of the
first row with achromatic colormaps and second row with numerical values. The estimated VFMs obtained with the gVFM-PDM method after 300 trials and 1,200
trials, QYN method after 1,200 trials are presented in the first and second rows, respectively. The corresponding RMSE, SD, and 68.2% HWCI of the estimates are in
the third, fourth, and fifth rows.
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the precision of light sensitivity VEM in automated perimetry
and enable assessments of other visual functions, we recently
developed a novel active learning framework, the qVFM method,
that combines a global module for preliminary assessment of the
shape of the VEM and a local module for assessing visual function

at individual visual field locations (Xu et al., 2018, 2019a,b, 2020).
Both computer simulations and psychophysical validation studies
that tested the light sensitivity VFM of 12 eyes of six normal
observers (Xu et al,, 2019a) and contrast sensitivity VFM of
10 eyes of five normal observers (Xu et al., 2020) showed that
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FIGURE 3 | Performance | of the qVFM-DSM, qVFM-PDM and qYN methods in estimating VFM of the simulated scotoma observer across 200 runs. (A) Average
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the qVFM method could provide accurate, precise and efficient
VEM assessments.

In Xu et al. (2019a), we compared the qVFM method with
the conventional staircase-based SAP methods. We showed
that the conventional staircase-based SAP methods exhibited
considerable larger biases and variabilities than the qVEM.
The focus of the current study is to evaluate the potential of
the qVFM method in mapping the light sensitivity VFM of
simulated patients with peripheral scotoma, glaucoma, AMD,
and cataract. Specifically, we simulated a scotoma observer with
three scotomas located in the periphery, a glaucoma observer
with peripheral vision deficits outside of the fovea, an AMD
observer with deficits at the fovea, and a cataract observer with
lower light sensitivity across the entire visual field. This is the
first step in our attempt toward evaluating the qVFM method in
clinical populations. We plan to further evaluate and translate the
qVEM method into clinical practice in the future.

The qVEM method consists of three modules, a preliminary
assessment of the general shape of the VEM (the global module),
an assessment of visual functions at each individual visual
field location (the local module), and a switch module that
determines when to switch from the global module to the local
module. The global module is used to estimate the overall
shape of the visual field in the beginning of the assessment,
and the local module is used to provide a detailed location-by-
location characterization of the VFM based on priors generated
from the global module. Given that the goal of clinical VFM
assessment is to detect deviations from the normal VEM, it is
essential to assess the performance of the qVFM method in
measuring pathological visual fields with characteristic patterns
that deviate severely from the normal VFM. Our hypothesis
is that even though the global module does not provide a
complete model of the detailed structure of the VFM in some
severe cases, it still provides a reasonable approximation, and
then the local module can swiftly take over to measure the
detailed local structure of the VFM. We also compared two
different switching methods in this study, one based on a
distribution sampling method (DSM) (Xu et al., 2018, 2019a),
and the other a newly developed procedure based on a parameter
delivering method (PDM).

METHODS

qVFM Implementation

Developed in Xu et al. (2019a,b, 2020), the qVFEM method
consists of three major modules (see Supplementary Appendix
B for more details):

(1) The global module, which measures the shape of the VFM
modeled as a tilted elliptic paraboloid function (TEPF)
with five parameters (Eq. 1). The score at each visual field
location represents a measure of visual function (e.g., light
sensitivity, contrast sensitivity) at that location.

(2) The switch module, which evaluates the rate of information
gain in the global module and determines when to switch
to the local module. At the switching point, the module

generates a prior distribution of the measure of visual
function at each visual field location based on the posterior
distribution from the global module.

(3) The local module, which uses the prior generated by the
switch module to provide assessment of visual function at
each visual field location. It uses another Bayesian adaptive
procedure that determines the order and test stimulus based
on the relative information gain across locations.

The global module models and assesses the global shape of
light sensitivity VFM as a TEPF:

X \2 y 2

v(vy) = EPZ— () —(Fa5) + SLA *x+SLB *y,(l)
where EPZ (unit: dB) is the light sensitivity at the fovea, EPA
(unit: degree/ VdB) is the root bandwidth in the horizontal
direction of the light sensitivity VEM, EPB (unit: degree/~/dB)
is the root bandwidth in the vertical direction, SLA (unit:
dB/degree) is the horizontal tilt level of the light sensitivity VEM,
and SLB (unit: dB/degree) is the vertical tilt level. The height of
the TEPE, t(x, y), is the light sensitivity (unit: dB) at visual field
location (x, y) at d’ = 1.0.

A Yes/No (YN) task was adapted in this study, which means
that the probability of reporting target presence is determined by
both the light sensitivity and decision criterion. After introducing

TABLE 2 | RMSE, SD, average 68.2% HWCI, mean defect, loss variance and
corrected loss variance of the estimated VFM from the qVFM-DSM, qVFM-PDM
and gYN methods in the beginning (0 trial), after 300 and 1,200 trials are listed for
the simulated scotoma observer.

Scotoma Trial number 0 300 1,200 True 1 dB/dB?
value threshold
RMSE (dB) qVFM-DSM 254 142 0.29 509 £+ 70
qVFM-PDM 254 157 0.25 429 + 40
qYN 2.54 1.71  0.37 538 + 33
SD (dB) qVFM-DSM 0 1.15 0.29
qVFM-PDM 0 099 0.24
qYN 0 0.89 0.33
HWCI (dB) qVFM-DSM 212 0.22 0417
qVFM-PDM 212 0.48 0.24
qYN 212 0.73 0.26
Mean defect qVFM-DSM —-0.26 020 0.36 0.36
(dB)
qVFM-PDM -0.26 019 0.36 0.36
aqYN —-0.26 0.26 0.36 0.36
Loss variance qVFM-DSM 1.95 3.27 4.33 4.28
(dB?)
qVFM-PDM 195 284 415 4.28
qYN 195 231 3.89 4.28
Corrected loss  qVFM-DSM 1.95 1.94 4.24 4.28 579 + 68
variance (dB?)
qVFM-PDM 195 186 4.15 4.28 578 + 61
qYN 1.95 1.50 8.79 4.28 817 £ 69

The corresponding true values are listed in the sixth column. Trial numbers needed
to achieve 1 dB RMSE and 1 dB? within the corrected loss variance are listed with
their SD in the last column.
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the sixth parameter ) for decision criterion, the global model can
predict the overall probability of light detection across the visual
field p(6), where 6 = (EPZ, EPA, EPB, SLA, SLB, \), with a
fixed slope of the psychometric function. A prior distribution
Pt = 0(0) is defined based on a priori knowledge of the VFM
before any data collection. In addition, all possible stimulus
intensities and stimulus locations (x, y) are included in the
stimulus space. The optimal stimulus in the next trial, which
would generate the maximum expected information gain, is
determined via a one-step-ahead search strategy. After receiving
the response from the observer, the posterior distribution of the
parameters is updated using Bayes rule (Kontsevich and Tyler,
1999; Lesmes et al., 2006, 2010, 2015).

Since the global module cannot estimate the detailed structure
of the VEM, a local module is necessary for a more detailed
assessment. The switch module determines the switching point
and also sets the prior distributions for the local module. Two
different switch methods were implemented in this study, the
DSM (Xu et al,, 2018, 2019a) and the newly developed PDM.
In this study, the prior distribution in the local module was
defined with a two-dimensional probability distribution of light
sensitivity and decision criterion at each visual field location. The

DSM and PDM used the same trend of expected information
gain in the global model to determine the switching point, but
different procedures to generate the prior distributions for the
local module from the six-dimensional posterior distribution in
the global module.

The DSM samples the posterior distribution in the global
module repeatedly to generate the prior distributions at each
visual location in the local module, with 1,600 samples per
location. The PDM computes the means of the marginal posterior
distributions of the five parameters (EPZ, EPA, EPB, SLA, and
SLB) of the TEPF model, and sets the expected value of the prior
for light sensitivity, t(x,y), at each visual field location based on
the TEPF model. It also sets the expected value of the prior of
decision criterion A at each visual field location, using its mean
of the marginal posterior distribution from the global module. It
then uses the average 68.2% half width of the credible interval
(HWCI) of the posterior distributions of the estimated light
sensitivities and decision criterions across all visual field locations
to set the variability of the prior distributions in the local module.
Specifically, a hyperbolic secant (sech) function (King-Smith and
Rose, 1997) is used to set up the prior distributions. For each
parameter 6; (i = 1, 2), the mode of the marginal prior p(6;) is
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FIGURE 5 | Simulation results | of the glaucoma observer across 200 runs. The true VFM of the simulated observer (monocular) is presented in the first column of
the first row with achromatic colormaps and second row with numerical values. The estimated VFMs obtained with the qVFM-PDM method after 300 trials and
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1,200 trials, gYN method after 1,200 trials are presented in the first and second rows, respectively. The corresponding RMSE, SD, and 68.2% HWCI of the estimates

are shown in the third, fourth, and fifth rows.
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FIGURE 6 | Performance | of the qVFM-DSM, qVFM-PDM and qYN methods in estimating VFM of the simulated glaucoma observer across 200 runs. (A) Average
root mean squared error, (B) Average 68.2% HWCI of the estimated VFM, (C) Average standard deviation, (D) Average volume under the surface of the VFM
(VUSVFM), (E) Mean defect, (F) Short-term fluctuation, (G) Loss variance, and (H) Corrected loss variance. Results from the gVFM-DSM and gqVFM-PDM methods
are shown in solid black and blue lines, and results from the gYN method are shown in dashed lines. The true values of the global indices are shown in red dotted
lines. For panels (B,D), shaded regions represent & 1 SD of the corresponding value.
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defined by the expected value of the corresponding parameter,
0i,guess> from the posterior distributions of the global module,
and the width is defined by the 68.2% credible interval of that
parameter.

P®) = SeCh[ei,conﬁdence X (ei_ei, guess) 1, (2)

where: 5
h = —. 3
sech(z) = ——— ®

The joint prior is defined as the normalized product of the
marginal priors of light sensitivity and decision criterion,
generated for each visual field location in the local module.

The qYN procedure (Lesmes et al., 2015) is used to estimate
the posterior distribution of the two parameters at each visual
field location in the local module. It is also used as a
reduced qVFM procedure that has only the local module for
performance comparison with the full qVFM procedure that has
all three modules.

Simulating Observers With Eye Diseases

In this study, we simulated the VFM of the OS eye of five
observers: one normally sighted, and four with peripheral
scotoma, glaucoma, AMD, or cataract.

The parameters of the normal observer were the same as those
used in Xu et al. (2019a). Table 1 lists the values of EPA, EPB, EPZ,
SLA, SLB, \ and the average SDs of the corresponding parameters
from the 12 eyes of six normal observers tested in that study.

The blind spot of the simulated OS eye was at 15 degrees left
and three degrees below the fovea, i.e., (—15, 3). At the stated
coordinate, each point represented a 6-degree square region. For
the four simulated observers with eye diseases, the parameters
were modified from those of the normal observer: (1) The
simulated scotoma observer had three scotomas, located at (9,
9), (=9, 9), and (=9, 15). (2) The simulated glaucoma observer
had defective peripheral vision outside of the central 12 x 15
degrees rectangle area from the upper-left (—6, —6) to the lower-
right (6, 9), in which light sensitivity was 2.5 times lower than
that of the normal observer. (3) The simulated AMD observer
had poor foveal vision in the central 12 x 15 degrees rectangle
area from the upper-left (—6, —6) to the lower-right (6, 9), in
which light sensitivity was 12.3 dB, about 12 dB lower than that
of the normal observer. (4) The simulated cataract observer had
1.7 times lower light sensitivity than the normal observer across
the entire visual field.

In the simulations, observers performed the light detection
task described in Xu et al. (2019a). Briefly, the test target was
a small light disc with a 0.43-degree diameter with luminance
between 31.5 and 950 asb (corresponding to 10.2-25.0 dB). Each
trial began with a potential 150-ms target at one of the 100 cued
visual field locations. Simulated observers were asked to indicate
the presence or absence of the target, with the luminance of the
target determined by an adaptive procedure in each trial. Their
response in each trial was determined by their light sensitivity
VEM defined by the simulation procedure, which was unknown
to the qVFM procedure that was used to estimate their light
sensitivity VFM. The performance of the full QVFM procedure,

with both the DSM and PDM switch modules, was compared
with that of the QYN procedure, which assessed light sensitivity
at each location independently, in 200 repeated simulations of
1,200 trials each.

Evaluation Metrics

We quantified the accuracy of the estimated VFMs using the root
mean squared error (RMSE) of the estimated sensitivities across
all 100 visual field locations. RMSE after the i-th trial can be
calculated as:

S S (e — i)’

J] x K

RMSE; = , (4)

where T;j is the estimated sensitivity at the k-th visual field
location after the i-th trial in the j-th run, and ;" is the true
sensitivity at that location.

Two methods were used to assess the precision of the gVFM
procedure. The first is based on the standard deviation (SD) of
repeated measures:

2 X Tt — mean(ti) )

SD;
J] x K

(5)

TABLE 3 | RMSE, SD, average 68.2% HWCI, mean defect, loss variance and
corrected loss variance of the estimated VFM from the qVFM-DSM, qVFM-PDM
and gYN methods in the beginning (0 trial), after 300 and 1,200 trials are listed for
the simulated glaucoma observer.

Glaucoma Trial number 0 300 1,200 True 1 dB/dB?
value threshold
RMSE (dB) qVFM-DSM 6.40 152 0.65 689 + 35
qVFM-PDM 6.40 1.30 0.58 522 + 21
qYN 6.40 3.13 0.73 909 + 26
SD (dB) qVFM-DSM 0 0.76 0.58
qVFM-PDM 0 1.23 057
qYN 0 245 0.71
HWCI (dB) qVFM-DSM 212 0.63 0.46
qVFM-PDM 212 144 071
qYN 212 1.68 0.74
Mean defect qVFM-DSM —-0.26 592 5.79 5.91
(dB)
qVFM-PDM -0.26 599 591 5.91
qYN —-0.26 422 579 5.91
Loss variance qVFM-DSM 1.95 201 273 2.67
(dB?)
qVFM-PDM 1.95 443 3.02 2.67
qYN 1.95 923 322 2.67
Corrected loss  qVFM-DSM 195 143 238 2.67 677 + 46
variance (dB?)
qVFM-PDM 1.95 279 2.69 2.67 163 £ 15
qYN 1.95 317 272 2.67 229 + 26

The corresponding true values are listed in the sixth column. Trial numbers needed
to achieve 1 dB RMSE and 1 dB? within the corrected loss variance are listed with
their SD in the last column.
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The second is the HWCI of the posterior distributions of the
estimated sensitivities. The 68.2% credible interval represents the
range within which the actual value lies with 68.2% probability,
representing an interval that contains the true value of the
parameter in 68.2% of unlimited repetitions.

Global indices on the estimated VFMs were also adapted and
calculated for each method, including mean defect, loss variance,
short-term fluctuation and corrected loss variance (Flammer
et al.,, 1985). These metrics are used in the clinic to quantify
diffuse depression, local defects, and scatter observed during
VEM tests as well as local inhomogeneity of visual field defects.

The mean defect (MD) of the estimated sensitivities across all
100 visual field locations after the i-th trial is calculated as:

2 2 (M —
N J x K

MD; , (6)

The loss variance (LV) is calculated as:

2
_ Zk Z] (tijk — 'C]t(me + MD,)

The short-term fluctuation (SF) is calculated as:

2k (thk_mea”('[ijk))z

SF; = 8
! J—-1) x K ®

The corrected loss variance (CLV) is calculated as:
CLV; = LV; — SF{. )

RESULTS

We present the simulation results for the scotoma, glaucoma,
AMD, cataract, and normal observers in the following sections.
Figure 1 provides a summary of the major results.

Simulated Scotoma Observer

The estimated light sensitivity VFMs, the corresponding RMSE,
standard deviation and average 68.2% HWCI for the simulated
scotoma observer, obtained from the qVFM-PDM methods are
shown in Figure 2, along with results from the QYN method.
The corresponding results from the qVFM-DSM are shown in

LV J x (K—=1) ) Supplementary Figure Al.
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from repeated 200 runs at 300 and 1,200 trials.

FIGURE 7 | Performance Il of the three methods in estimating VFM of the simulated glaucoma observer. Test-retest comparison of the estimated light sensitivities
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FIGURE 8 | Simulation results | of the AMD observer across 200 runs. The true VFM of the simulated observer (monocular) is presented in the first column of the first
row with achromatic colormaps and second row with numerical values. The estimated VFMs obtained with the qVFM-PDM method after 300 trials and 1,200 trials,
qYN method after 1,200 trials are presented in the first and second rows, respectively. The corresponding RMSE, SD, and 68.2% HWCI of the estimates are shown
in the third, fourth, and fifth rows.
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Compared with the simulated normal observer, the average
light sensitivity deficit across the three scotoma locations
is 12.0 dB for the simulated scotoma observer. Across the
three scotoma locations, the average estimated deficits are
7.79 4+ 5.70 dB and 11.9 & 1.21 dB after 300 and 1,200 trials

with the qVFM-DSM method, 6.53 4= 4.43 dB and 11.8 + 0.86 dB
after 300 and 1,200 trials with the qVFM-PDM method, and
11.3 &£ 1.34 dB after 1,200 trials with the YN method.

For the trial-by-trial performance, the RMSE, the average
68.2% HWCI, SD, the mean defect, the loss variance, the
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short-term fluctuation and the corrected loss variance of the
estimated light sensitivity VEM from the qVFM-DSM, qVFM-
PDM, and qYN methods are shown in Figures 3A-C,E-H, with
numerical results listed in Table 2.

In characterizing spatial vision, the area under the log contrast
sensitivity function is often used as a summary metric (Applegate
et al., 1998, 2000; Oshika et al., 1999, 2006; van Gaalen et al.,
2009). In Figure 3D, we show the average volume under the
surface of the VEM (VUSVEM) across 200 iterations of the
simulation to provide a summary metric of the entire visual field
for the simulated scotoma observer.

For the simulated scotoma observer, the results show
that the qVFM-DSM and qVFM-PDM methods have similar
performance. In addition, both the qVFM-DSM and qVEM-
PDM methods demonstrate better efficiency than the qYN
method. The trial numbers needed to achieve 1 dB RMSE and
1 dB? within the corrected loss variance are shown in the last
column of Table 2.

For the simulated scotoma observer, test-retest reliabilities
of the three methods are assessed through analysis of VFM
estimates at 300 and 1,200 trials across 200 runs (Figure 4). Each
subplot displays estimated sensitivities (at 100 VEM locations)
of the 100 paired runs (100 locations x 100 random pairs of
runs = 10,000 data points). The average test-retest correlations
for the paired VFM estimates at 300 trials are 0.909 (SD = 0.002)
for the qVEM-DSM, 0.842 (SD = 0.003) for the qVFM-PDM
and 0.592 (SD = 0.008) for the qYN methods, respectively. The
average correlations at 1,200 trials are 0.994 (SD = 0.0001) for the
qVEM-DSM, 0.99 (SD = 0.0003) for the qVFM-PDM and 0.98
(SD = 0.0005) for the YN methods, respectively.

Simulated Glaucoma Observer

The estimated light sensitivity VFMs, the corresponding RMSE,
standard deviation and average 68.2% HWCI for the simulated
glaucoma observer, obtained from the QVFM-PDM methods are
shown in Figure 5, along with the results from the YN method.
The corresponding results from the qVFEM-DSM are shown in
Supplementary Figure A2.

Compared with the simulated normal observer, the average
light sensitivity deficit across all glaucoma damaged locations is
6.28 dB for the simulated glaucoma observer. Across the damaged
locations, the average estimated deficits are 5.99 + 0.77 dB and
6.13 £ 0.51 dB after 300 and 1,200 trials with the qVFM-DSM
method, 6.32 & 1.24 dB and 6.28 £ 0.59 dB after 300 and 1,200
trials with the qVFM-PDM method, and 6.16 &+ 0.73 dB after
1,200 trials with the qYN method.

For the trial-by-trial performance, the RMSE, the average
68.2% HWCI, SD, the average VUSVFM, the mean defect, the
loss variance, the short-term fluctuation, and the corrected loss
variance of the estimated light sensitivity VFM from the three
methods are shown in Figure 6, with numerical results listed in
Table 3.

For this simulated glaucoma observer, the qVFM-PDM
method exhibited better performance than the qVFM-DSM
method after 300 trials. The SD and short-term fluctuation of
the estimated VFM obtained from the QVFM-PDM method are
smaller, with the corrected loss variance approaching to the true

value faster, compared with the qVFM-DSM method. Both gVFM
methods demonstrated better efficiency than the YN method.
The trial numbers needed to achieve 1 dB RMSE and 1 dB?
within the corrected loss variance are shown in Table 3 for
the three methods.

For the simulated glaucoma observer, test-retest reliabilities
of the three methods are assessed through analysis of VFM
estimates at 300 and 1,200 trials across 200 runs (Figure 7).
The average test-retest correlations for the paired VEM estimates
at 300 trials are 0.725 (SD = 0.006) for the qVFM-DSM, 0.694
(SD = 0.006) for the qVFM-PDM and 0.274 (SD = 0.01) for
the qYN methods, respectively. The average correlations at
1,200 trials are 0.917 (SD = 0.002) for the qVFM-DSM, 0.917
(SD = 0.002) for the qVFM-PDM and 0.875 (SD = 0.003) for the
qYN methods, respectively.

Simulated AMD Observer

The estimated light sensitivity VFMs, the corresponding RMSE,
standard deviation and average 68.2% HWCI for the simulated
AMD observer, obtained from the qVFM-PDM methods are
shown in Figure 8, along with the results from the YN method.
The corresponding results from the qVFM-DSM are in shown in
Supplementary Figure A3.

TABLE 4 | RMSE, SD, average 68.2% HWCI, mean defect, loss variance and
corrected loss variance of the estimated VFM from the qVFM-DSM, qVFM-PDM
and gYN methods in the beginning (0 trial), after 300 and 1,200 trials are listed for
the simulated AMD observer.

AMD Trial number 0 300 1,200 True 1 dB/dB?
value threshold
RMSE (dB) qVFM-DSM 3.26 1.98 0.30 591 £ 62
qVFM-PDM 3.26 1.95 0.30 551 +£ 18
aqYN 3.26 223 052 749 £+ 28
SD (dB) qVFM-DSM 0 155 0.30
qVFM-PDM 0 124 028
aqYN 0 0.95 047
HWCI (dB) qVFM-DSM 2.12 0.24 0.19
qVFM-PDM 2.12 0.53 0.27
aqYN 2.12 0.76  0.29
Mean qVFM-DSM -0.26 040 0.71 0.72
defect (dB)
qVFM-PDM -0.26 040 0.71 0.72
qYN -0.26 037 0.69 0.72
Loss qVFM-DSM 1.95 6.18 8.08 8.11
variance
(dB?)
qVFM-PDM 1.95 450 7.71 8.11
qYN 1.95 265 7.32 8.1
Corrected qVFM-DSM 1.95 3.74  7.99 8.11 665 + 66
loss
variance
(dB?)
qVFM-PDM 1.95 293 7.63 8.1 822 + 65
qYN 1.95 1.74 710 8.1 1,198 + 24

The corresponding true values are listed in the sixth column. Trial numbers needed
to achieve 1 dB RMSE and 1 dB? within the corrected loss variance are listed with
their SD in the last column.
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Compared with the simulated normal observer, the average
light sensitivity deficit across all AMD damaged VF locations is
12.0 dB for the simulated AMD observer. Across all the damaged
locations, the average estimated deficits are 7.60 & 5.69 dB and
11.8 £ 1.64 dB after 300 and 1,200 trials with the qVFM-DSM
method, 6.52 £ 4.38 dB and 11.6 £ 0.87 dB after 300 and 1,200
trials with the qVFM-PDM method, and 11.2 £ 1.64 dB after
1,200 trials with QYN method.

For the trial-by-trial performance, the RMSE, the average
68.2% HWCI, SD, the average VUSVFM, the mean defect, the
loss variance, the short-term fluctuation, and the corrected loss
variance of the estimated VFM from the three methods are shown
in Figure 9, with numerical values listed in Table 4.

For the simulated AMD observer, the results showed
that the qVFM-DSM and qVFM-PDM methods have similar
performance. Both qVEM-DSM and qVFM-PDM methods
demonstrated better efficiency than the qYN method. The
trial numbers needed to achieve 1 dB RMSE and 1 dB?
within the corrected loss variance are shown in Table 4 for
the three methods.

For the simulated AMD observer, test-retest reliabilities of the
three methods are assessed through analysis of VFM estimates

at 300 and 1,200 trials across 200 runs (Figure 10). The average
test-retest correlations for the paired VEM estimates at 300 trials
are 0.868 (SD = 0.003) for the qVFM-DSM, 0.876 (SD = 0.003)
for the qVFM-PDM and 0.585 (SD = 0.008) for the qYN
method, respectively. The average correlations at 1,200 trials are
0.994 (SD = 0.0001) for the qVFM-DSM, 0.991 (SD = 0.0002)
for the qVFM-PDM and 0.974 (SD = 0.001) for the qYN
methods, respectively.

Simulated Cataract Observer

The estimated light sensitivity VFMs, the corresponding RMSE,
standard deviation and average 68.2% HWCI for the simulated
cataract observer, obtained from the qVFM-PDM methods are
shown in Figure 11, along with the results from the QYN method.
The corresponding results from the qVFM-DSM are shown in
Supplementary Figure 4.

For the trial-by-trial performance, the RMSE, the average
68.2% HWCI, SD, the average VUSVEM, the mean defect, the
loss variance, the short-term fluctuation, and the corrected loss
variance of the estimated VFM from the three methods are shown
in Figure 12, with some numerical values listed in Table 5.
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FIGURE 10 | Performance Il of the qVFM-DSM, qVFM-PDM and gqYN methods in estimating VFM of the simulated AMD observer. Test-retest comparison of the
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FIGURE 11 | Simulation results | of the cataract observer across 200 runs. The true VFM of the simulated observer (monocular) is presented in the first column of the
first row with achromatic colormaps and second row with numerical values. The estimated VFMs obtained with the gVFM-PDM method after 300 trials and 1,200

trials, QYN method after 1,200 trials are presented in the first and second rows, respectively. The corresponding RMSE, SD, and 68.2% HWCI of the estimates are in
the third, fourth, and fifth rows.
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FIGURE 12 | Performance | of the three methods in estimating VFM of the simulated cataract observer across 200 runs. (A) Average root mean squared error,

(B) Average 68.2% HWCI of the estimated VFM, (C) Average standard deviation, (D) Average volume under the surface of the VFM (VUSVFM), (E) Mean defect,

(F) Short-term fluctuation, (G) Loss variance, and (H) Corrected loss variance. Results from the gVFM-DSM and qVFM-PDM methods are shown in solid black and
blue lines, and results from the YN method are shown in dashed lines. The true values of the global indices are shown in red dotted lines. For panels (B,D), shaded
regions represent & 1 SD of the corresponding value.

For the simulated cataract observer, the results showed that the  lower than that from the qVFM-PDM method, while the SD
qVEM-DSM and qVFM-PDM methods had similar performance. and short-term fluctuation from the qVFM-PDM are smaller
The RMSE of the estimated VFM from qVFEM-DSM method is  than those from the qVFM-DSM method. Both qVFM methods
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TABLE 5 | RMSE, SD, average 68.2% HWCI, mean defect, loss variance and
corrected loss variance of the estimated VFM from the qVFM-DSM, qVFM-PDM
and gYN methods in the beginning (0 trial), after 300 and 1,200 trials are listed for
the simulated cataract observer.

Cataract Trial number 0 300 1,200 True 1 dB/dB2
value threshold
RMSE (dB)  qVFM-DSM 4.63 0.85 0.37 212 £ 22
qVFM-PDM 4.63 1.17  0.49 372 + 27
aqYN 4.63 215 0.61 733 £ 29
SD (dB) qVFM-DSM 0 0.65 0.36
qVFM-PDM 0 1.08 0.49
aqYN 0 1.77  0.60
HWCI (dB) qVFM-DSM 2.12 0.55 0.40
qVFM-PDM 212 1.23 0.62
qYN 212 151  0.66
Mean qVFM-DSM —-026 4.04 412 4.16
defect (dB)
qVFM-PDM —-026 420 4.18 4.16
qYN -026 326 4.10 4.16
Loss qVFM-DSM 1.95 204 1.07 0.98
variance
(dB?)
qVFM-PDM 1.95 263 126 0.98
qYN 1.95 544 1.43 0.98
Corrected gVFM-DSM 0 161 094 0.98 230 + 24
loss
variance
(dB?)
qVFM-PDM 0 145  1.01 0.98 142 + 14
qYN 0 227 1.07 0.98 401 £+ 31

The corresponding true values are listed in the sixth column. Trial numbers needed
to achieve 1 dB RMSE and 1 dB? within the corrected loss variance are listed with
their SD in the last column.

demonstrated better efficiency than the qYN method. The
trial numbers needed to achieve 1 dB RMSE and 1 dB?
within the corrected loss variance are shown in Table 5 for
the three methods.

For the simulated cataract observer, test-retest reliabilities
of the three methods are assessed through analysis of VFM
estimates at 300 and 1,200 trials across 200 runs (Figure 13).
The average test-retest correlations for the paired VFM estimates
at 300 trials are 0.89 (SD = 0.002) for the qVFM-DSM, 0.667
(SD = 0.007) for the qVFM-PDM and 0.389 (SD = 0.01) for
the QYN methods, respectively. The average correlations at 1,200
trials are 0.96 (SD = 0.001) for the qVFM-DSM, 0.92 (SD = 0.002)
for the qVFM-PDM and 0.881 (SD = 0.003) for the qYN
method, respectively.

Simulated Normal Observer

The estimated light sensitivity VFMs, the corresponding RMSE,
standard deviation and average 68.2% HWCI for the simulated
normal observer, obtained from the qVFM-PDM methods are
shown in Figure 14, along with the results from the QYN method.
The corresponding results from the qVFM-DSM are shown in
Supplementary Figure 5.

The RMSE, the average 68.2% HWCI, SD, the average
VUSVEM, the mean defect, the loss variance, the short-term
fluctuation, and the corrected loss variance of the estimated
light sensitivity VFM from the three methods are shown in
Supplementary Figure 6, with some numerical values listed in
Table 6.

For the simulated normal observer, the performance of
the qVEM-DSM and qVFM-PDM methods is similar. The
RMSE and loss variance of both qVFM-DSM and qVFM-PDM
methods drop quickly below those of the YN method from the
beginning, while those of the YN method exhibit fluctuations.
The trial numbers, needed to achieve 1 dB RMSE and 1 dB?
within the corrected loss variance, are shown in Table 6 for
the three methods.

For the simulated normal observer, test-retest reliabilities
of the three methods are assessed through analysis of VFM
estimates at 300 and 1,200 trials across 200 runs (Supplementary
Figure 7). The average test-retest correlations for the paired VFM
estimates at 300 trials are 0.901 (SD = 0.002) for the qVFM-DSM,
0.784 (SD = 0.005) for the qVFM-PDM and 0.507 (SD = 0.009)
for the QYN methods, respectively. The average correlations at
1,200 trials are 0.99 (SD = 0.001) for the qVFM-DSM, 0.983
(SD = 0.0004) for the qVFM-PDM and 0.969 (SD = 0.001) for
the QYN methods, respectively.

DISCUSSION

In this study, we tested the performance of the QqVFM method
with two different switch modules, the DSM and PDM, along
with the QYN method, in estimating the light sensitivity VEM of
simulated observers with peripheral scotoma, glaucoma, AMD,
cataract and normal vision. The results show that, whereas all
three methods could provide accurate and precise assessment
of VEM deficits, the QVFM method with both switch modules
were more efficient than the qYN method. The qVEM-DSM
and qVFM-PDM methods exhibited comparable performance in
most cases, but the qVFM-PDM method was better at detecting
vision loss in the simulated glaucoma. The results demonstrated
the potential of the qVFM method in clinical applications.

Comparison With Staircase-Based and
SITA Algorithms

Most of the existing algorithms for static automated perimetry
(SAP) are based on the staircase strategy (Weijland et al., 2004).
In these algorithms, stimulus intensities are varied according
to an up-and-down bracketing procedure in each location. The
threshold values are estimated directly or scaled from the last
seen stimulus intensity or the average of the last seen and
unseen stimulus intensities in each location. In addition, the
test procedures usually start from measuring thresholds at four
primary points, one in each quadrant of the visual field, and
followed by measurements of thresholds in the rest of the visual
field with initial values based on the results at the primary points.

The conventional method with the Humphrey Field Analyzer
is “Full Threshold,” which is currently regarded as the
standard technique in SAP. With initial stimulus intensity levels
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FIGURE 13 | Performance Il of the qVFM-DSM, qVFM-PDM and gqYN methods in estimating VFM of the simulated cataract observer. Test-retest comparison of the

determined from a normative data set, the stimulus intensity at
each test location is varied in steps of 4 dB until the first response
reversal occurs and then subsequently varied in steps of 2 dB,
referred as the 4-2 dB staircase procedure. The stimulus intensity
of the last-seen presentation is taken as the final threshold
estimate, after a second response reversal has occurred at a given
location (Artes et al., 2002). The other conventional method
implemented in OCTOPUS perimeters uses a 4-2-1 dB staircase
procedure, which further reduces the step size to 1 dB after
two reversals. The mean value of the dimmest stimulus seen
and the brightest stimulus not seen is defined as the threshold
(Morales et al., 2000).

In our previous study (Xu et al.,, 2019a), we compared the
performance of the qVFM method and the staircase procedures,
including both the 4-2 and 4-2-1 algorithms. The simulation
results showed that, even with the initial stimulus intensity at
each location matched with the true threshold of the simulated
observer in staircase procedures, the staircase algorithms used
in conventional SAP procedures still led to obvious biases and
variabilities (Figure 15).

Another test algorithm, SITA (Swedish Interactive
Thresholding Algorithm), can produce the same quality of
test results as the Full Threshold strategy with considerable
reduction of test time. However, it can only be used with the
Goldmann IIT size stimulus of the Humphrey perimeter, and

was only released for glaucomatous patients because it’s a priori
threshold distribution was based on glaucoma (Bengtsson and
Heijl, 1998; Artes et al., 2002). In our previous study (Xu et al,,
2019a), we compared the SITA family, including SITA standard,
SITA Fast and SITA Faster, with the qVFM method. Although
both the SITA and the qVFM methods are based on the Bayesian
adaptive testing framework, the QVFM is quite different from the
SITA:

(1) Stimulus selection in the SITA family follows the
conventional up-down staircase algorithm in each
location with the stepsize no smaller than 2 dB, and the test
follows the “grown pattern” procedure across the visual
field (Bengtsson et al.,, 1997). In the qVFM method, the
stepsize in the stimulus space can be as small as 0.12 dB.
Both the global and local modules use the one-step-ahead
search strategy across the entire visual field to determine
the optimal stimulus in the next trial that would lead to
the minimum expected entropy, equivalent to maximizing
information gain on the next trial. More precise stimulus
intensity and location selection in the qVFM method
potentially leads to more accurate threshold estimation.

(2) The frequency-of-seeing curves (FOS-curves, a YN
psychometric function) in the SITA is not adjusted with
the observer’s decision criterion (Bengtsson et al., 1997).

Frontiers in Neuroscience | www.frontiersin.org

June 2021 | Volume 15 | Article 596616


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Xu et al. qVFM in Simulated Eye Disease

w Simulated VFM (OS) w Estimated VFM (gVFM 300 trial) 3[}E!-iimali:m:! VFM (gVFM 1200 trial) " Estimated VFM (qYN 1200 trial)
20 <20 20 20
-10 -10 -10 -10
A T T T
10 10 10 10
m m m 20
0 0 £ Y
% 2 -0 0 M 2 M % 2 -0 0 1 2 3 - 2 -0 0 M 2 M -3 20 0 0 T
Simulated VFM (OS) Estimated VFM (qVFM 300 trial)  Estimated VFM (qVFM 1200 trial)  Estimated VFM (qYN 1200 trial)
a1 224 226 227 228 228 228 227 226|  [218 220 224 226 226 226 228 227 228 28| | [207 221 223 226 Z2T}22 T 228 228 227 26|  [218 221 222 226 226227 228 228 27 228

20M27 230 232 233 234[238 236 235 205 234] 00227 230 222 232 233(23.4 234 234 234 23] 50 |227 230 222 233 234(235 238 235 235 28] o 227 230 230 233 234(234 235 234 234 A

233235 737 38 Z3B(239 239 239 739 238 233734 36237 AT(238 239 139 13T ;BT 234 235 736 238 Z38(239 239 239 738 38 233 235 237 237 238|239 239 239 238 738
10237 238 239 240 249|241 242 241 241 241] 0236 237 239 24.0 24.0/24.1 240 24.0 241 24.0) 1 [237 238 240 240 24.1(28.1 261 241 241 249] “10[236 238 239 260 24.1(241 241 241 241 240
239 240 241 242 242|243 243 243 243 M2 238 239 24.0 241 242|242 242 4.2 242 241 238 240 241 242 242(24.2 243 242 242 M2 238 240 241 242 24.2(24.3 243 243 242 M2
239 241 103 24.2 243|243 243 243 243 M3 238 230 17.3 241 242|242 24.3 24.3 243 M2 239 240 108 24.2 24.3(24.3 243 243 243 M3 239 240 114 242 24.3(24.3 243 243 243 M2

10 209 240 241 242 243|243 243 243 243 243 4239 240 241 241 242({24.2 242 243 242 M 2] (200 240 241 242 242|243 243 243 243 M42] 4 1239 M40 241 242 242243 24.3 24.3 24.3 24 2

238 230 240 241 242|242 242 242 M2 42 207 238 240 241 241|241 242 42 M1 M1 238 230 240 241 M 2(24.2 242 242 242 M1 ZAT 236 240 241 24.1(24.2 242 242 242 M1

Wiaam 237 238 236 24.0/28.0 241 240 240 240) P [234 236 238 236 236(240 200 239 20230 238 237 238 236 240280 240 240 240 240 2 [2a5 236 238 236 235|240 240 24.0 240 24.0]

231733 735 236 37207 237 237 237 136 229 733 234 735 736207 237 37 136 I 231733 734 236 Z37T'207 237 23T 237 ;36 230 232 734 235 36237 237 236 237 236
I ] 0 10 20 00 =2 o o 10 20 0% =a o 10 20 0% 2 0 10 20 0
RMSE (gqVFM 300 trial) ) RMSE (qVFM 1200 trial) RMSE (qYN 1200 trial)
o MO B4 &2 58,73 87 85 BS To o a2 M 3 2 22 2 M 2% M = 39 42 40 38 26,35 33 3 30 43
oplB0 49 48 46 45|83 86 38 48 40 o0| 27 29 2 a9 26|22 20 21 20 19 |3 33 28 o2 2|28 ;o om ;o
43 46 37 M1 35|33 3 M 3T M 2021 19 A8 6|5 46 15 8 a7 3 oz oz oM [ 2 8 AT A9
Wi 37 31 30 30([24 30 3 25 27| W[ . a7 5 43 42[93 g2 a2 93 3] 70[zm 98 45 46 45|45 M 6 21 18
4z R 3 2 T|B W B/ BN 16 13 42 4 43[4z 42 13 Mo 0 A5 46 4B 43|42 43 A3 4 42
‘ 43 31 B5 26 25|28 28 M 2 2 ’ A4 43 78 42 1|08 41 A3 a0 M ¢ 17 148 15 13 M1 42 12 13
22 jold2 36 25 20 27|20 23 M 27 23] ol 42 42 42 43|40 a1 a0 1 A0) ol 98 A7 a1 2|42 44 42 a3 45
36 3 2 3 28|32 26 32 31 % AB 4 43 44 43| 1 42 42 a3 43 22048 22 A5 AT [A4 42 44 14 44
20 Mlas 43 a7 33 3|3 26 2 30 0] P 47 16 47 3|8 4@ a7 a4 a7] Fle 23 oz 20 9|6 47 8 4 o8
B2 45 51 43 3538 33 37 1 H 24 22 22 18 1947 06 8 8 20 B 25 M 02 ;MO8 M N M
18 R TS [ 10 20 00 2 0 [ 10 20 0w 2 0 10 20 30
. SD(QVFM300tria)  ~ SD(QVFM1200tria)  SD(qYN 1200 trial)
M 72 OBS &2 S8, MM ST 85 BE To a2 M 2} 2 2 28 2 32 % 7 38 43 3 38 26,3 34 M 30 43
16 plB0 80 48 46 44|52 86 38 44 | o0| 27 2@ o g8 24|22 2 M M 19 .| 3 oz o 2|24 2: o ;o a0
43 44 37 40 33|35 W 3 M4 34 2 21 19 A6 6|6 16 15 a7 a7 M oz oz oM MN[0 8 8 AT 9
14 W3 3 0 20 20|20 20 27 25 26|08 47 5 43 a2[a3 a2 a2 3 3| 0 m o8 a5 a5 5[5 4 a7 0 a7
41 3 30 28 26 (M 26 27 23 2B 0% 13 12 13 12|42 12 3 11 N 19 15 16 18 12|43 43 2 W 42
12 ! 42 29 48 25 4|27 27 2 2 2 ! o135 M A0 a1 43 0 N ! 17 98 10 43 [0 42 42 a3 43
jold2 35 24 28 25|23 2 M 26 23] gl 12 42 a2 2|41 a0 a0 1 10) o l2 98 A7 o a2[a2 45 a2 a2 a5
10 35 3 27 30 28|30 24 32 M 25 AB A3 43 A4 43|41 42 a2 a3 a3 2148 22 A5 A6 (.84 42 44 4 4
Miae 43 36 3 32|31 28 3 30 2| Pfae a7 16 a7 13|18 14 a7 a4 7| @2 2 2z 20 18|18 6 B8 4 8
unit: dB B1 45 50 47 3438 33 37 30 # 24 022 ] A9 1947 M6 B B @ B 25 24 02 MW oW BN m
R T —S [ 10 20 P R [ 10 20 0w @ 0 0 10 2 30
HWCI (gVFM 300 trial HWCI (gVFM 1200 trial) HWCI (g¥YN 1200 trial
o o OBS T8 O75 72,72 66 T 73 T2 e 42 A1 3 3B 36 38 36 37 0 49 46 4B 41 41 40 30 38 30 41
opb 1 B5 9 S8 &5 64 B3 &3 84 &) ool % 33 3 20 28|26 28 27 27 27 ol % M o 20|30 o2 29 W
57 52 49 AT 44|42 42 39 45 47 2 2 25 73 M| 0 W N =@ N oM XM B2 R BN
VFM PDM Wrar 45 39 38 35|34 36 37 33 7| W24 2 19 a8 7|47 96 8 a7 7| 0025 24 2 0 8| 7 B W D
q = 45 39 36 33 M3 2 M 2 | 21 18 17 16 16|15 14 15 15 18 23 20 19 A7 16|96 A5 6 16 16
‘ 41 3 11 32 3N|W 7 X 7T W ’ 20 18 B8 16 14|43 43 4 4 A4 ¢ 21 20 78 M6 A5[15 4 15 15 18
& qYN jol40 37 34 32 31|28 20 28 20 30 [20 18 16 A5 45|44 44 a3 a4 15) o210 20 18 48 A6 [958 4 15 96 18
4B 41 37 3 33|34 22 M M M 22 2 48 AT 16|15 A8 A5 96 16 2402202 AR AT[AT A7 4B 6 A7
Mgy 49 43 41 3|38 37 38 37 w| D2 23 2 20 19w 18 .8 e 9] P2 28 2 2 20|20 20 20 20 2
mszsossstuarnsasaa.tawruz:zrzsmzdzazsnu ® W M W ;BT

-0 -20 -10 o 0 20

8
g
8
2
B

10 2 n

&
&
3
o

10 20 k)

FIGURE 14 | Performance | of the qVFM-DSM, qVFM-PDM and gqYN methods in estimating VFM of the simulated normal observer across 200 runs. (A) Average
root mean squared error, (B) Average 68.2% HWCI of the estimated VFM, (C) Average standard deviation, (D) Average volume under the surface of the VFM
(VUSVFM), (E) Mean defect, (F) Short-term fluctuation, (G) Loss variance, and (H) Corrected loss variance. Results from the gVFM-DSM and gqVFM-PDM methods
are shown in solid black and blue lines, and results from the gYN method are shown in dashed lines. The true values of the global indices are shown in red dotted
lines. For panels (B,D), shaded regions represent & 1 SD of the corresponding value.
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TABLE 6 | RMSE, SD, average 68.2% HWCI, mean defect, loss variance and
corrected loss variance of the estimated VFM from the qVFM-DSM, qVFM-PDM
and gYN methods in the beginning (0 trial), after 300 and 1,200 trials are listed for
the simulated normal observer.

Normal Trial number 0 300 1,200 True 1 dB/dB?
value threshold
RMSE (dB) gVFM-DSM 1.41 0.77  0.15 216 +£ 28
qVFM-PDM 1.41 094 0.19 267 £ 35
qYN 1.41 1.16  0.27 353 + 16
SD (dB) qVFM-DSM 0 0.63 0.15
qVFM-PDM 0 0.62 0.18
aqYN 0 0.75 024
HWCI (dB)  gqVFM-DSM 2.12 020 0.15
qVFM-PDM 212 0.45 0.22
aqYN 212 0.70 024
Mean qVFM-DSM -0.26 -0.05 0 0
defect (dB)
qVFM-PDM —-0.26 0 0.01 0
qYN -0.26 0.12  0.02 0
Loss qVFM-DSM 1.95 0.60 0.02 0
variance
(dB?)
qVFM-PDM 1.95 0.89 0.04 0
qYN 1.95 1.35  0.07 0
Corrected qVFM-DSM 1.95 0.19 0 0 161 £ 19
loss
variance
(dB?)
qVFM-PDM 1.95 0.50 0 0 164 + 16
qYN 1.95 0.79  0.01 0 248 + 32

The corresponding true values are listed in the sixth column. Trial numbers needed
to achieve 1 dB RMSE and 1 dB? within the corrected loss variance are listed with
their SD in the last column.

Previous studies showed that the conventional YN
threshold estimates exhibit approximately 25-50% more
variability (i.e., standard deviation) than the criterion-free
forced-choice threshold estimates (McKee et al.,, 1985;
King-Smith et al., 1994). In this study, we implemented

3)

)

(5)

the qVFM method based on the qYN procedure, which
combines elements of Signal Detection Theory (SDT)
and Bayesian adaptive inference to concurrently estimate
thresholds associated with a d’ level (rather than a percent
yes level) and decision criterion (Lesmes et al., 2015).
Our study showed this method can deliver criterion-free
thresholds on the light detection YN perimetric task with
significant performance improvements.

The prior distribution in the SITA is only optimized for
normal and glaucoma observers, not for patients with other
eye diseases (Bengtsson and Heijl, 1998). In the qVEM,
the global module performs an individualized test that
takes into account of the population properties in its prior
but continues to optimize the test for each individual,
including patients with abnormal VFMs. Because the
method is completely systematic and not oriented toward
any particular pathological pattern, the qVFM is not limited
to a specific eye disease.

Because locations with defective visual sensitivity tend to
appear in clusters in glaucomatous visual fields, the prior
threshold distribution in each test location in the SITA is
calculated with inter-location correlations (Bengtsson et al.,
1997). Such correlations may not be present in other eye
diseases. In the QVFM, the local module is used to estimate
visual threshold in each visual field location independently,
making it possible to detect steep visual sensitivity changes
in the visual field, such as scotoma resulting from optic
neuropathies or visual field islands in retinitis pigmentosa.
Since the age corrected normal and glaucomatous
priors need enormous data collection to generate, the
development of the SITA has so far been focused on light
sensitivity maps with Goldmann III size stimulus for
the 30-2, 24-2, 10-2 test patterns in the Humphrey Field
Analyzer (Bengtsson et al., 1997; Phu et al., 2017). Whereas
the test area in the SITA is limited to the central 30 degrees
of the visual field with less than 76 test locations, the qVFM
can map larger areas of the visual field with different type
of stimulus and a flexible number of test locations, without
restricts from prior knowledge as SITA.

A RMSE

400
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600 800 1000 1200

FIGURE 15 | Performance comparison between the gVFM method and staircase procedures in simulation tests across 1,000 runs. (A) Average root mean squared
error, (B) Average standard deviation. Results from the qVFM are shown in black solid lines. Results from the staircase 4-2-1 algorithm of h and o methods are
shown in red solid and dashed lines. Results from the staircase 4-2 algorithm of h and o methods are shown in blue solid and dashed lines. The h method uses the
last seen stimulus intensity as the estimated threshold, the o method uses the average of the last seen and unseen stimulus intensities as the estimated threshold.
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Alternative Methods for the Switch

Module

In previous studies (Xu et al., 2018, 2019a,b, 2020), we generated
the prior distributions in the local module by sampling the
posterior from the global module using the qVFM-DSM method.
The method was used to effectively transmit information
obtained from the global module to the local module. However,
it might generate priors that are too strong and hinder the
detection of local VF deficits by the local module. In this study,
we developed a new switch model, the qVFM-PDM mothed.
It marginalizes the posterior distributions of the six parameters
from the global module, and uses the average 68.2% HWCI
of the estimated sensitivities and decision criterion across all
VF locations to assign priors in the local module. By averaging
estimated variabilities across all the VF locations to generate
the prior distribution for each location in the local module, the
qVEM-PDM is more robust and better enables the local module
to detect local VF deficits. Our results showed that, although both
the qVFM-DSM and qVEM-PDM methods performed well in
estimating the VFM of the simulated observes, the qVFM-PDM
method exhibited better performance in detecting VF loss in the
simulated glaucoma in this study.

In these implementations, the rate of information gain in
the global module was used to compute the switching point.
Alternative methods could be used to determine the switching
point, such as the relative amount of information gain from the
global and local modules, a criterion based on the HWCI of the
estimated VFM, or the convergence of parameters in the global
module. Constrained by the amount of computation required
to maintain and update the various probability distributions in
both the global and local modules, we only performed a one-way
switch from the global module to the local module in the current
study. With additional computing power or better algorithms,
we might be able to switch between the two modules multiple
times if necessary.

Paths for Potential Extension

In this study, we took a very conservative approach in setting
the prior for all the simulated observers. The prior was in
fact mis-informative for the simulated observers with peripheral
scotoma, glaucoma, AMD, and cataract. As a result, the
qVEM method exhibited worse performance in the beginning
of the estimating process. A hierarchical Bayes extension of
qVEM could be developed to provide a judicious way to
derive informative priors for different patient populations
(Kim et al., 2014; Gu et al,, 2016): An incoming patient is
assigned to some possible disease categories, each with its
own prior distributions. The hierarchical gVFM would update
both category probabilities and the distribution of the VFM
parameters during the test, and update the prior of each disease
category after testing each patient. Alternatively, or jointly
within the hierarchical framework, the prior in the qVFM

could be informed by knowledge obtained from each patients
pervious diagnoses.

The qVFM method provides a general framework for mapping
many other visual functions, such as visual acuity, CSE, color,
stereo vision, reading speed, motion sensitivity, temporary
sensitivity, and crowding. Once developed, measurements of
the multiple VFMs would allow us to analyze and model
the relationships among multiple visual functions as well as
performance in everyday visual tasks, and identify the core
metrics of functional vision deficits in patients with eye disease.

The broad adoption of the qVFM method would also require
development of less expensive and integrated devices. Given
the current development of cost-effective eye trackers and rapid
improvement of consumer technology, we are optimistic that this
could be accomplished in the near future.

CONCLUSION

In this study, we showed that the qVFM method can be
used to characterize residual vision of simulated ophthalmic
patients. It sets the stage for further investigation with real
patients. We anticipate that the qVFM method, with additional
tests on real patients, can be potentially translated into clinical
practice in the future.
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