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Limb-girdle muscular dystrophies (LGMD) are hereditary genetic disorders characterized
by progressive muscle impairment which predominantly include proximal muscle
weaknesses in the pelvic and shoulder girdles. This article describes an attempt to
identify genetic cause(s) for a LGMD pedigree via a combination of whole exome
sequencing and Sanger sequencing. Digenic variants, the titin gene (TTN) c.19481T>G
(p.Leu6494Arg) and the trafficking protein particle complex 11 gene (TRAPPC11)
c.3092C>G (p.Pro1031Arg), co-segregated with the disease phenotype in the family,
suggesting their possible pathogenicity.

Keywords: limb-girdle muscular dystrophies, digenic variants, the TTN gene, the TRAPPC11 gene, exome
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INTRODUCTION

Limb-girdle muscular dystrophies (LGMD) are hereditary genetic myopathies characterized by
progressive muscle impairment, predominantly involving proximal muscle weakness in the pelvic
and shoulder girdles (Narayanaswami et al., 2014; Angelini, 2020). LGMD’s variable clinical
spectrum ranges from adult-onset weakness with slowly progressive muscle deterioration to severe
infantile subtypes unable to walk unassisted. Cardiac and respiratory muscles may also be involved
(Magri et al., 2017; Angelini, 2020). Disease prevalence is estimated up to 6.9/100,000 with a
carrier frequency of up to 1/150 (Mahmood and Jiang, 2014; Winckler et al., 2019). Current
diagnostic approaches rely primarily on a synthesis of clinical features, imaging characteristics,
electrophysiological examination, biochemical data, muscle biopsy and genetic testing (Mahmood
and Jiang, 2014; Iyadurai and Kissel, 2016). The level of serum creatine kinase (CK) varies
from normal, through mildly elevated to highly elevated (>100× normal) (Iyadurai and Kissel,
2016; Liewluck and Milone, 2018). Classic pathological features of muscle biopsy show fiber
caliber diversification, atrophy, hypertrophy, necrosis, phagocytosis, regeneration, and nuclear
internalization (Cotta et al., 2014; Bastian et al., 2015; Liewluck and Milone, 2018). Muscle tissue
loss and filling by fat and connective tissue were detected in advanced-stage patient muscle tissue
(Cotta et al., 2014; Bastian et al., 2015).

As of this writing, at least 29 autosomal-inherited LGMD subtypes have been classified applying
the updated definition. A new proposed LGMD classification of subtypes follows the formula:
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“LGMD, inheritance (R for recessive or D for dominant), order
of discovery (number), affected protein” (Straub et al., 2018;
Angelini, 2020).

LGMD2J, recently classified as LGMD R10 titin-related,
caused by the titin gene (TTN) variants, is a serious autosomal
recessive disease-causing proximal muscle weakness in childhood
or adulthood. It deteriorates over the next 20 years ending
in a wheelchair with high serum CK level (Evilä et al., 2014;
Iyadurai and Kissel, 2016; Zheng et al., 2016a). LGMD2S,
recently classified as LGMD R18 TRAPPC11-related, is caused
by the trafficking protein particle complex 11 gene (TRAPPC11)
variants. It is inherited in an autosomal recessive manner and
presents as a gradually progressive proximal muscle weakness
with childhood onset and high CK. Some sufferers, in addition to
having the muscle weakness, present with intellectual disability,
ataxia, ocular deficiency, and hepatic steatosis (Bögershausen
et al., 2013; Nigro and Savarese, 2014; Fee et al., 2017;
Wang et al., 2018).

This study describes a Han Chinese family with the digenic
variants, TTN c.19481T>G (rs376857772, p.Leu6494Arg) and
TRAPPC11 c.3092C>G (rs200466260, p.Pro1031Arg) in the

patients. Co-segregation analysis and bioinformatics prediction
suggested that the digenic variants may be responsible for
the LGMD phenotype.

MATERIALS AND METHODS

Pedigree and Participants
A three-generation Han Chinese pedigree was recruited at the
Third Xiangya Hospital, Central South University, Changsha,
Hunan, China (Figure 1A). The proband (II-3) is a 49-year-
old female who was born to non-consanguineous parents.
She presented a progressive proximal muscle weakness and
initially had complaints of upper limb weakness and unable
to run at age 39. At present, she had difficulty in raising
arms, walking at a fast pace and getting up from squatting
position. She had no complaints of distal muscle weakness,
myalgia, dysphagia, dysarthria, ptosis, or numbness. Neurologic
examinations revealed evident bilateral winging scapula, atrophy
of both deltoids and shoulder girdle muscles, and pseudo-
hypertrophy of bilateral upper arm muscles. Power testing

FIGURE 1 | Pedigree and genetic data of the individuals in this study. (A) Pedigree of a Han Chinese three-generation family with LGMD. Arrow symbolizes proband;
N, normal allele; V1, TTN c.19481T>G variant; V2, TRAPPC11 c.3092C>G variant. (B) The sequencing diagram of heterozygous TTN c.19481T>G (p.Leu6494Arg)
variant. (C) The sequencing diagram of heterozygous TRAPPC11 c.3092C>G (p.Pro1031Arg) variant. (D) Sequence of normal control in the TTN gene. (E) Sequence
of normal control in the TRAPPC11 gene. LGMD, limb-girdle muscular dystrophies; TTN, the titin gene; TRAPPC11, the trafficking protein particle complex 11 gene.
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revealed grade 4/5 at both proximal lower limbs and upper limbs,
and 5/5 at both distal muscles. Sensory examination was normal.
Her CK was elevated at 260 U/L (normal range 40–200 U/L).
The electromyography (EMG) showed myopathic features in
the upper proximal muscles (Figure 2A). She has no significant
extramuscular symptom. The 46-year-old younger sister (II-5)
suffered from similar weakness in limbs for ten years and had the
same progressive history as the proband. The proband’s mother
(I-2) is 81 years old, whose initial symptom is mild weakness of
her arms and difficulty in running at the age of 41 years. The
disorder was slowly progressive. At present, she is unable to walk
and raise arms above the head (Table 1).

Peripheral blood samples were drawn from nine pedigree
members, including three affected individuals (I-2, II-3, and II-
5) and six unaffected members (II-1, II-2, II-4, III-1, III-2, and
III-3). Blood samples were taken from 200 unrelated ethnicity-
matched individuals lacking diagnostic specificity or a family
history of LGMD (male/female: 100/100, age 47.2 ± 6.4 years).
Informed consent was obtained from all subjects, and this study
was approved by the Institutional Review Board of the Third
Xiangya Hospital, Central South University.

Histopathology and
Immunohistochemistry
Patient II-3′s biopsy samples of biceps brachii were obtained. The
prepared cryosections were stained with hematoxylin and eosin
(H&E). Frozen sections were performed immunohistochemically
using a group of primary antibodies, including α-sarcoglycan
(1:50), β-sarcoglycan (1:50), γ-sarcoglycan (1:50), and δ-
sarcoglycan (1:25) (Charton et al., 2010; Liang et al., 2015).

Primary and secondary antibodies were obtained from OriGene
Technologies Inc. (Rockville, MD, United States) and Fuzhou
Maixin Biotech Co., Ltd. (Fuzhou, China).

Whole Exome Sequencing
Genomic DNA was extracted in accordance with a normative
phenol-chloroform extraction method (Yuan et al., 2015). Whole
exome sequencing for two patients (II-3 and II-5) was performed
by BGI-Shenzhen (Shenzhen, China). The captured exome
library was sequenced on Illumina HiSeq 2000 (Illumina, Inc.,
San Diego, CA, United States).

Read Mapping and Variant Analysis
Burrows-Wheeler Aligner (BWA) software mapped clean reads
to the reference human genome sequence. Alignment results
were obtained after duplicate removal using Picard tools (v2.5.0)1,
and base quality recalibration and local alignment by Genome
Analysis Toolkit (v3.6). Single nucleotide polymorphisms (SNPs)
and insertions-deletions (indels) were annotated using SnpEff
software2. Variant filtrations were performed using data from the
Single Nucleotide Polymorphism database (dbSNP) v141, 1000
Genomes Project, the NHLBI-Exome Sequencing Project (ESP)
6500, the Exome Aggregation Consortium (ExAC), and BGI in-
house exome databases, and the variants with the frequency <1%
were retained. Non-synonymous variants located in exonic
regions and variants in canonical splicing sites were prioritized.
Amino acid substitution affection for the protein structure or

1http://broadinstitute.github.io/picard/
2http://snpeff.sourceforge.net/SnpEff_manual.html

FIGURE 2 | Electromyography and muscle biopsy morphologic findings of LGMD patient (II-3). (A) Electromyography showed myopathic features in the upper
proximal muscles. (B) Regenerating fiber and a slight increase of connective tissue (H&E ×100). (C) Normal sarcolemmal expression of α-sarcoglycan (×100).
(D) Normal sarcolemmal expression of β-sarcoglycan (×100). H&E, hematoxylin and eosin.
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function was assessed by MutationTaster3 and Polymorphism
Phenotyping version 2 (PolyPhen-2)4 for functional prediction
(Yuan et al., 2015; Hu et al., 2017).

Locus-specific PCR primers for potential variants were
designed as previously described (Yuan et al., 2015), and
Sanger sequencing was performed for variant validation.
Sequences of the primers were: (TTN variant) 5′-CCATCCTTA
AACCACTGAGCA-3′ and 5′-GTTTTGCTGTTTGCATTGGA-
3′, (TRAPPC11 variant) 5′-AAGCCATAAGTGGGGAGCTA-3′
and 5′-ATCACTGGGCTCCACAGAAA-3′. Conservation
analyses were performed using the Basic Local Alignment
Search Tool (BLAST)5. The potential interactions of two
genes were further analyzed using the GeneMANIA (v3.6.0)6

(Franz et al., 2018).

RESULTS

Pathological Findings
Pathological findings of II-3′s muscle biopsy samples showed
variation in fiber size, atrophic fibers, regenerating fibers,
internally placed nuclei, and a slight increase of connective tissue
(Figure 2B). Immunohistochemistry analysis of sarcolemmal
proteins showed no apparent abnormality staining with α-, β-,
γ- and δ-sarcoglycan (Figures 2C,D).

Molecular Findings
We obtained 50,621,019 and 50,390,601 bp in target region
in patients II-3 and II-5, respectively. Target regions mean
sequencing depths were 105.88× and 152.47×. Target exome
regions coverage was 99.54 and 99.64%, respectively. A total of
109,353 SNPs and 18,362 indels were identified in patient II-
3. A total of 114,131 SNPs and 19,559 indels were identified
in patient II-5. Scheme prioritization discriminated the likely
pathogenic changes in patients, which was similar to recent
genetic studies (Zheng et al., 2016b; Hu et al., 2017). After
being filtered against public databases and BGI in-house exome
databases, 54 heterozygous potential disease-causing variants
were identified (Supplementary Table 1).

Further Sanger sequencing and co-segregation analysis of
these variants in the pedigree excluded every heterozygous
variant as a single genetic cause of autosomal dominant LGMD.
Only the digenic variants TTN (NM_001267550.2) c.19481T>G
(p.Leu6494Arg) and TRAPPC11 (NM_021942.5) c.3092C>G
(p.Pro1031Arg) were observed in all three patients (I-2, II-3, and
II-5, Figures 1B,C), co-segregating with this family’s disorder
phenotype, and those (II-1, II-2, III-1, and III-2) carrying either
the TTN or the TRAPPC11 variant were asymptomatic. Other
unaffected family members (II-4 and III-3) and none of the
200 controls had either the TTN c.19481T>G variant or the
TRAPPC11 c.3092C>G variant (Figures 1D,E). The identified
TTN c.19481T>G and TRAPPC11 c.3092C>G variants have a

3http://www.mutationtaster.org/
4http://genetics.bwh.harvard.edu/pph2/
5http://www.ncbi.nlm.nih.gov/BLAST/
6http://genemania.org/
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low frequency recorded in the above public databases, including
1000 Genomes Project (4×10−4 and 3.4×10−3, respectively),
the NHLBI-ESP6500 (8×10−5, both), and ExAC (9.9×10−5 and
9.6×10−4, respectively). Bioinformatics softwares predicted that
two variants are “disease causing” (MutationTaster) and “possibly
damaging” (PolyPhen-2), respectively. TTN protein p.Leu6494
and TRAPPC11 protein p.Pro1031 are highly conserved in
different species. TRAPPC11 is co-expressed with the annexin
A7 gene (ANXA7) and the centrosomal protein 135 gene
(CEP135) which both have physically interaction with TTN using
GeneMANIA (Figure 3). These results suggest a possible disease-
causing role of the two identified variants.

DISCUSSION

This study identified digenic variants, TTN c.19481T>G
and TRAPPC11 c.3092C>G, in a Han Chinese LGMD
family. Three individuals (I-2, II-3, and II-5) carrying
both variants presented proximal muscle weakness, after
age 35, which is compatible with LGMD. Carriers in the

family of either TTN or TRAPPC11 variant, singly, were
unaffected. Digenic variants (TTN c.19481T>G and TRAPPC11
c.3092C>G) co-segregated with the LGMD phenotype in
this pedigree. Our subjects had adult-onset age, slow
progression and mildly elevated CK, different from either
typical LGMD2J or LGMD2S (Nigro and Savarese, 2014;
Zheng et al., 2016a).

The TTN gene (MIM 188840) has 363 exons and theoretically
encodes a 3,960 kDa protein with 35,991 residues (Savarese
et al., 2016). TTN, the largest human protein, spans half of
sarcomere from the Z-disk to the M-line, extending longer than
one micrometer (Chauveau et al., 2014; Gigli et al., 2016). TTN
proteins form a third filament system in striated muscle (Dos
Remedios and Gilmour, 2017; Kellermayer et al., 2019). The TTN
protein is composed of four diverse domains: the amino-terminal
Z-line, the I-band, A-band regions, and the carboxy-terminal
M-line extremity (Neiva-Sousa et al., 2015; Gigli et al., 2016).
The TTN p.Leu6494Arg variant is located on the I-band, which
contains numerous protein partner-binding sites and multiple
elastic spring elements with highly repetitive domains, associated
with its elasticity (Chauveau et al., 2014; Neiva-Sousa et al., 2015).

FIGURE 3 | Biological interaction network of TTN and TRAPPC11 (GeneMANIA v3.6.0, http://genemania.org). TTN, the titin gene; TRAPPC11, the trafficking protein
particle complex 11 gene.
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Mice with a shortened TTN elastic tandem immunoglobulin (Ig)-
like segment showed significant spine curvature and muscle fiber
atrophy (Buck et al., 2014).

The TRAPPC11 gene (MIM 614138) encodes a 1,133-amino
acid protein containing two functional regions (the foie gras
and gryzun domains) (Matalonga et al., 2017). This protein is a
subunit of the TRAPP III multiprotein complex. It is involved
in anterograde transport from the endoplasmic reticulum (ER)
to the ER-to-Golgi intermediate compartment (ERGIC) and
proposed to participate in regulating N-linked glycosylation
(Scrivens et al., 2011; Koehler et al., 2017; Matalonga et al., 2017).
TRAPPC11 knockdown in HeLa cells led to Golgi apparatus
dispersal, defective protein glycosylation, and lipid accumulation
(Wendler et al., 2010; Scrivens et al., 2011; DeRossi et al.,
2016). The trappc11-mutant zebrafish larvae had motility defects
(DeRossi et al., 2016).

To date, at least 54 human digenic diseases involved in
169 genes have been recorded in DIDA (DIgenic diseases
DAtabase)7. In DIDA, five relationship types are defined for
digenic combination: directly interaction, indirectly interaction,
pathway membership, co-expression and similar function
(Gazzo et al., 2016). TTN gene variants have previously been
implicated with variants in other genes as the basis for familial
hypertrophic cardiomyopathy, left-ventricular non-compaction
cardiomyopathy, and dilated cardiomyopathy (Waldmüller et al.,
2015). Double heterozygous mutations in two genes were
identified in several patients with genetic myopathies (Trabelsi
et al., 2008; Peddareddygari et al., 2018; Chakravorty et al., 2020).
The bioinformatics analysis revealed possible interactions and
common pathways in desmin and calpain 3, which supported
the two heterozygous variants leading to the patient’s LGMD
in a digenic mechanism (Peddareddygari et al., 2018). Our
study suggests a possible causative role of digenic variants in
TTN and TRAPPC11 genes in the LGMD phenotype apparently
segregating in a dominant way in the studied family.

Both TTN, an abundant sarcomeric multifunctional protein,
and TRAPPC11, an intracellular vesicle trafficking protein in
biosynthesis, are reported to be related to LGMD (Scrivens
et al., 2011; Bögershausen et al., 2013; Neiva-Sousa et al., 2015).
Intriguingly, the results of GeneMANIA demonstrated that
TTN has physical interaction with ANXA7 and CEP135, while
TRAPPC11 is co-expressed with ANXA7 and CEP135. Those
may imply an identical potential pathogenic pathway involving
TTN and TRAPPC11 proteins resulting in the myopathy. The
interrelationship and synergy between the two proteins await
further functional experiments. Though with the application of
appropriate approaches for diagnosis, some LGMD cases remain
undiagnosed in genetics, and monogenic variants may not be
accountable for all cases (Magri et al., 2017; Yu et al., 2017;
Chakravorty et al., 2020). Although the possibility of complex
rearrangement, deletion, and duplication involving one or a
few exons, or deep pathogenic point variants in introns cannot
be fully ruled out, our study provides the clue of a possible
digenic mechanism or enhanced susceptibility responsible for the
phenotype in this LGMD family.

7http://dida.ibsquare.be/browse/

CONCLUSION

In summary, digenic variants TTN c.19481T>G (p.Leu6494Arg)
and TRAPPC11 c.3092C>G (p.Pro1031Arg) were observed in
a LGMD family and co-segregated with the disease phenotype,
which may be responsible for the LGMD phenotype. However,
our study cannot exclude the missed inspection such as complex
rearrangement, gross deletion and gross duplication, as well as
deep pathogenic point variants in introns involved in monogenic
LGMD, presenting autosomal dominant or pseudo-dominant
phenomenon. Our study provides a possibility of a digenic
mechanism in unsolved families with muscular dystrophies.
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