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Photoacoustic tomography (PAT) is a propitious imaging modality, which is helpful
for biomedical study. However, fast PAT imaging and denoising is an exigent task in
medical research. To address the problem, recently, methods based on compressed
sensing (CS) have been proposed, which accede the low computational cost and
high resolution for implementing PAT. Nevertheless, the imaging results of the sparsity-
based methods strictly rely on sparsity and incoherence conditions. Furthermore, it is
onerous to ensure that the experimentally acquired photoacoustic data meets CS’s
prerequisite conditions. In this work, a deep learning–based PAT (Deep-PAT)method
is instigated to overcome these limitations. By using a neural network, Deep-PAT
is not only able to reconstruct PAT from a fewer number of measurements without
considering the prerequisite conditions of CS, but also can eliminate undersampled
artifacts effectively. The experimental results demonstrate that Deep-PAT is proficient at
recovering high-quality photoacoustic images using just 5% of the original measurement
data. Besides this, compared with the sparsity-based method, it can be seen through
statistical analysis that the quality is significantly improved by 30% (approximately),
having average SSIM = 0.974 and PSNR = 29.88 dB with standard deviation ±0.007
and ±0.089, respectively, by the proposed Deep-PAT method. Also, a comparsion of
multiple neural networks provides insights into choosing the best one for further study
and practical implementation.

Keywords: photoacoustic tomography, deep learning, compressed sensing, under-sampled measurements,
image reconstruction

INTRODUCTION

Photoacoustic tomography (PAT) is a coupled-physics imaging modality that allows noninvasive,
quantitative, and 3-D imaging of biological and biochemical processes in living small animals.
However, fast PAT imaging remains an open problem for the research community. Until now,
multiple compressed sensing (CS)–based methods have been proposed, and they contribute to
recovering the original signals in a few measurements but with highly iterative and computational
cost (Foucart and Rauhut, 2013). Inspired by CS theory, Provost and Lesage (2009) applied CS to
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PAT for small animal imaging by the highly computational
iterative CS methods. Moreover, in the context of sparsity, some
work has also been accomplished on data-dependent dictionaries
(Mallat, 1999; Aharon et al., 2006; Duarte-Carvajalino and Sapiro,
2009) to solve the PAT imaging problem, but these techniques
wane the recovery performance. In Guo et al. (2010), employed a
CS modality to implement in vivo PAT imaging. However, it must
be noted that, to obtain the optimal imaging results, the sparsity-
based methods are strictly relying on sparsity and incoherence
conditions (Provost and Lesage, 2009). Furthermore, it is arduous
to ensure that the experimentally acquired photoacoustic data
comply with the prior requirements of CS. In other words, when
encountering complex experimental conditions, the acquired
photoacoustic data may not be precisely sparse in a fixed basis
(transform). Generally, the smooth images are sparse on a Fourier
basis. In contrast, the piecewise-smooth images and the images
with discontinuities along the edges are sparse on wavelet and
curvelets bases, respectively (Candes and Donoho, 2004; Provost
and Lesage, 2009). As a result, it is a challenging task to find
the exact basis to make the photoacoustic data sparse. To some
extent, it limits the application of the sparsity-based method for
in vivo experiments.

Recently, deep learning is dominating by significantly
facilitating the performance of multiple tasks, including
classification (Wang et al., 2020), segmentation (Ronneberger
et al., 2015), and reconstruction, etc. (Zhang and Dong, 2020). In
medical imaging fields, e.g., magnetic resonance imaging (MRI)
and computed tomography (CT) etc., convolutional neural
networks (CNN) have been used to improve the imaging quality
(Han et al., 2016; Hawn et al., 2016; Wang et al., 2016b; Chen
et al., 2017) further. Additionally, Dreier et al. (2017) applied the
learning-based method to solve the PAT’s limited-view problem
(extends the limited views). In Antholzer et al. (2018), share
the sparse data problem’s views, implement PAT imaging by
using filtered back projection (FBP), and diminish the artifacts
by U-Net. The similar artifacts problem has also been resolved
by Davoudi et al. (2019) with the same U-Net network on PAT.
In CS-alone techniques, these methods are highly iterative and
computationally expensive (Provost and Lesage, 2009). On the
other hand, utilizing only the deep learning algorithm demands
the structured data as an input (e.g., sparse). Especially in the
case of usage of high-resolution data for training, the image sizes
are larger and so is the network complexity. Hence, to avoid
such a situation, the data needs to be converted into small slices
or sparse domains (to avoid slicing) and use the multiple fully
connected layers to recover the image (Lliadis et al., 2018). Apart
from this, these approaches require the network to be trained
and change the parameters according to the sampling ratio every
time as they usually use the defined measurement matrix given in
Eq. (7). Besides this, random sampling can provide better quality,
but it can only be applied if the image is in the sparse domain
(Provost and Lesage, 2009). Hence, combining the inverse CS and
deep learning helps to get rid of iterative computational methods,
diminish the prerequisite of CS, and improve image quality. To
our knowledge, this is the first paper using an amalgamation of
inverse CS and deep learning (Deep-PAT) for photoacoustic data
and focusing on recovering high-resolution PAT imaging in a

few measurements even if the experimental data does not follow
the prerequisite conditions of CS (sparsity and incoherence). To
address the above problems, the combined method is utilized,
which diminishes the above limitations for recovery.

The paper is organized as follows. In Section 2, the
reconstruction methods are presented, including the PAT
imaging model, the sparsity-based techniques, the proposed
Deep-PAT method using multiple neural networks, and details
about quantitative analysis. Section 3 explains the experimental
materials, data preprocessing, and network training. The details
about the results, discussions, and comparison are presented in
Section 4. Finally, we conclude with a summary in Section 5.

RECONSTRUCTION METHODS

PAT Imaging Model
Photoacoustic tomography allows implementing high-resolution
imaging in vivo by combining optical absorption contrast and
high ultrasound resolution. In comparison with classical imaging
modalities, PAT can achieve higher spatial resolution at depth.
According to Liu et al. (2012), the imaging model of PAT can be
formulated by a heterogeneous wave equation as follows:

∇
2p(r,t)

−
1
c2
∂2p(r,t)

∂t2
= −

β

C
∂H(r, t)
∂t

, (1)

Where c is sound velocity, p represents pressure, t is the time,
β provides information isobaric volume expansion coefficient,
and C is related to heat capacity. The right-hand side of Eq.
(1) depends on the heat source H(r, t) that can be written as
the product of the absorbed optical energy density A(r) and a
temporal function of illumination I(t) (Wang et al., 2016a),

H(r, t) = A(r)I(t). (2)

For PAT imaging, the main concern is to recover A (r) from the
pressure measurement p(r, t).

Compressed Sensing Methods
According to CS theory, the data consisting of N samples can
be transformed into a sparse domain by finding a suitable sparse
transform ψ , as follows:

θ = ψx, (3)

Where θ belongs to the transformed sparse image and x is the
original image. If x contains N pixels, then sparsity is defined
as ||θ ||l0 � N and `0 norm is simply the nonzero coefficients.
The main objective of CS is to recover the image x through
measurement data from the imaging system. Assuming that the
measurement data y is obtained through a measurement matrix
K, we have the following relation:

y = Kx, (4)

In terms of CS, the photoacoustic data can be reconstructed
by solving the following convex optimization problem
(Wang et al., 2016a):

min||θ | |l0 s.t y = Kψ−1θ, (5)
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Where ψ donates the suitable sparse transform and K is
related to the physical imaging system. To use CS effectively,
kψ must be a CS matrix (Provost and Lesage, 2009). Note that
minimizing `0 is a combinatorial problem and not applicable if
one wants to recover the high-resolution images. To overcome
these limitations, it can be mathematically seen that the`1
minimization problem is equivalent for most Kψ if the solution is
sufficiently sparse (Donoho, 2006). Therefore, the mathematical
model in Eq. (5) is derived as

min||θ ||ll s.t y = Kψ−1θ, (6)

To implement CS reconstruction for PAT, the derivation of
the measurement matrix is critical. Based on Eq. (1) and back-
propagation theory (Meng et al., 2012), the measurement matrix
is directly derived as follows (Donoho, 2006):

K(h, t)(i,j) =
1

2πc
δ(t −

∣∣ri,j − rh
∣∣

c
), (7)

where h = 1, 2......, p, t = s1t, and s = 1, 2, ......., qs. According
to Donoho (2006), the above measurement matrix in the
frequency domain could be written as follows:

K(h, n)(i,j) = ickn
exp(−ikn

∣∣ri,j − rh
∣∣)∣∣ri,j−rh ∣∣ , (8)

where h = 1, 2......, p, and n = 1, 2, .....qn. ri,j represent the
cartesian coordinates, rh donates the transducer’s position, p
considers the number of transducers, and qs and qn represent the
sampling points in time and frequency domain, respectively.

As mentioned above, when facing complex experimental
conditions, the acquired photoacoustic data may not be exactly
sparse on a fixed basis, which is the initial prerequisite of the
CS technique in context to get the exact reconstruction of PAT
(Provost and Lesage, 2009). Hence, there is a constraint in
utilizing CS, which needs to be diminished to acquire the data
in just a few measurements. Even after finding the sparse basis ψ ,
there is another limitation that has been discussed earlier. That is,
the matrix Kψ must be a CS matrix, which means that the matrix
obtained from the product of the measurement matrix and the
sparse basis must show a certain quantity of linear independency
among a small group of columns or must fulfill the restricted
isometric property (RIP) to retrieve the data efficiently.

According to the research (Cand‘es, 2008), (RIP) states that

(1− δs)||θ ||22 ≤ ||Aθ ||
2
2 ≤ (1+ δs)||θ ||

2
2, 0 < δs < 1 (9)

For sparse vector θ , δs is a restricted isometric constant, and A
is related to Kψ . Suppose we have an arbitrary sparse vector
based on CS theory. To recover the vectors from measurements
taken as v = Ax, one needs to ensure that it is possible to
distinguish between measurements v1 = Ax and v2 = Ax of any
two such vectors. If they are the same, it is not possible to
distinguish and reconstruct them. Hence, for reconstructing the
sparse vector efficiently from measurements taken with A, the
restricted isometric property quantifies how well A contributes to
performing that task. As our concern is real data, which is usually
not sparse on a fixed basis (Kashyap, 2019), it cannot fulfill the
RIP property and can lead to inefficacious reconstruction.

Deep Learning Methods
A deep learning method is proposed to overcome the limitation
of the sparsity-based methods, which can recover the PAT
imaging from undersampled data without making them sparse
The summary of Deep-PAT is shown in Figure 1. Briefly, as
an illustration in Figure 2, a compressed sensing approach is
applied to the input data in RN×N , which further converts the
image data into measurement vector v (RM) by multiplying
with the random measurement matrix K with M � N. After
getting the measurement vector v, the fully connected layer is

used to generate an image proxy
∧

V . Note that, in this case, the
output image may consist of the artifacts and the fuzzy object
while the sparsity and RIP property conditions are being ignored.
Eventually, the deep learning–based network is applied to remove
the undersampled artifacts and recover the image object with
high resolution.

In detail, the task of high-resolution PAT reconstruction can
be described as a supervised machine learning problem. This
context’s primary concern is to evaluate the mapping function
ξ : RM×M

→ RN×N , which maps the input measurement vector
v ∈ RM to the image proxy with artifacts and fuzzy object in

the
∧

V ∈ RN×N space, which needs further processing to get the

artifact-free and visible output in the
∼

Y ∈ RN×N space. To design
such a mapping function, one assumes that the artifact images
(image proxy) Vn and artifact-free images Yncombine to make a
training data T = (Vn,Yn)

N
n=1 pair.

Based on the neural network theory, the mapping function ξ
is formulated as the training error

E(T; ξ) =
N∑

n=1

e[ξ(Vn),Yn], (10)

Which is minimized as min[E (T; ξ)], where e : RN×N
×

RN×N
→ R measures the training loss made by the mapping

function î during the optimization of the training data. In
particular, for the supervised machine learning problems based
on the neural network, the mapping function can be further
formulated in the form

ξw = (σL◦WL)◦.....◦(σ1◦W1), (11)

Where σl is the activation function, W := (W1.....WL) is the
weighting vectors, and L donates the number of processing layers
in the neural network. As shown in Eq. (11), in the neural
network, one of the most important parameters is weights W ,
which composites from the weight vector’s entities. Typically,
these weighting vectors update during the training process
for optimal image reconstruction. Multiple methods have been
developed onboard to optimize weighting vectors. Considering
that, stochastic gradient descent (SGD) is used to perform this
task and diminish the training loss.

In this paper, multiple CNNs, including a simple 3-layer CNN,
U-Net, and ResU-Net, are employed. U-Net was initially designed
for biomedical image segmentation and used for low-dose CT
images (Ronneberger et al., 2015). This network analyzes and
processes the training images based on every pixel, hence showing
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FIGURE 1 | Summary of the proposed Deep-PAT Method.

FIGURE 2 | Deep-PAT based on simple U-Net for image reconstruction.

the incredible performance for limited medical datasets. Note
that the U-Net’s final layer that was initially used for segmentation
needs to be changed for the image reconstruction task. In the case
of ResNet and to further improve the performance of the U-Net
architecture, a series of residual blocks are stacked together that
benefits in term of degradation problems with the help of skip
connections within the residual unit and helps to propagate the
low- and high-level information of the network. When applied

to PAT imaging, CNNs output the artifact-free image using
very few measurements. Besides this, the computational cost
can also be significantly reduced as compared with traditional
iterative algorithms. The proposed method is formulated
as follows:

(1) First, CS is applied to high-resolution photoacous ticmouse
data (which usually do not have sparse representation) in
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RN to generate the measurement vector in RM (M<<N)
without following the CS prerequisite conditions, i.e.,
sparsity and incoherence. After the generation of the

measurement vector, the image proxy
∧

V is formulated using
the fully connected layer having undersampled artifacts,
which eventually weakens the object.

(2) Second, the U-Net–based deep neural network is applied

to the image proxy
∧

V to remove the artifacts and
recover the lost information that disappears during
the first step. Figure 3 elaborates on the Deep-PAT
methodology by flowchart.

Quantitative Analysis
In this work, the imaging performance of Deep-PAT is
quantitatively evaluated by two indicators, i.e., the structure
similarity index (SSIM) and peak signal-to-noise ratio
(PSNR). The SSIM is a perceptual metric that quantifies
image quality degradation and gives a normalized mean
value of structural similarity between the two images. The
term “structural information” emphasizes the strongly
interdependent or spatially closed pixels. These strongly
interdependent pixels refer to more important information
about the visual objects in the image domain. According to

Sara et al. (2019), SSIM can be expressed through these three
terms as

SSIM(x, y) = [l(x, y)]a.[c(x, y)]b.[s(x, y)]γ. (12)

The above-defined parameters are dependent on three different
factors, where l characterizes the luminance, which is used to
compare the brightness of the predicted and original images; c
represents the contrast; and s is used to compare the structure
of both images. Apart from these a, b, and γ are the positive
constants, and x and y are the original and reconstructed images,
respectively. Moreover, the luminance, contrast, and structure are
further dependent on the following factors:

l(x, y) =
2µxµy + c1

µ2
x + µ

2
y + c1

, (13)

c(x, y) =
2σxσy + c2

σ 2
x + σ

2
y + c2

, (14)

s(x, y) =
σxy + c3

σ 2
x σ2

y + c3
, (15)

where µx and µy are the local means, σx and σy represent
the standard deviation, and σxy is cross-covariance for the

FIGURE 3 | Flowchart of the Deep-PAT method.
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FIGURE 4 | Deep-PAT based on Residual U-Net for image reconstruction.

reconstructed and original images subsequently. Besides this,
another indicator (PSNR) is also calculated to validate the image
quality as follows:

PSNR = 10 log10(
max2

image

MSE
). (16)

EXPERIMENTAL MATERIALS

This section provides insights into the Deep-PAT method
and numerical realization of data processing under the
variance conditions.

Data Set
The available online dataset generated by a full view tomographic
scanner having the capability to attain the high-resolution
images of a living mouse’s whole body, including the brain,
is used (Github, 0000). The scanner comprises 512 individual
scanner elements on an 80-mm-diameter ring detection array,
which operates on a 5-MHz central frequency, >80% detection
bandwidth, 0.37-mm width, and 15-mm height along the
elevation direction. PAT is different from CT and MRI
imaging modalities and contains optical illumination as well.
The photoacoustic signal is excited with a short pulse laser
(<10 ns) with a repetition of 15 Hz and 1,680 nm wavelength.
Furthermore, after recording the signal from all 512 scanners,

the data is simultaneously digitized at 40 megapixels per second.
Finally, the data is transferred to a PC via ethernet cable to
reconstruct using the various methods.

Data Preprocessing and Network
Training
There is a constraint of a large number of data availability
in medical applications when using the DL-based method. To
overcome the limitation, in this work, data augmentation is used
to train the network, which can learn the robustness properties by
performing different operations to avoid the overfitting problem.
Briefly, before network training, some of the operations are
performed, including rotating, which rotates the images to a
certain degree; flipping to flip the orientation of the images;
and cropping to focus on the features of a certain area of the
object. Besides this, to perform smooth learning and converge
the network rapidly, a data normalization technique is applied
to normalize the dataset between (−1, 1). The dataset comprises
1,130 images after augmentation, which are further split into 80%
training and 20% test sets.

The specially designed modality takes the input image RN .
It creates the measurement vector v (MV), having several
measurements RM using a randomly selected measurement
matrix (without fulfilling the RIP property). Then, to boost
the dimensionality of the measurement vector and create the
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FIGURE 5 | The block diagram represents the encoder block. Each block consists of two3×3convolutional blocks followed by BN and ReLU activation function.
Identity mapping is applied to connect the input and output of the encoder block.

FIGURE 6 | Schematic diagram of 3-layer CNN model.

FIGURE 7 | Mean square loss for a simple 3-layer CNN model.

image proxy
∧

V for further processing, a fully connected layer is
employed, which is accomplished by multiplying the transpose of

a manually designed parameter KT , i.e.,
∧

V = KTv. For training,
the dataset is converted into pairs of high-resolution images xi
and their corresponding measurements vi.The training dataset
Dtrain = {x1, v1}, {x2, v2}, ..., {xl, vl} is fed to U-Net to learn and
extract the features of the images, which mainly learns nonlinear
mapping from the image proxy to the reconstructed image while
the testing dataset Dtest = {x1, v1}, {x2, v2}, ..., {xs, vs} contains
the s pair of images and their corresponding measurement to test
the network learning.

The U-Net in our method has two main portions as
shown in Figure 2. The first portion is the encoder part,
contributing to the analysis and capturing of the feature data.
In contrast, the dimensionally symmetric decoder part serves
as the second portion, responsible for accurate localization to
acquire the final results based on extracted features from the
encoder portion. As in the CNN context, both portions are
composed of convolutional layers (CONV). After each of the
two convolutional layers, the max-pooling (MP) operation is
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FIGURE 8 | Comparison of different undersampling measurements using 3-layer CNN.

FIGURE 9 | Histogram of PSNR for undersampling ratio = 0.3 on simple CNN
network.

performed in the encoder part, which halves the image size.
Hence, when the data disseminates through the encoder part, the
resolution of the data stating deteriorates. On the other hand, the
image contraction is reversed due to the usage of the up-sampling
layer (UP), which subsidizes the restoration of the image size as
in the encoder part. This process is repeated until the output
in the decoder part reports the same dimension as in the first
layer (encoder part). Moreover, the concatenation layer (CONC)
is used to increase the data’s spatial resolution due to multiple
down-sampling operations. The Deep-PAT structure with simple
U-NET is shown as.

FIGURE 10 | Training loss for Deep-PAT (U-Net) network.

In the U-Net, the convolutional layer kernel size is 3× 3
with the stride of 1, the MP layer kernel size is 2× 2, and the
deconvolution layer kernel size is 2× 2 with the stride of 2 used.

In the case of ResNet, the encoder block captures the better
feature maps in a fine-to-coarse manner and up-samples these
feature maps with shortcut connections of residual blocks. The
Residual U-Net architecture converts every two convolutional
layers at same stage of the U-Net with residual block, whereas
1× 1 convolutional operation is needed to match the input and
output feature channels in the residual block of the network.
In general cases, the depth of the convolutional neural network
gradually deepens, the network becomes more and more difficult
to train, and the problem of network performance degradation
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FIGURE 11 | Visual comparison between the original image (left) and reconstructed image (right) using half of the original measurement via Deep-PAT (U-Net).

FIGURE 12 | Visual representation of image reconstruction using Deep-PAT (U-Net). The leftmost image represents the original image; the middle image is the input
image with a disturbing object, and the rightmost shows the predicted image with considerable SSIM.

FIGURE 13 | Comparison of two methods (the U-Net and the simple 3-layer network) based on edges and luminance recovery. The left image represents the original
image; the middle image is recovered using Deep-PAT (U-Net), and the right image shows the visual representation of CNN prediction.
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FIGURE 14 | Predicted results of Res-U-Net in the worst scenario. The left
images are labeled as the original image, and the right image shows the visual
representation of Res-U-Net output.

occurs. ResNet further deepens the network by introducing
a jump connection structure, solves the problem of gradient
disappearance, and improves network performance. The Deep-
PAT with ResU-Net is shown in Figure 4.

Figure 5 is the residual unit, which consists of an identical
connection path and a residual path. The residual path is
composed of two 3 × 3 convolutional layers and batch
normalization (BN) and ReLU (rectified linear units) activation
functions, and finally, the results of the two paths are added
together to get the output. At the same time, the jump connection
does not introduce additional parameters and computational
complexity. All the other network parameters are the same as the
original U-Net.

Afterward, the networks calculate the loss of training in each
iteration or epoch using the `1-norm function. To minimize
the `1 loss function, the ADAM optimizer is used. After
each iteration, the weighting vectors are adjusted by back-
propagating the loss concerning the parameters, using the
stochastic gradient descent method. Here, the learning rate is
kept equal to 0.005, and the batch size is equal to 1. The

FIGURE 16 | Average SSIM comparison between input, CNN, Deep-PAT, and
TV minimization.

network is implemented on Python with the PyTorch package
running on GPU NVIDIA Tesla V100 with CUDA and took
20s for each epoch.

RESULTS AND DISCUSSION

The above-formulated method is applied to three different
neural networks (a simple 3-layer CNN, U-Net, and Res-U-Net
network). Also, the TV minimization method for sparse data is
compared further to demonstrate the imaging performance of the
proposed method.

Briefly, the dataset is divided into pairs (ground truth and
measurement matrix), and the CS paradigm is applied to generate
a training dataset. Afterward, the output is applied to a simple
CNN model having three fully connected convolutional layers.
At once, the training is employed and CNN is tested on
several unseen images to evaluate the network performance
qualitatively and quantitatively under different measurement
conditions, i.e., M/N. The 3-layer CNN model is shown
in Figure 6.

FIGURE 15 | Reconstruction results obtained by TV-minimization with different undersampling ratio. The leftmost is an original image; the middle image is recovered
by the TV-Min method with an undersampling ratio = 0.5, and the rightmost image shows the output with undersampling ratio = 0.05 (5%).
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FIGURE 17 | Average PSNR (dB) for different sampling rates and networks.

To demonstrate the performance obtained by a simple 3-
layer CNN, the comparison is illustrated through qualitative and
multiple quantitative means. Figure 7 shows the training loss.
Here, the training loss for the simple CNN is calculated by
mean square error, and Figure 8 compares the reconstruction
results of the simple CNN when using the data with different
sampling ratios.

Based on the results in Figure 8, it can be seen that the network
performance is not satisfactory due to the usage of a limited
amount of data and few weights as the CNN network does not
work well for limited information, and the efficacy of the simple
CNN to extract the feature maps is insufficient to reconstruct the
efficient results. Moreover, Figure 9 shows the PSNR of the test
dataset for 3-layer CNN with average PSNR.

Afterward, the same procedure is performed using the
specially designed Deep-PAT with the U-Net and Residual U-Net
networks, as explained in the methodology section, to reconstruct
the images under different sampling conditions. The same
abovementioned random data is converted into the test- train sets
that further comprise measurements and original images. The
mean square training loss for U-Net is shown in Figure10.

The outcomes generated by Deep-PAT (U-NET) are shown in
Figures 11, 12.

As mentioned, the main concern is to reconstruct the
photoacoustic images by using very low measurements, which

is a really complicated and challenging task in the presence of
the disturbing object. Deep-PAT is set to perform this task with
efficiency as shown in Figures11–14.

It can be seen that the Deep-PAT (U-Net) is capable enough
to reconstruct the photoacoustic data with high efficiency
based on edges, luminance, and contrast. The enlarged view
represented by the green box visualizes that the proposed
network not only removes the undersampled artifacts, but also
recovers the missing information and edges of the randomly
selected image (Figure 13). Besides this, the performance
of Res-U-Net outperformed the other two networks with a
slight difference in qualitative and quantitative analysis as
compared with simple U-Net. The worst scenario of Res-
U-Net is still able to recover the organs of the body
and remove most of the over-smoothness in the predicted
image that appears in U-Net and simple CNN as shown
in Figure 14.

It can be noticed from the results that some over-smoothing
is presented that causies some details to be removed. This is due
to the short length of features in the direction of undersampling,
which are difficult to identify due to the worst nature of the
input image. Overall, the experiments show that Res-U-Net
outperforms the U-Net and simple 3-layer CNN network as seen
in Figure 14. This leads to the comparison with different neural
networks without following CS prerequisite conditions and helps
to choose the best one. The next section of the paper presents a
comparison with the sparsity-based method.

Apart from neural networks, to support the Deep-
PAT method, the sparsity-based TV minimization is also
implemented. Referring to Figure 15, it can be seen that
Deep-PAT (all networks) outperforms the sparsity-based TV
minimization algorithm for this kind of complex dataset. The
main reason may be that the TV-based model is well suited to
the recovery of only a few types of images (i.e., with piecewise
constant) (Dobson and Santosa, 1994; Chambolle and Lions,
1997; Cand‘es et al., 2006). Later, many authors proposed the
solution by minimizing the gradient’s nonconvex function, which
increases the image quality. However, the instability is always
here for this kind of method.

To quantitatively evaluate the imaging performance
obtained by different methods combining with the different
undersampling ratio data, the SSIM and PSNR are calculated,
and the corresponding results are shown in Figures 16, 17 and
Table 1. The results further validate the performance of the
proposed method.

TABLE 1 | Statistical analysis of both methods regarding evaluation parameters.

Undersampling
ratio

Average
CNNPSNR

(dB)

Average + SD
CNN SSIM

Average + SD
U-Net PSNR

(dB)

Average + SD
U-Net SSIM

Average + SD
Res-U-Net
PSNR (dB)

Average + SD
Res-U-Net

SSIM

Average + SD
Input SSIM

Average TV-
minimization

SSIM

Average TV-
minimization

PSNR (dB)

0.5 24.5 ± 0.142 0.91 ± 0.005 27.53 ± 0.097 0.97 ± 0.006 29.88 ± 0.089 0.97 ± 0.007 0.57 ± 0.376 0.72 ± 0.091 16.48 ± 0.201

0.3 21.9 ± 0.201 0.90 ± 0.005 25.20 ± 0.101 0.95 ± 0.05 28.98 ± 0.081 0.95 ± 0.005 0.49 ± 0.5154 0.67 ± 0.132 14.78 ± 0.295

0.1 18.22 ± 0.150 0.83 ± 0.030 22.83 ± 0.204 0.81 ± 0.070 27.22 ± 0.106 0.80 ± 0.090 0.30+0.485 0.41 ± 0.514 12.91 ± 0.352

0.05 17.21 ± 0.149 0.65 ± 0.021 21.41 ± 0.186 0.70 ± 0.045 24.51 ± 0.176 0.76 ± 0.098 0.25+0.6452 0.38 ± 0.317 11.93 ± 0.391

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; RT, reconstruction time; SD, standard deviation.
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Based on the average1 SSIM and PSNR visualized in
Figures 16, 17, it can be seen that how bad the input is, having
very low SSIM, whereas the TV minimization (sparsity-based
method) shows abysmal performance with just SSIM = 0.72
for the 50% undersampling case. In contrast, the simple 3-
layer improves the performance but not at a satisfactory level
due to biased recovery and over-smoothing the image, having
SSIM = 0.65 for the 5% undersampling case. Meanwhile, simple
U-Net performs better as compared with the previously discussed
methods with SSIM = 0.70 for the 5% undersampling scenario
but experiences the over-smoothing problem as well. Besides
this, Res-U-Net outperformed all three methods in terms of
qualitative and quantitative analysis and removes the over-
smoothing problem to a great extent even in the worst-case
scenario having SSIM = 0.76 for the 5% undersampling case.

CONCLUSION

In this paper, the specially designed Deep-PAT is proposed
for the reconstruction of experimental photoacoustic whole
body mouse data without taking the prerequisite conditions
(sparsity and incoherence) of CS into consideration. The dataset
is created by scanning the whole body, including the brain
of the mouse. The proposed method breaks the bottleneck
in using the CS domain for recovery or reconstruction of
photoacoustic medical images.

The methodology is implemented on photoacousticmouse
data to validate the theoretical concerns. This approach
iscompared with a classical method (TV minimization), which
strictly obeys the CS-based sparsity and RIP conditions.

For future work, the more advanced networks could be
designed to reconstruct a brain-wide vascular network for neural
imaging to get more detailed information with a low processing
cost. Additionally, in the methodology context, U-Net could
1 The network gives the different SSIMs (in a decimal range) for every image in
the test set based on the structure of the image. Hence, in order to normalize the
results, the average command takes the entire test set’s PSNR and SSIM and gives
one average value for the whole set at a particular undersampling ratio.

be computationally more efficient using a skip connection,
which would only process the essential features and discard
the unnecessary data from the images (diminishing the sparsity
conditions) (Drozdzal et al., 2016; Yamanaka et al., 2017).
Moreover, a fundamental improvement will be to refine and
apply new model architectures, such as generative adversarial
networks (Hussein et al., 2020), which may yield modest
performance gains. Apart from this, the tailored deep-learning
models specifically for PAT or PAM for neural imaging could be
designed with the amalgamation of CS.
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