
ORIGINAL RESEARCH
published: 29 October 2021

doi: 10.3389/fnins.2021.603433

Frontiers in Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 603433

Edited by:

Guoqi Li,

Tsinghua University, China

Reviewed by:

Peng Li,

Tianjin University, China

Jibin Wu,

Sea AI Lab, Singapore

*Correspondence:

Gopalakrishnan Srinivasan

srinivg@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 06 September 2020

Accepted: 23 July 2021

Published: 29 October 2021

Citation:

Srinivasan G and Roy K (2021)

BlocTrain: Block-Wise Conditional

Training and Inference for Efficient

Spike-Based Deep Learning.

Front. Neurosci. 15:603433.

doi: 10.3389/fnins.2021.603433

BlocTrain: Block-Wise Conditional
Training and Inference for Efficient
Spike-Based Deep Learning
Gopalakrishnan Srinivasan* and Kaushik Roy

Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States

Spiking neural networks (SNNs), with their inherent capability to learn sparse spike-based

input representations over time, offer a promising solution for enabling the next generation

of intelligent autonomous systems. Nevertheless, end-to-end training of deep SNNs

is both compute- and memory-intensive because of the need to backpropagate error

gradients through time. We propose BlocTrain, which is a scalable and complexity-aware

incremental algorithm for memory-efficient training of deep SNNs. We divide a deep

SNN into blocks, where each block consists of few convolutional layers followed by a

classifier. We train the blocks sequentially using local errors from the classifier. Once a

given block is trained, our algorithm dynamically figures out easy vs. hard classes using

the class-wise accuracy, and trains the deeper block only on the hard class inputs. In

addition, we also incorporate a hard class detector (HCD) per block that is used during

inference to exit early for the easy class inputs and activate the deeper blocks only

for the hard class inputs. We trained ResNet-9 SNN divided into three blocks, using

BlocTrain, on CIFAR-10 and obtained 86.4% accuracy, which is achieved with up to

2.95× lower memory requirement during the course of training, and 1.89× compute

efficiency per inference (due to early exit strategy) with 1.45×memory overhead (primarily

due to classifier weights) compared to end-to-end network. We also trained ResNet-11,

divided into four blocks, on CIFAR-100 and obtained 58.21% accuracy, which is one of

the first reported accuracy for SNN trained entirely with spike-based backpropagation

on CIFAR-100.

Keywords: deep SNNs, spike-based backpropagation, complexity-aware local training, greedy block-wise

training, fast inference

1. INTRODUCTION

Deep neural networks have achieved remarkable success and redefined the state-of-the-art
performance for a variety of artificial intelligence tasks including image recognition (He et al.,
2016), action recognition in videos (Simonyan and Zisserman, 2014a), and natural language
processing (Bahdanau et al., 2014; Sutskever et al., 2014), among other tasks. We refer to
modern deep neural networks as analog neural networks (ANNs) since they use artificial neurons
(sigmoid, ReLU, etc.) that produce real-valued activations. ANNs attain superhuman performance
by expending significant computational effort, which is believed to bemuch higher compared to the
human brain. The quest for improved computational efficiency has led to the emergence of a new
class of networks known as spiking neural networks (SNNs) (Maass, 1997), which are motivated

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.603433
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.603433&domain=pdf&date_stamp=2021-10-29
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:srinivg@purdue.edu
https://doi.org/10.3389/fnins.2021.603433
https://www.frontiersin.org/articles/10.3389/fnins.2021.603433/full

Srinivasan and Roy BlocTrain

by the sparse spike-based computation and communication
capability of the human brain. The salient aspect of SNN is its
ability to learn sparse spike-based input representations over
time, which can be used to obtain higher computational efficiency
during inference in specialized event-driven neuromorphic
hardware (Merolla et al., 2014; Davies et al., 2018; Blouw et al.,
2019).

Supervised training of SNNs is challenging and has attracted
significant research interest in recent years (Lee et al., 2016,
2020; Bellec et al., 2018; Jin et al., 2018; Shrestha and Orchard,
2018; Wu et al., 2018; Neftci et al., 2019; Thiele et al., 2020).
Error backpropagation algorithms, which are the workhorse
for training deep ANNs with millions of parameters, suffer
from scalability limitations when adapted for SNNs. It is well
known that end-to-end training of feed-forward ANNs, using
backpropagation, requires the activations of all the layers to be
stored in memory for computing the weight updates. SNNs, by
virtue of receiving input patterns converted to spike trains over
certain number of time-steps, require multiple forward passes
per input. As a result, spike-based backpropagation algorithms
need to integrate error gradients through time (Neftci et al.,
2019). The ensuing weight update computation requires the
spiking neuronal activation and state (also known as membrane
potential) to be stored across time-steps for the entire network.
SNNs are typically trained for hundreds of time-steps to
obtain high enough accuracy for visual image recognition tasks
(Lee et al., 2020). Hence, end-to-end training of SNN using
backpropagation through time (BPTT) requires much higher
memory footprint over that incurred for training similarly sized
ANN onGraphics Processing Units (GPUs) (Gruslys et al., 2016).

In this work, we propose input complexity driven block-wise
training algorithm, referred to as BlocTrain, for incrementally
training deep SNNs with reduced memory requirements
compared to that incurred for end-to-end training. We divide
a deep SNN into blocks, where each block consists of few
convolutional layers followed by a local auxiliary classifier, as
depicted in Figure 1. We train the blocks sequentially using
local losses from the respective auxiliary classifiers. For training
a particular block, we freeze the weights of the previously
trained blocks and update only the current block weights
using local losses from the auxiliary classifier. The proposed
algorithm precludes the need for end-to-end backpropagation,
thereby considerably reducing the memory requirements during
training, albeit with overhead incurred due to the addition of a
classifier per block. Next, we present a systematic methodology to
determine the optimal SNN depth for a given application based
on the target accuracy requirements. New blocks are added only
if the accuracy of prior blocks (obtained on the validation set)
is lower than the desired accuracy. Further, the newly appended
blocks are trained only on the “hard” classes as summarized
below. Once a particular block is trained, we subdivide the
classes into “easy” and “hard” groups based on the class-wise
accuracy on the validation set. We incorporate and train a HCD
in the following block to perform binary classification between
the “easy” and the “hard” class inputs. The next deeper block
is now trained only on the hard class instances, as illustrated
in Figure 1. Previous works on class complexity aware training

built hierarchical classifier models, where the initial layers classify
the inputs into coarse super-categories while the deeper layers
predict the finer classes, which require end-to-end training and
inference (Srivastava and Salakhutdinov, 2013; Yan et al., 2015;
Panda et al., 2017a). On the other hand, BlocTrain significantly
minimizes the training effort with increasing block depth due
to gradual reduction in the number of output classes. During
inference, we obtain improved computational efficiency by using
the HCD per block to terminate early for easy class inputs
and conditionally activate deeper blocks only for the hard class
inputs. The higher inference efficiency is achieved with increased
memory requirement owing to the use of nonlinear auxiliary
classifiers. We demonstrate the capability of BlocTrain to provide
improved accuracy as well as higher training (compute and
memory) and inference (compute) efficiency relative to end-
to-end approaches for deep SNNs on the CIFAR-10 and the
CIFAR-100 datasets. Note that BlocTrain, although demonstrated
in this work for SNNs, can be directly applied for ANNs to
achieve efficient conditional training and inference. Overall, the
key contributions of our work are as follows:

1. We propose a scalable training algorithm for deep SNNs,
where the block-wise training strategy can help alleviate the
larger memory requirement, which is bound by hardware
limitations, and gradient propagation issues incurred by end-
to-end training.

2. We present a systematic methodology to determine the
optimal network size (in terms of number of layers) for a given
dataset based on the accuracy requirements, since new layers
are added and trained sequentially until the desired accuracy
is achieved.

3. We improve the latency and compute efficiency during
inference, which is achieved by using the HCD to exit early
for the easy class instances and activate the deeper blocks only
for the hard class instances.

2. RELATED WORK

2.1. Local Training of Deep Neural Nets
Several approaches have been proposed to complement or
address the challenge of end-to-end training of deep networks.
Before the deep learning revolution (circa 2012), unsupervised
layer-wise pre-training based on local loss functions was used to
effectively initialize the weights of deep ANNs (stacked denoising
autoencoder, deep belief nets, etc.) (Ivakhnenko and Lapa, 1965;
Hinton and Salakhutdinov, 2006; Hinton et al., 2006; Bengio
et al., 2007; Vincent et al., 2008; Erhan et al., 2010; Belilovsky
et al., 2019). SNNs, on the contrary, have been pre-trained using
spiking autoencoders (Panda and Roy, 2016) as well as more
biologically plausible spike timing dependent plasticity (STDP)
based localized learning rules (Masquelier and Thorpe, 2007;
Diehl and Cook, 2015; Ferré et al., 2018; Kheradpisheh et al.,
2018; Mozafari et al., 2018; Srinivasan et al., 2018; Tavanaei et al.,
2018; Thiele et al., 2018; Lee et al., 2019; Srinivasan and Roy,
2019). Greedy layer-wise unsupervised training of SNNs has until
now been demonstrated only for shallow networks (≤ 5 layers),
yielding considerably lower than state-of-the-art accuracy on

Frontiers in Neuroscience | www.frontiersin.org 2 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 1 | Illustration of BlocTrain methodology for block-wise input complexity aware training of deep SNNs. The blocks are trained sequentially using local losses

from the respective classifiers. Each block Bi has a hard class detector that is trained to perform binary classification between the easy (Ei−1) and the hard class

instances (Hi−1), as determined from the preceding block. The next block Bi+1 is trained only on the hard class instances (Hi−1). This process is repeated for every

block, leading to fast learning with increasing block depth.

complex datasets, for instance, ∼71% on CIFAR-10 (Panda and
Roy, 2016; Ferré et al., 2018). Some works have also proposed
supervised pre-training of deep networks using losses generated
by auxiliary classifier per layer (Marquez et al., 2018). However,
pre-training is followed by end-to-end backpropagation to attain
improved accuracy and generalization for both ANNs (Erhan
et al., 2010; Dong et al., 2018) and SNNs (Lee et al., 2018).

Very few works use only the local losses generated by the
layer-wise auxiliary classifier to train deep nets (Kaiser et al.,
2018; Mostafa et al., 2018; Nøkland and Eidnes, 2019). Mostafa
et al. (2018) found that layer-wise training using only the
local discriminative loss caused the accuracy of a 10-layer deep
ANN to saturate after the sixth layer with an accuracy of
∼83%, which is lower than that (∼87%) achieved with end-to-
end error backpropagation on CIFAR-10. Nøkland and Eidnes
(2019) supplemented the local discriminative loss using similarity
matching loss to converge to the accuracy provided by end-
to-end backpropagation. Alternatively, Jaderberg et al. (2017)
proposed incorporating a decoupled neural network at every
layer (or every few layers) of the original deep ANN to produce
synthetic gradients that are trained to match the true gradients
obtained with global backpropagation.

2.2. Fast Inference for Deep Nets
Fast inference methods use auxiliary classifiers at various
intermediate layers of a deep network and terminate inference
sequentially at different classifiers based on the input complexity
(Panda et al., 2016, 2017b; Teerapittayanon et al., 2016; Huang
et al., 2018). The end-to-end network and classifiers can be either
trained independent of each other (Panda et al., 2016, 2017b)
or co-optimized to minimize the weighted cumulative loss of
all classifiers (Teerapittayanon et al., 2016; Huang et al., 2018).
Inference is terminated at the earlier classifiers for easy inputs
and the deeper classifiers for hard inputs, resulting in improved
latency and computational efficiency.

BlocTrain differs from prior works in the following respects:

1. We introduce auxiliary classifiers at the granularity of blocks
of convolutional layers and train the blocks sequentially using
only the local discriminative loss.

2. We train the deeper blocks only on hard classes, which are
automatically deduced by BlocTrain based on the class-wise
accuracy of the earlier blocks on the validation set.

3. BlocTrain leads to fast inference by detecting instances
belonging to easy or hard classes learnt during training. Prior
approaches classify the instances as easy or hard irrespective of
their class labels. Our inference method incurs lower training
effort with increasing block depth while the latter approach
requires all the blocks to be trained on the entire dataset.

3. SPIKE-BASED INPUT
REPRESENTATION, NEURONS, AND BPTT

The unique attributes of deep SNNs over ANNs are spike-
based input coding and neuronal nonlinearity, which facilitate
temporal information processing. For vision tasks, the input
pixels are converted to Poisson-distributed spike trains firing
at a rate proportional to the corresponding pixel intensities, as
described inHeeger (2000) and shown in Figure 2A. The number
of time-steps (latency) determine the training as well as inference
efficiency, and is in the order of few hundreds of time-steps (Jin
et al., 2018; Lee et al., 2020). At any given time, the weighted sum
of the input spikes gets integrated into the membrane potential
of “soft reset” leaky integrate and fire (LIF) neuron (Diehl et al.,
2016), whose dynamics are described by

ut+1 = αut +
∑

i wix
t
i − vst

st = 2(
ut

v
− 1)

(1)

where u is the membrane potential, superscript t indicates the
time-step, α is the rate of leak of membrane potential, wi and
xi are the weight and spike train of ith input neuron, v is the
firing threshold, s is the spike output, and 2 is the Heaviside step
function. The LIF neuron produces a spike when its membrane
potential exceeds the firing threshold. At the instant of a spike,
the membrane potential is “soft reset” by reducing its value
by an amount equal to the threshold voltage, as described
in Equation (1). The “soft reset” mechanism carries over the
residual potential above threshold at the firing instants to the
following time-step, thereby minimizing the information loss
during forward propagation.

Backpropagation is performed by unrolling the network and
integrating the losses over time as depicted in Figure 2B. The

Frontiers in Neuroscience | www.frontiersin.org 3 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 2 | (A) Spike-based input representation, and membrane potential dynamics, soft reset behavior, and piece-wise linear surrogate gradient for a leaky

integrate and fire (LIF) neuron. An LIF neuron integrates the weighted sum of input spikes (X t(i)) with the synaptic weights (wi) and emits a spike (st) when its membrane

potential (ut) exceeds the firing threshold (v). In the event of a spike, the membrane potential is reduced (or soft reset) by an amount equal to the firing threshold.

During backpropagation, the discontinuous Dirac delta gradient (∂st

∂ut
) is replaced by a continuous surrogate gradient approximation. (B) Illustration of backpropagation

through time for a spiking neuron, where in the output loss (∂L
∂st

) is accumulated over T simulation time-steps.

weight update (1wi) is computed as described by

1wi =
∑

t

∂L

∂wt
i

=
∑

t

∂L

∂st
∂st

∂ut
∂ut

∂wt
i

(2)

where L is the loss function [Mean Squared Error (MSE) loss,
cross-entropy loss, etc.] that measures the deviation of the actual
network output from the target (class label for image recognition
tasks). The partial derivative of the LIF neuron output with

respect to the membrane potential, ∂st

∂ut
, is the derivative of the

Heaviside function specified in Equation (1). The LIF output

derivative is described by the Dirac delta function, δ(u
t

v − 1),
which is not defined at the spiking instants (t ∈ N

+|ut = v)
and is zero elsewhere. The Dirac delta derivative is not suitable
for backpropagation since it precludes the effective backward
flow of error gradients. The discontinuous derivative is replaced
by a smooth function, known as surrogate gradient, around the
spiking instants (Bellec et al., 2018; Shrestha and Orchard, 2018;
Zenke and Ganguli, 2018; Roy et al., 2019). We use the piece-wise
linear surrogate gradient (Bellec et al., 2018), which is specified as

∂st

∂ut
≈ γ Max(0, 1− |

ut

v
− 1|) (3)

where γ (< 1) is the gradient dampening factor. The linear
surrogate gradient is maximum at the spiking instants and
linearly decreases elsewhere based on the absolute difference
between the membrane potential and threshold as depicted in
Figure 2A. We refer the readers to Neftci et al. (2019) for a survey
of surrogate gradient approximations proposed in literature.

4. BlocTrain TRAINING AND INFERENCE
ALGORITHM

4.1. Block-Wise Complexity-Aware Training
In this section, we describe the block-wise complexity-aware
incremental algorithm for memory-efficient training of deep

SNNs. We divide a deep spiking network into blocks, where
each block is composed of few convolutional and/ or pooling
layers followed by a classifier, as illustrated in Figure 1. We use
nonlinear classifiers, consisting of an additional hidden layer
before the final softmax layer. Hence, the location of the classifiers
needs to be chosen judiciously for achieving improved training
efficiency withminimal parameters overhead. Algorithm 1 details
the presented block-wise trainingmethodology.We train the first
block B1 on the entire training set using surrogate gradient-based
BPTT (Algorithm 2), which is discussed later in this section.
We then compute its class-wise accuracy on the validation set.
If the accuracy of a class is lower (higher) than a pre-determined
“hardness threshold,” the class is grouped as a hard (easy) class.
The following block B2 is trained on the easy and hard class
instances of B1 (entire training set) with frozen B1 weights. The
softmax units of B2 are trained with cross-entropy loss computed
using the class labels. In addition, we introduce an HCD, which
is a binary neuron with sigmoidal activation function. The HCD
unit is trained with sigmoid cross-entropy loss to perform binary
classification between the easy and the hard class inputs. We then
determine the class-wise accuracy of the combined (B1 + B2)
network using fast inference method (refer to Algorithm 3),
detailed in section 4.2. Based on the class-wise accuracy of B2,
we further divide the hard classes of B1 into finer easy and hard
classes. The next block B3 is then trained on the finer easy and
hard class instances of B2, which are basically the hard class
instances of B1. In general, a given block Bi is trained on the easy
and hard inputs of Bi−1 (same as the hard inputs of Bi−2) with
fixed B1 . . .Bi−1 weights, as described in Algorithm 1. BlocTrain
leads to higher compute and memory efficiency compared to
end-to-end methods. In addition, we also show (in section 5) that
residual connections between the blocks enable the deeper blocks
to learn better representations, leading to higher accuracy.

Next, we detail the surrogate gradient-based BPTT algorithm
used for training the SNN blocks. The convolutional and linear
layers of the SNN are followed by LIF nonlinearity, as described
in Algorithm 2. During forward pass, Heaviside step function is

Frontiers in Neuroscience | www.frontiersin.org 4 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

Algorithm 1: Block-wise training for SNN with N blocks B1
. . . BN , where block Bi has Li layers.

Input: Training data (Xtrain) and labels (Ytrain), Validation
data (Xval) and labels (Yval), #Output classes (Nclass),
#Time-steps (T), hardness threshold (Acchard−thresh)

Output: Trained weights for blocks B1 . . .BN , Easy and
hard class list (E0,H0) . . . (EN ,HN)

Initialize: Easy and hard class list for the training set
E0 = []
H0 = [0, 1, . . .Nclass−1]

for i = 1 to N do
// Load instances belonging to easy and hard classes of
Bi−1 to train Bi
X = Xtrain[Ei−1∪ Hi−1]

// Forward propagate until Bi−1 (refer to algorithm 2)
O0 = PoissonGenerator(X, T)
Ores0 = Zeros(size(O0))
for j = 1 to i−1 do

Oj, Oresj = Fwd(Bj, Lj,Oj−1,Oresj−1 ,T)

end

// Generate labels for the auxiliary classifier and the hard
class detector (HCD) in Bi
Y = Ytrain[Ei−1 ∪ Hi−1]
YHCD = {0 ∀Ytrain∈Ei−1, 1 ∀Ytrain∈Hi−1}

// Train Bi on the easy and the hard class instances of
Bi−1 (refer to
// algorithm 2 for spike-based backpropagation through
time or BPTT)
BPTT(Bi, Li,Oi−1,Oresi−1 ,T,Y ,YHCD)

// Populate easy and hard class list of Bi using the
class-wise accuracy
// on the validation set (refer to algorithm 3 for the fast
inference method)
Acc=FastInfer(i,B1 . . .Bi, L1 . . . Li, (E0,H0) . . .
(Ei−1,Hi−1),T,Xval,Yval)
for cls in Hi−1 do

if Acc[cls] ≤ Acchard−thresh then
Hi.append(cls)

else
Ei.append(cls)

end

end

end

applied to the LIF neuron membrane potentials for generating
spike inputs to the following layer at every time instant.
In addition, the membrane potentials and spiking activations
are stored for computing and backpropagating the surrogate
gradients during the BPTT phase. The average pooling layers,

Algorithm 2: Mini-batch (with batch_size) spike-based
backpropagation through time (BPTT).

Input: Block B, #Layers (L), Mini-batch spike-input (S0,
Sres0), #Time-steps (T), Labels for output classifier
(Y) and hard class detector (YHCD)

Output: Trained weights for BPTT (called in algorithm 1),
spike output (Sl, Sresl) for Fwd (called in algorithm
1) and FwdInfer (called in algorithm 3), Output
logits (UL,UHCD) for FwdInfer (called in algorithm
3)

Initialize: Model paramaters (superscript→t,
subscript→layer)
for l = 1 to L−1 do

U1
l
=Zeros(batch_size,B[l].size) // Initialize the

membrane potential
Vl = v ∈ R

+ // Initialize the layer-wise neuronal firing
threshold
InitializeWl, W

res
l

randomly // Initialize the layer
weights

end

Initialize U1
L , U

1
HCD, WL, WHCD for the output logits

// Spike-based forward propagation
for t = 1 to T−1 do

for l = 1 to L−1 do
if isInstance(B[l], [Conv, Linear]) then

St
l
= LinearGradient(

Ut
l

Vl
− 1)

Ut+1
l

=αUt
l
+WlS

t
l−1

+Wres
l
Stresl−1

−VlS
t
l

end

else if isInstance(B[l],AvgPool) then

St
l
= PassThroughGradient(

Ut
l

Vl
− 1)

Ut+1
l

= Ut
l
+ AvgPool(St

l−1
)− VlS

t
l

end

end

Ut+1
L = αUt

L +WLS
t
L−1

Ut+1
HCD = αUt

HCD +WHCDS
t
L−1

end

// Compute the (softmax and HCD) loss and the weight
updates
Lsmax = CrossEntropy(UT

L ,Y)
LHCD = SigmoidCrossEntropy(UT

HCD,YHCD)
L = Lsmax + LHCD
for l = 1 to L do

1Wl ∝
∑

t
∂L

∂Wt
l

end

on the contrary, are followed by integrate-and-fire nonlinearity
(α=1 in Equation 1). This is because the pooled neurons do
not encode complex temporal dynamics, and spike based on

Frontiers in Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

the average firing rate of the LIF neurons located past the
preceding convolutional layer. During the BPTT phase, the
output gradients are passed through the pooling layers. The
output layer, consisting of the softmax and the HCD units,
is not subjected to spike-based nonlinearity to enable precise
computation of the output loss directly using the membrane
potential of the output neurons. The final loss, which is the
sum total of the cross-entropy loss of the softmax units and
sigmoid cross-entropy loss of the binary HCD unit, is minimized
using BPTT.

4.2. Fast Inference With Early Exit
BlocTrain, on account of introducing intermediate classifiers
(or exit branches), leads to fast inference, with early exit,
for deep SNNs as described in Algorithm 3. The inference
is terminated at a given block Bi using the softmax and
hard class prediction probabilities as the confidence measure
for the classifier and the HCD, respectively. Note that the
softmax probabilities at Bi are obtained using the cumulative
sum of the corresponding logits with their counterparts in
the previous block Bi−1. We find that combining the classifier
outputs by summing up the respective logits improves the final
prediction accuracy since the blocks are trained independently.
Our method of combining the individual classifier outputs to
boost the final accuracy is similar to adaptive boosting (Freund
and Schapire, 1995), which combines multiple weak classifiers
into a strong one. Inference is terminated at Bi under the
following conditions.

1. if the classifier exhibits high confidence, that is, if the classifier
prediction probability is higher than a pre-determined
confidence threshold (θconf);

2. if the HCD is low in confidence, that is, if the HCD prediction
probability is lower than hard-class confidence threshold
(θhigh), in which case it is not favorable to activate the
subsequent block.

Additionally, if the prediction at Bi belongs to the hard class
list of Bi−1 while the HCD probability is much smaller than
easy-class detection threshold (θlow), the original prediction
is possibly a false positive for the predicted hard class. In
this case, the original prediction at Bi is refined by selecting
the one with maximum probability among the softmax units,
which belong exclusively to the easy class list of Bi−1.
Only in the event that the classifier is low in confidence
and the HCD is high in confidence, the next deeper block
Bi+1 is activated. This process is repeated for the all the
blocks sequentially beginning from the first block, leading
to improved computational efficiency during inference, with
memory overhead incurred due to the use of nonlinear
intermediate classifiers and for storing the binary spiking
activations to be fed to the following block. Higher the number
of instances classified at the early exit branches, larger is the
computational efficiency benefit with reduced memory overhead
compared to end-to-end inference.

Algorithm 3: Fast inference, with early exit, algorithm for
spiking neural networks (SNNs).

Input: #Blocks (N), Blocks B1 . . .BN , #Layers per block
(L1. . .LN), Easy and hard class list for each block
(E0,H0) . . . (EN−1,HN−1), #Time-steps T, Test data
(Xtest) and labels (Ytest)

Output: Class-wise validation or test accuracy (Acc)
Initialize: Confidence threshold for classifier (θconfi) and
HCD (θhighi , θlowi

) for i ∈ [1 . . .N]

for d = 1 to size(Ytest) do

O0 = PoissonGenerator(Xd, T)
Ores0 = Zeros(size(O0))

for i = 1 to N do
// Perform forward propagation for block Bi (refer to
Algorithm 2)
Oi,Oresi ,Ui,UHCDi = FwdInfer(Bi, Li,Oi−1,Oresi−1 ,T)

// Perform inference with the softmax and the HCD
probabilities
Probsmaxi = Softmax(Ui)
Probpredi , Predi = Max(Probsmaxi)
Probhardi = Sigmoid(UHCDi)

if Probpredi≥θconfi ‖ Probhardi<θhighi then
// Get the prediction from Bi either if classifieri is
// high in confidence or HCDi is low in confidence
Predd

final
=Predi // Pred ∈ Ei−1∪Hi−1

// If the prediction is a false positive for a hard
class, refine the
// prediction by picking the most probable among
the easy classes
if Predd

final
∈ Hi−1 && Probhardi<θlowi

then

Predd
final

=argmaxEi−1 (Probsmaxi)

end

Break // Terminate inference at Bi
else

Continue // Move forward to Bi+1

end

end

end

Acc = GetClassWiseAcc(Predfinal,Ytest)

5. RESULTS

5.1. Experimental Setup
We demonstrate the efficacy of BlocTrain for ResNet-9 (on
CIFAR-10), and ResNet-11 and VGG-16 (on CIFAR-100), which
are among the deepest models trained entirely using spike-based
BPTT algorithms (Lee et al., 2020). ResNet-9 (ResNet-11) is
divided into 3 (4) blocks as illustrated in Figure 3. The input

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 3 | ResNet-11 spiking neural network (SNN), similar to the end-to-end topology presented in Lee et al. (2020), used to validate BlocTrain. The first 3 blocks

make up ResNet-9 SNN. Block1 is trained on all the classes (H0). Any other blocki is trained on the hard classes of blocki−2 (Hi−2), and has an additional hard class

detector (HCD) binary unit. The number of output feature maps, kernel size, stride, and spiking nonlinearity are specified for all the layers in each block of the ResNet

SNN analyzed in this work.

image pixels are normalized to zero mean and unit variance,
and mapped to Poisson spike trains firing at a maximum rate of
1,000 Hz over 100 time-steps. We generate positive or negative
spikes, based on the sign of the normalized pixel intensities, firing
at a rate proportional to the absolute value of the intensities as
described in Sengupta et al. (2019). For most experiments in
this work unless mentioned otherwise, the original CIFAR-10
or CIFAR-100 training set, consisting of 50,000 images, is split
into a training subset of 40,000 images and validation subset of
10,000 images. Training is performed on the training subset (for
125 epochs) using Adam optimizer (Kingma and Ba, 2014), with
mini-batch size of 64, and learning rate of 2e-4 for the first two
blocks and 1e-4 for the rest of the blocks as well as the baseline
end-to-end model. Once a given block is trained, the class-wise
accuracy on the validation subset is used to determine the easy
and the hard classes. The baseline model is obtained by removing
the local classifiers shown in Figure 3. The accuracy of the trained
models is reported on the test set of 10,000 images. The code
for SNN training and inference, using BlocTrain and end-to-end
method, is uploaded as Supplementary Material.

5.2. ResNet-9 SNN on CIFAR-10
We trained the first block B1 of ResNet-9 SNN on the CIFAR-
10 training subset. The class-wise accuracy provided by B1 (on
the validation set) at the end of training is shown in Figure 4.
Based on the hard-class accuracy threshold (Acchard−thresh) of
95.5%, BlocTrain automatically categorized the original CIFAR-
10 classes into 7 easy (E1) and 3 hard classes (H1), as depicted
in Figure 4. We then trained the classifier of the next block B2
on all the 10 classes, and the binary HCD unit for distinguishing
between the easy (E1) and the hard groups (H1). Following
the training of B2, the last block B3 was trained on only the
3 hard classes of B1. We first present the training efficiency
benefits offered by BlocTrain and then discuss the inference
accuracy-efficiency trade-off.

The training efficiency of BlocTrain over end-to-end approach
is quantified using the memory requirement for performing
BPTT. For training a block Bi, BlocTrain requires only the
spiking activations and membrane potentials of Bi to be
stored across time-steps in addition to the weights of all the
blocks until Bi. Note that the classifier of previous blocks
are not necessary for training the current block, and hence,
they are ignored for estimating the memory requirement for
the current block. Also, the spiking activations, being binary,
consumes 32× smaller memory footprint than that for the
weights and membrane potentials. End-to-end method, on the
other hand, requires the weights, potentials, and activations of
the entire network for performing BPTT. Our analysis shows
that BlocTrain incurs 1.32×-2.95× lower memory requirement
relative to end-to-end BPTT. In addition, we also find that
the BlocTrain memory requirement decreases until B2 after
which it slightly increases, albeit much lower than end-to-
end BPTT. The higher memory requirement for B3 stems
from an increase in the block parameters as shown in
Figure 3. Finally, our experiments indicate that the training
time reduces with block depth beginning from B3. B2, on
account of being fed by B1 and trained on all the classes,
incurs slightly longer training time relative to B1. Overall,
ResNet-9 SNN trained using BlocTrain on a Nvidia GeForce
GTX GPU with 11178MiB memory capacity incurs 1.13×
slowdown in training time per epoch over end-to-end training
when the same mini-batch size is used for both methods.
Section 6.4.2 details the training time incurred by BlocTrain,
relative to end-to-end training, on different training hardware
configurations. Aside from memory efficiency, BlocTrain offers
the following benefits, as quantified and discussed in the
subsequent paragraphs.

1. BlocTrain leads to stable training convergence by
effectively circumventing the gradient propagation issues
plaguing end-to-end SNN training approaches, leading to
higher accuracy.

Frontiers in Neuroscience | www.frontiersin.org 7 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 4 | Algorithm to determine easy vs. hard classes based on the class-wise accuracy of ResNet9-block1 on the CIFAR-10 validation subset. If the class-wise

accuracy, Acccls−wise, is lesser (greater) than the hardness threshold, Acchard−thresh, the class is categorized as a hard (easy) class.

FIGURE 5 | (A) Test accuracy, (B) normalized training memory efficiency, and (C) normalized training time offered by BlocTrain over end-to-end training for ResNet-5

(Block1), ResNet-7 (Block1+2), and ResNet-9 (Block1+2+3) spiking neural networks (SNNs).

2. BlocTrain, by virtue of estimating the optimal SNN size
based on dataset complexity and using early exit inference
strategy, offers improved latency and computational efficiency
during inference.

ResNet-9 SNN (trained using BlocTrain) offered 86.4% test
accuracy when inference was performed, as described in
Algorithm 3, using the classifier confidence threshold (θconf) set
to unity. Next, in order to quantify the impact of inter-block
residual connections, we trained a VGG9-like network (ResNet-
9 in Figure 3 without residual connections) using BlocTrain.
The VGG9-like SNN provided lower accuracy of 85.5%, which
indicates that residual connections between the blocks enable the
deeper blocks to learn better high-level representations. The test
accuracy of 86.4% provided by ResNet-9 is roughly 1.5% higher
than that achieved with end-to-end network training (without
the intermediate classifiers). This is a counterintuitive, albeit
interesting, finding since end-to-end training of deep ANNs has
been shown to outperform local training using intermediate

classifiers (Marquez et al., 2018; Mostafa et al., 2018). For deep
SNNs, stable convergence of end-to-end training, by eliminating
the vanishing gradient phenomenon, largely depends on proper
layer-wise threshold initialization and choosing the “right”
surrogate gradient parameters. BlocTrain, by using divide-
and-conquer based incremental training method, effectively
circumvents the initialization dilemma by limiting the gradient
flow to few layers at any given time. In order to evaluate the
training convergence properties of BlocTrain with increasing
block depth relative to end-to-end training, we trained 3 different
networks, namely ResNet-5 (Block1), ResNet-7 (Block1+2), and
ResNet-9 (Block1+2+3). Note that we used the same parameters
for the thresholds and the surrogate gradients, as suggested
by Bellec et al. (2018) and Lee et al. (2020), respectively, for
BlocTrain as well as end-to-end training. Figure 5A indicates that
end-to-end training yields higher accuracy than BlocTrain for
Block1, which can be attributed to the fact that BlocTrain uses
a smaller training subset (refer to section 5.1), while end-to-end

Frontiers in Neuroscience | www.frontiersin.org 8 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

training uses the entire training set. However, as more blocks are
appended, BlocTrain offers superior accuracy than end-to-end
training despite using a smaller training subset. In fact, end-to-
end training causes slight accuracy degradation for Block1+2+3

compared to Block1+2 network, as depicted in Figure 5A. The
improved accuracy offered by BlocTrain is achieved with higher
memory efficiency, as illustrated in Figure 5B. Training time,
on the contrary, increases with block depth for BlocTrain over
end-to-end training when equivalent mini-batch size is used for
both approaches, as shown in Figure 5C. The increase in training
time is primarily caused by the need to performmultiple forward
passes for the earlier blocks to train deeper blocks. We refer the
readers to section 6.4.2 for comparative analysis of training time
under different mini-batch size considerations.

During inference, ResNet-9 offers 1.89× higher compute
efficiency over the baseline model due to early exit strategy.
The compute efficiency is estimated based on the number of
operations (in the convolutional and linear layers) per inference,
averaged over the test set. However, ResNet-9 also incurs
1.45× memory overhead to store and access the nonlinear
fully connected classifier parameters and block-wise spiking
activations per inference. Figure 6 indicates that as the classifier
confidence thresholds are relaxed to enable more instances
to exit at B1, the overall compute efficiency increases with
commensurate reduction in the memory overhead. We obtain
2.39× higher compute efficiency with 1.25× memory overhead
per inference relative to the baseline network with<0.5% drop in
accuracy, as shown in Figures 6A,B.

5.3. ResNet-11 SNN on CIFAR-100
In the previous section 5.2, we demonstrated that BlocTrain
could dynamically figure out the easy and the hard classes during
the course of training. However, in CIFAR-10, there was clear
separation between the easy and the hard classes. Hence, we could
not analyze what impact would different choices for hard classes
have on the training and the inference efficiency. We set forth
to answer this question for ResNet-11 on CIFAR-100. Once B1
(B2) was trained, we generated three different sets of hard classes
for B3 (B4) by setting the hardness threshold (Acchard−thresh in
Algorithm 1) to 90.5, 92, and 93%, respectively. Higher the
hardness threshold, larger is the number of hard classes for
the deeper layers, and vice versa, as shown in Figure 7A. For
instance, hardness threshold of 90.5% is relatively easy to satisfy
in the earlier blocks, resulting in fewer hard classes for the
deeper layers. On the other hand, a higher hardness threshold
of 93% leads to much more hard classes for the deeper layers.
The training effort for the deeper layers directly corresponds to
the chosen hardness threshold. Higher the hardness threshold,
longer is the training time for the deeper layers.

During inference (θconf set to 0.9999), we found that the
number of instances classified at B1 was the same for all the
three ResNet-11 models, which is expected since the HCD is only
pertinent beyond B1. Beginning from B2, the models with higher
hardness threshold of 92% and 93% were pushing more inputs to
the deeper layers, B3 and B4, while the one with lowest threshold
was classifying a larger fraction of the inputs at B2, as shown
in Figure 7B. As a result, ResNet-11 with hardness threshold

of 90.5% has the highest compute efficiency during inference
(1.78×) followed by the others, as depicted in Figure 7C. Also,
it has the lowest test accuracy (57.56%) relative to that (58.21%)
offered by ResNet-11 with the highest threshold, as shown in
Figure 7D. However, the accuracy increase is only 0.65%, which
indicates that the deeper layers could not significantly improve
the accuracy for the hard classes. This could be an artifact of
the CIFAR-100 dataset, which has only 500 instances per class.
Nevertheless, our analysis indicates that the test accuracy of
58.21%, offered by BlocTrain for ResNet-11 SNN on CIFAR-100,
is∼6% higher relative to that obtained with end-to-end training.
The superior accuracy offered by BlocTrain is a testament to its
ability to scale to deeper SNNs for complex datasets. Finally, we
note that ResNet-11 incurs >2× parameters overhead, as shown
in Figure 7C, due to the inclusion of four nonlinear classifiers.
The overhead can be reduced by merging the B1 and B2 classifiers
since >70% of the instances are classified at B2, and by using
linear classifiers.

5.4. VGG-16 SNN on CIFAR-100
In order to demonstrate the scalability of BlocTrain to
deeper SNNs, we trained VGG-16 architecture (Simonyan and
Zisserman, 2014b) divided into 4 blocks, as illustrated in
Figure 8. Each block is equipped with a simple linear classifier
without any hidden layers so as to reduce the parameter overhead
imposed by BlocTrain. In addition, the final block (Block4)
receives residual inputs from Block1 and Block2 for addressing
the issue of vanishing spikes to deeper blocks of a network.
Also, the firing threshold of the convolutional layers in Block4
needed to be tuned for ensuring efficient spike propagation
and gradient backpropagation. The firing threshold of the
remaining blocks is set to unity. Thus, BlocTrain offers a prior
to suitably initialize the firing threshold of deeper blocks. On the
contrary, threshold initialization remains a challenge for end-
to-end training methods. Too high a firing threshold leads to
vanishing spikes, thereby, necessitating longer simulation time-
steps to achieve competitive accuracy. Too low a threshold
causes exploding spikes, which could negatively impact training
convergence and accuracy. All the blocks are trained on the entire
CIFAR-100 training set. The test set is used to deduce the easy
and the hard classes post the training of each block. The first
two blocks are trained on all the CIFAR-100 classes, while Block3
and Block4 are trained on 87 and 75 hard classes, respectively, as
shown in Figure 9A. The test accuracy, depicted in Figure 9B,
increases until Block2 and nearly saturates for deeper blocks.
VGG-16 SNN achieves best test accuracy of 61.65%, where in
majority of inferences are terminated in the earlier blocks, as
shown in Figure 9C. We already demonstrated the ability of
BlocTrain to provide higher accuracy than end-to-end training,
in sections 5.2 and 5.3, when the same input coding, spiking
nonlinearity, and backpropagation algorithm (and the associated
hyperparameters) are used for both methods. Future works could
improve the accuracy of deeper blocks in large networks by
introducing additional diversity during the training of deeper
blocks. For large datasets, this can be achieved by partitioning
the dataset across the earlier and deeper blocks. In addition,

Frontiers in Neuroscience | www.frontiersin.org 9 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 6 | (A) Test accuracy, (B) computational efficiency in terms of the normalized number of synaptic operations and memory overhead per inference, and (C)

percentage of exiting inputs per block vs. classifier confidence thresholds (θconf) for ResNet-9 spiking neural network (SNN) on CIFAR-10.

neural architecture search (Elsken et al., 2019) could be used to
determine the optimal number of hard classes for deeper layers.

6. DISCUSSION

6.1. BlocTrain Hyperparameters Heuristics
In this section, we present the heuristics for setting the BlocTrain
hyperparameters, namely, the hard-class accuracy threshold, also
referred to as the class hardness threshold (Acchard−thresh in
Algorithm 1) and the softmax classifier confidence threshold
(θconf in Algorithm 3). The choice of these hyperparameters
directly impacts the trade-off amongmemory overhead, compute
efficiency, and test accuracy, as illustrated in Figures 6, 7.
Our experiments using ResNet-9 on CIFAR-10 (Figure 6) and
ResNet-11 on CIFAR-100 (Figure 7) establishes the following
key heuristics and trends on the hardness threshold. First, the
hardness threshold is experimentally found to be bounded within
the range [µacc−σacc, µacc+σacc], where µacc is the mean and

σacc is the standard deviation of the class-wise accuracies on
the validation set to obtain favorable trade-off among memory
overhead, compute efficiency, and test accuracy. Second, higher
the hardness threshold, larger is the memory overhead, lower
is the compute efficiency, and better is the test accuracy. For
ResNet-9 on CIFAR-10, we fixed the hardness threshold to 95.5%,
which is roughly equal to the experimental lower bound of
µacc−σacc, where µacc and σacc are 96.79 and 1.43%, respectively,
calculated using the class-wise accuracies reported in Figure 4.
For CIFAR-10, using the lower bound on the hardness threshold
provided favorable memory overhead-test accuracy trade-off
since there were only 10 classes with clear separation between the
easy and the hard classes, as illustrated in Figure 4.

On the other hand, for ResNet-11 on CIFAR-100, we
experimented with hardness thresholds of 90.5–93%, which is
roughly in the range of µacc to µacc+σacc. Setting the hardness
threshold closer to µacc categorized roughly 50 classes as hard
(refer to Figure 7A) based on the validation accuracy of the first

Frontiers in Neuroscience | www.frontiersin.org 10 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 7 | (A) Number of output classes per block, (B) percentage of exiting inputs per block, (C) compute efficiency in terms of the normalized number of synaptic

operations and memory overhead per inference, and (D) test accuracy vs. hardness threshold (Acchard−thresh) for ResNet-11 spiking neural network (SNN) trained on

the CIFAR-100 dataset.

trained block in ResNet-11. Lowering the hardness threshold
any further would provide <50% of the total number of classes
for the deeper block. Hence, we did not investigate hardness
thresholds much lower than µacc. On the contrary, setting
the hardness threshold to 93% (∼µacc+σacc) categorized close
to 80 classes as hard, leading to higher memory overhead
and lower compute efficiency relative to that achieved with
hardness threshold of 92% (∼µacc + 0.5∗σacc). Hence, for any
network to be trained on a complex dataset such as CIFAR-
100 with a mix of easy and hard classes, setting the hardness
threshold closer to µacc + 0.5∗σacc should yield favorable
trade-offs among memory overhead, compute efficiency, and
accuracy. However, if all the class probabilities are similar
and the class-wise validation accuracies are high, it implies
that the dataset has mostly “easy” classes, and hence, the
hardness threshold can be set to the lower bound. On the other
hand, if the class probabilities are similar and the class-wise
validation accuracies are low, then the dataset has predominantly

“hard” classes, and hence, the hardness threshold could be
set closer to the upper bound. Thus, the hardness threshold,
per se, does not introduce additional complexity during the
training process. As far as the softmax classifier confidence
threshold (θconf) is concerned, we investigated values ranging

from ln(10−2) to ln(10−6) in logarithmic scale. Our experimental
results across the CIFAR-10 and the CIFAR-100 datasets
indicate that θconf of ln(10−3) or ln(10−4) yields favorable
compute efficiency-accuracy trade-off. Hence, the choice of θconf
should not require extensive experimentation to identify the
optimal threshold.

6.2. Blocking Strategy for Deeper SNNs
For the SNNs analyzed in this work, namely, ResNet-9 and
ResNet-11, we divided the network at the granularity of a
residual block and, consequently, inserted an auxiliary classifier
for every residual block. Much deeper networks such as VGG-
19 (Simonyan and Zisserman, 2014b) and ResNet-34 (He et al.,

Frontiers in Neuroscience | www.frontiersin.org 11 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 8 | Illustration of VGG-16 spiking neural network (SNN) divided into 4 blocks, where each block is trained sequentially using BlocTrain. The first block is

trained on all the H0 classes. Any subsequent block, Blocki , is trained on the hard classes of Blocki−2 (denoted by Hi−2 in the figure). The final block receives residual

connections from Block1 and Block2 to improve the training efficiency. The number of output feature maps and kernel size are specified for all the blocks. The stride is

set to unity unless explicitly mentioned otherwise.

FIGURE 9 | (A) Number of output classes, (B) test accuracy, and (C) percentage of exiting inputs vs. block depth for VGG-16 spiking neural network (SNN), trained

on the CIFAR-100 dataset.

2016) could be divided at the granularity of few VGG and
residual blocks, respectively, to minimize the overhead stemming
from the extra softmax layer while limiting the gradient flow
to a few layers for stable training using spike-based BPTT. A
more principled approach could be to take into account the
memory and computational cost of adding a classifier after
a certain block and the fraction of instances reaching the
block (obtained from the HCD of the prior classifier block)
for guiding the placement process as proposed in Panda et al.
(2017b). Such a principled methodology will help avoid inserting
too many classifiers, and at the same time help determine
the optimal network size for a given dataset based on the
accuracy requirements.

6.3. Comparison With Early Inference
The proposed BlocTrain method categorizes the classes as hard
or easy, and trains deeper blocks only on the hard class instances.
Inference is terminated at the earlier blocks for easy class
instances while the deeper blocks are activated only when hard

class instances are detected. It is important to note that BlocTrain
attributes uniform hardness (or significance) to all instances of
any given class. In practice, the hardness might not be uniform
across all instances of a class, as noted in prior works (Panda
et al., 2016; Teerapittayanon et al., 2016), which categorized
individual instance as hard or easy irrespective of the general
difficulty of the corresponding class. Therefore, we set forth
to compare the efficacy of BlocTrain with respect to baseline
method, designated as BlocTrain-base, wherein every block is
trained on all the classes. Inference is terminated at a particular
block based on the classifier confidence, that is, if the classifier
prediction probability is higher than a specified confidence
threshold (θconf). The BlocTrain-basemethod effectively classifies
easy instances, belonging to any class, at the earlier blocks and
activates the deeper blocks only for hard instances. For the
proposed BlocTrain method, the original CIFAR-10 or CIFAR-
100 dataset, containing 50,000 images, is split into training set of
40,000 images and validation set of 10,000 images. The validation
set is used to subdivide the classes into easy and hard groups, as

Frontiers in Neuroscience | www.frontiersin.org 12 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

FIGURE 10 | (A) Training time per epoch incurred by successive blocks of ResNet-9 spiking neural network (SNN), trained on CIFAR-10 using BlocTrain, wherein

deeper blocks are trained on hard classes, and BlocTrain-base, wherein deeper blocks are trained on all classes. (B) Training time per epoch incurred by successive

blocks of ResNet-11 SNN, trained using BlocTrain and BlocTrain-base methods, on the CIFAR-100 dataset. (C) Percentage of exiting inputs per block for ResNet-9

SNN, trained using BlocTrain and BlocTrain-base methods, on the CIFAR-10 dataset. (D) Percentage of exiting inputs per block for ResNet-11 SNN, trained using

BlocTrain and BlocTrain-base methods, on the CIFAR-100 dataset.

noted in section 5.1. On the contrary, the entire dataset is used
for BlocTrain-base since each of the blocks is trained on all the
classes. The classifier confidence threshold is set to unity for all
the blocks, which causes inference to be terminated at a given
block only if the prediction is obtained with 100% confidence.
Setting the confidence threshold to unity yields the best test
accuracy since it encourages more instances to be classified at the
deeper blocks.

We first present the training efficiency results followed by
inference accuracy-efficiency trade-off provided by BlocTrain
compared to the BlocTrain-base method. BlocTrain offers
reduced or comparable training time (or effort) with increasing
block depth. On the contrary, the training time increases
steadily with block depth for BlocTrain-base, as shown in
Figures 10A,B for ResNet-9 (on CIFAR-10) and ResNet-11 (on

CIFAR-100), respectively. BlocTrain-base incurs higher training
effort compared to BlocTrain due to the following couple of
reasons. First, BlocTrain-base uses the entire training dataset
while BlocTrain divides the original dataset into separate training
and validation sets. Second, BlocTrain-base trains every block
on all the class instances while BlocTrain uses only the hard
class instances for deeper blocks. Despite the higher training
effort, BlocTrain-base offers 88.31% test accuracy for ResNet-
9 SNN on CIFAR-10, which is higher than an accuracy
of 86.4% provided by BlocTrain. For ResNet-11 SNN on
CIFAR-100, BlocTrain-base offers 62.03% accuracy, which is
even higher compared to an accuracy of 58.33% provided by
BlocTrain. The higher accuracy provided by BlocTrain-base
can be attributed to the following factors. First, BlocTrain-
base uses the entire original dataset for training all the blocks.

Frontiers in Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

TABLE 1 | Accuracy of spiking neural network (SNN) trained using BlocTrain and end-to-end spike-based backpropagation through time (BPTT) methods, and

SNN/analog neural network (ANN) trained using only the local losses, on the CIFAR-10 dataset.

Model Training method Dataset size %Accuracy

CIFARNet w/ 7 layers (Wu et al., 2019) End-to-end STBP (Wu et al., 2018) 50,000 90.53

ResNet-9 (Lee et al., 2020) End-to-end Spike BP 50,000 90.35

SNN w/ 8 layers (Thiele et al., 2020) End-to-end ANN-based SpikeGrad 50,000 89.72

ResNet-11 (Ledinauskas et al., 2020) End-to-end Spike BP 50,000 90.2

VGG-16 (Rathi et al., 2020) ANN-SNN and end-to-end STDB 50,000 91.13

VGG-16 (Zhou et al., 2020) Direct end-to-end BP 50,000 92.68

SNN w/ 4 layers (Panda and Roy, 2016) Local AutoEncoder 50,000 70.16

ANN w/ 10 layers (Mostafa et al., 2018) Local training 50,000 ∼83

ResNet-9 (our work) BlocTrain 40,000 86.4

ResNet-9 (our work) BlocTrain-base 50,000 88.31

The bold values are used to highlight the results reported in this work over prior works.

TABLE 2 | Accuracy of spiking neural network (SNN) trained using BlocTrain and end-to-end spike-based backpropagation through time (BPTT) methods on the

CIFAR-100 dataset.

Model Training method Dataset size %Accuracy

SNN w/ 8 layers (Thiele et al., 2020) End-to-end ANN-based SpikeGrad 50,000 64.69

VGG-11 (Rathi et al., 2020) ANN-SNN and end-to-end STDB 50,000 67.87

ResNet-50 (Ledinauskas et al., 2020) End-to-end Spike BP 50,000 58.5

ResNet-11 (our work) BlocTrain 40,000 58.21

ResNet-11 (our work) BlocTrain-base 50,000 62.03

VGG-16 (our work) BlocTrain 50,000 61.65

The bold values are used to highlight the results reported in this work over prior works.

FIGURE 11 | (A) Normalized training time per epoch of ResNet-9 and ResNet-11, trained using BlocTrain, relative to end-to-end training on the (A) GeForce GTX

GPU and (B) GeForce RTX GPU.

Second, BlocTrain-base enables the harder instances in every
class to be executed at the deeper blocks, resulting in higher
accuracy. On the contrary, BlocTrain classifies both the easy
and the hard instances of an “easy” class in the earlier blocks,
leading to relatively inferior accuracy. The superior accuracy
offered by BlocTrain-base is obtained with 8.5% and 7.8% higher
computational effort (in terms of number of synaptic operations

per inference) for ResNet-9 (on CIFAR-10) and ResNet-11
(on CIFAR-100), respectively. This is because BlocTrain-base
classifies a larger fraction of hard instances at the ultimate
block, as shown in Figures 10C,D. In summary, BlocTrain-
base offers higher accuracy compared to BlocTrain, albeit,
with longer training time and higher computational effort
during inference.

Frontiers in Neuroscience | www.frontiersin.org 14 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

6.4. Comparison With End-to-End Training
6.4.1. Accuracy Comparison
Deep SNNs consisting of 7–11 layers, trained using end-
to-end spike-based backpropagation approaches, have been
shown to achieve >90% accuracy on CIFAR-10, as shown in
Table 1. These networks are trained end-to-end with different
surrogate gradient approximations, for the discontinuous spiking
nonlinearity, than the one used in this work. The various
surrogate gradient-based backpropagation approaches can be
readily integrated into BlocTrain to further improve its efficacy.
In the ANN domain, Mostafa et al. (2018) performed layer-
wise training of 10-layer deep ANN using only the local
discriminative loss and reported best accuracy of ∼83% on
CIFAR-10. BlocTrain, on account of block-wise rather than layer-
wise training, provides much higher accuracy on CIFAR-10.
On the other hand, very few works have reported CIFAR-100
accuracy for SNN trained entirely with spike-based BPTT, as
noted in Table 2. Thiele et al. (2020) reported 64.69% accuracy
for 8-layer deep SNN, wherein the training was performed on
an equivalent ANN using the proposed SpikeGrad algorithm.
Interestingly, Ledinauskas et al. (2020) trained ResNet-50 using
end-to-end spike-based backpropagation and obtained 58.5%
accuracy, which is comparable to that provided by ResNet-11 and
lower than that obtained with VGG-16, trained using BlocTrain.

Finally, we note that prior works have demonstrated much
deeper SNNs, with competitive accuracy, for CIFAR-10, CIFAR-
100, and ImageNet datasets, using either standalone ANN–SNN
conversion (Rueckauer et al., 2017; Sengupta et al., 2019; Han
and Roy, 2020; Han et al., 2020) or a combination of ANN–
SNN conversion and spike-based BPTT methods (Rathi et al.,
2020;Wu et al., 2020). The hybrid approach initializes the weights
and firing thresholds of the SNN using the trained weights of
the corresponding ANN, and then performs incremental spike-
based BPTT to fine-tune the SNN weights. Such a hybrid SNN
training methodology can be incorporated into BlocTrain to
achieve further improvements in accuracy on standard vision
datasets. However, the primary objective of our work is to
improve the training and inference capability of deep SNN for
event-driven spatiotemporal inputs, such as those produced by
dynamic vision sensors (Lichtsteiner et al., 2008), which could
potentially require exclusive spike-based training to precisely
learn the input temporal statistics. We demonstrated higher
accuracy using BlocTrain over end-to-end spike-based BPTT
methods on CIFAR-10 and CIFAR-100 data, mapped to spike
trains, which indicates the capability of BlocTrain to scale to deep
SNNs for complex event-based inputs.

6.4.2. Training Time Comparison
The training time incurred by BlocTrain, relative to end-
to-end training, depends on the training hardware memory
limitations. We evaluated the training time on two different GPU
configurations, namely, Nvidia GeForce GTX and RTX GPUs.
The GeForce GTX GPU, on account of higher memory capacity,
could sustain the same batch size of 64 for both BlocTrain and
end-to-end training methods. Figure 11A indicates that ResNet-
9 SNN and ResNet-11 SNN, trained using BlocTrain on the
GeForce GTX GPU, incurs 1.13× and 1.22× longer training

time, respectively, compared to end-to-end training. The longer
training time incurred by BlocTrain over end-to-end training,
when the same batch size is used for both the methods, can be
attributed to the following twofold reasons.

1. BlocTrain requires multiple forward passes per block during
training, as detailed below for ResNet-9 SNN, consisting of 3
blocks. Block1 incurs 3 separate forward passes for individually
training each of the blocks. The second block incurs 2 forward
passes to train Block2 and Block3. The third and final block
entails a single forward pass to train Block3. On the other hand,
end-to-end training incurs only a single forward pass for all
the blocks.

2. Each block in the original network has an additional nonlinear
classifier that needs to be trained.

Next, we evaluated the training times for BlocTrain and end-
to-end training on the GeForce RTX GPU, which has relatively
lower memory capacity. BlocTrain, by virtue of higher memory
efficiency, could be used to train both ResNet-9 and ResNet-
11 with a batch size of 64. End-to-end training, on account of
hardware memory limitation, necessitated the batch size to be
reduced to 60. Smaller batch size leads to higher number of
batches (or iterations) per training epoch. As a result, BlocTrain
incurs comparable training time for ResNet-9 and 0.85× shorter
training time for ResNet-11 SNN over end-to-end training. For
much deeper networks, the larger memory requirement needed
for end-to-end training could either preclude SNN training or
cause the batch size to be much smaller than that used for
BlocTrain, depending on the hardware memory limitations. In
the case that end-to-end training uses comparatively smaller
batch size, BlocTrain would be both training time and memory
efficient, as shown in Figure 11B.

7. CONCLUSION

End-to-end training of deep SNNs is memory-inefficient due to
the need to perform error BPTT. In this work, we presented
BlocTrain, which is a scalable block-wise training algorithm for
deep SNNs with reducedmemory requirements. During training,
BlocTrain dynamically categorized the classes into easy and hard
groups, and trained the deeper blocks only on the hard class
inputs. In addition, we introduced a hard class detector per block
to enable fast inference with early exit for the easy class inputs
and conditional activation of deeper blocks only for the hard
class inputs. Thus, BlocTrain provides a principled methodology
to determine the optimal network size (in terms of number of
layers) for a given task, depending on the accuracy requirements.
We demonstrated BlocTrain for deep SNNs trained using spike-
based BPTT, on the CIFAR-10 and the CIFAR-100 datasets, with
higher accuracy than end-to-end training method. Future works
could further improve the effectiveness of BlocTrain by using
more complex methods for determining the hard classes, such as
considering the false positives and negatives aside from the class-
wise accuracy. Also, the local discriminative loss, which is used to
separately train the individual blocks, could be augmented with
other local losses as proposed in Nøkland and Eidnes (2019).

Frontiers in Neuroscience | www.frontiersin.org 15 October 2021 | Volume 15 | Article 603433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

Finally, well-established methods like neural architecture search
could be used for selecting the BlocTrain hyperparameters such
as the hardness threshold.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.cs.toronto.edu/~kriz/cifar.html.

AUTHOR CONTRIBUTIONS

GS wrote the manuscript and performed the simulations. KR
helped with writing of the manuscript, developing the concepts,
and conceiving the experiments. Both authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported in part by the Center for Brain
Inspired Computing (C-BRIC), one of the six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored
by DARPA, by the Semiconductor Research Corporation,
the National Science Foundation, and the DoD Vannevar
Bush Fellowship.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.603433/full#supplementary-material

REFERENCES

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Belilovsky, E., Eickenberg, M., and Oyallon, E. (2019). “Greedy layerwise learning

can scale to imagenet,” in International Conference on Machine Learning (Long

Beach, CA), 583–593.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). “Long

short-term memory and learning-to-learn in networks of spiking neurons,” in

Advances in Neural Information Processing Systems (Montral, QC), 787–797.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). “Greedy layer-

wise training of deep networks,” in Advances in Neural Information Processing

Systems (Vancouver, BC), 153–160.

Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2019). “Benchmarking

keyword spotting efficiency on neuromorphic hardware,” in Proceedings of the

7th Annual Neuro-inspired Computational Elements Workshop (Albany, NY:

ACM).

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: A neuromorphic manycore processor with on-chip learning.

IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Pedroni, B. U., Cassidy, A., Merolla, P., Neftci, E., and Zarrella, G.

(2016). “Truehappiness: neuromorphic emotion recognition on truenorth,” in

2016 International Joint Conference on Neural Networks (IJCNN) (Vancouver,

BC: IEEE), 4278–4285.

Dong, L.-F., Gan, Y.-Z., Mao, X.-L., Yang, Y.-B., and Shen, C. (2018). “Learning

deep representations using convolutional auto-encoders with symmetric skip

connections,” in 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (Calgary, AB: IEEE), 3006–3010.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: a

survey. J. Mach. Learn. Res. 20, 1–21. doi: 10.1007/978-3-030-05318-5_11

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio,

S. (2010). Why does unsupervised pre-training help deep learning? J. Mach.

Learn. Res. 11, 625–660. Available online at: http://jmlr.org/papers/v11/

erhan10a.html

Ferré, P., Mamalet, F., and Thorpe, S. J. (2018). Unsupervised feature

learning with winner-takes-all based stdp. Front. Comput. Neurosci. 12:24.

doi: 10.3389/fncom.2018.00024

Freund, Y., and Schapire, R. E. (1995). “A desicion-theoretic generalization of

on-line learning and an application to boosting,” in European Conference on

Computational Learning Theory (Barcelona: Springer), 23–37.

Gruslys, A., Munos, R., Danihelka, I., Lanctot, M., and Graves, A. (2016).

“Memory-efficient backpropagation through time,” in Advances in Neural

Information Processing Systems (Barcelona), 4125–4133.

Han, B., and Roy, K. (2020). “Deep spiking neural network: energy efficiency

through time based coding,” in Proceedings of the European Conference on

Computer Vision (ECCV) (Glasgow, UK). Available online at: https://eccv2020.

eu/

Han, B., Srinivasan, G., and Roy, K. (2020). “Rmp-snn: Residual membrane

potential neuron for enabling deeper high-accuracy and low-latency spiking

neural network,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 13558–13567.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778.

Heeger, D. (2000). Poisson Model of Spike Generation. Stanford University

Handout. Available online at: https://www.cns.nyu.edu/~david/handouts/

poisson.pdf

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning

algorithm for deep belief nets. Neural Comput. 18, 1527–1554.

doi: 10.1162/neco.2006.18.7.1527

Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of

data with neural networks. Science 313, 504–507. doi: 10.1126/science.1127647

Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., and Weinberger, K.

(2018). “Multi-scale dense networks for resource efficient image classification,”

in International Conference on Learning Representations (Vancouver, BC).

Ivakhnenko, A. G., and Lapa, V. G. (1965). “Cybernetic predicting devices,” in

CCM Information Corporation (New York, NY: CCM Information Corp).

Available online at: https://www.worldcat.org/title/cybernetic-predicting-

devices/oclc/23815433

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver,

D., et al. (2017). “Decoupled neural interfaces using synthetic gradients,” in

Proceedings of the 34th International Conference on Machine Learning, Vol. 70,

(Sydney: JMLR. org.), 1627–1635.

Jin, Y., Zhang, W., and Li, P. (2018). “Hybrid macro/micro level backpropagation

for training deep spiking neural networks,” in Advances in Neural Information

Processing Systems (Montral, QC), 7005–7015.

Kaiser, J., Mostafa, H., and Neftci, E. (2018). Synaptic plasticity dynamics for deep

continuous local learning. arXiv preprint arXiv:1811.10766.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).

Stdp-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99:56–67. doi: 10.1016/j.neunet.2017.12.005

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Ledinauskas, E., Ruseckas, J., Juršėnas, A., and Buračas, G. (2020). Training deep

spiking neural networks. arXiv preprint arXiv:2006.04436.

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018). Training deep

spiking convolutional neural networks with stdp-based unsupervised

pre-training followed by supervised fine-tuning. Front. Neurosci. 12:435.

doi: 10.3389/fnins.2018.00435

Frontiers in Neuroscience | www.frontiersin.org 16 October 2021 | Volume 15 | Article 603433

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.frontiersin.org/articles/10.3389/fnins.2021.603433/full#supplementary-material
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1007/978-3-030-05318-5_11
http://jmlr.org/papers/v11/erhan10a.html
http://jmlr.org/papers/v11/erhan10a.html
https://doi.org/10.3389/fncom.2018.00024
https://eccv2020.eu/
https://eccv2020.eu/
https://www.cns.nyu.edu/~david/handouts/poisson.pdf
https://www.cns.nyu.edu/~david/handouts/poisson.pdf
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1126/science.1127647
https://www.worldcat.org/title/cybernetic-predicting-devices/oclc/23815433
https://www.worldcat.org/title/cybernetic-predicting-devices/oclc/23815433
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.3389/fnins.2018.00435
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy BlocTrain

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-

based backpropagation for training deep neural network architectures. Front.

Neurosci. 14:119. doi: 10.3389/fnins.2020.00119

Lee, C., Srinivasan, G., Panda, P., and Roy, K. (2019). Deep spiking convolutional

neural network trained with unsupervised spike timing dependent plasticity.

IEEE Trans. Cogn. Dev. Syst. 11, 384–394. doi: 10.1109/TCDS.2018.2833071

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120 db 15 µs

latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ.

43, 566–576. doi: 10.1109/JSSC.2007.914337

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Marquez, E. S., Hare, J. S., and Niranjan, M. (2018). Deep cascade

learning. IEEE Trans. Neural Netw. Learn. Syst. 29, 5475–5485.

doi: 10.1109/TNNLS.2018.2805098

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual

features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.

doi: 10.1371/journal.pcbi.0030031

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mostafa, H., Ramesh, V., and Cauwenberghs, G. (2018). Deep supervised learning

using local errors. Front. Neurosci. 12:608. doi: 10.3389/fnins.2018.00608

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., and Masquelier,

T. (2018). Combining stdp and reward-modulated stdp in deep convolutional

spiking neural networks for digit recognition. arXiv preprint arXiv:1804.00227.

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in

spiking neural networks. arXiv preprint arXiv:1901.09948.

Nøkland, A., and Eidnes, L. H. (2019). Training neural networks with local error

signals. arXiv preprint arXiv:1901.06656.

Panda, P., Ankit, A., Wijesinghe, P., and Roy, K. (2017a). Falcon: feature

driven selective classification for energy-efficient image recognition.

IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 36, 2017–2029.

doi: 10.1109/TCAD.2017.2681075

Panda, P., and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in 2016 International

Joint Conference on Neural Networks (IJCNN) (Vancouver, BC: IEEE),

299–306.

Panda, P., Sengupta, A., and Roy, K. (2016). “Conditional deep learning for energy-

efficient and enhanced pattern recognition,” in 2016 Design, Automation Test in

Europe Conference Exhibition (DATE) (Dresden: IEEE), 475–480.

Panda, P., Sengupta, A., and Roy, K. (2017b). Energy-efficient and improved image

recognition with conditional deep learning. ACM J. Emerg. Technol. Comput.

Syst. 13, 33. doi: 10.1145/3007192

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). “Enabling deep

spiking neural networks with hybrid conversion and spike timing dependent

backpropagation,” in International Conference on Learning Representations

2020 (Addis Ababa). Available online at: https://iclr.cc/Conferences/2020

Roy, D., Panda, P., and Roy, K. (2019). Synthesizing images from spatio-temporal

representations using spike-based backpropagation. Front. Neurosci. 13:621.

doi: 10.3389/fnins.2019.00621

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Fron. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: vgg and residual architectures. Front. Neurosci. 13:95.

doi: 10.3389/fnins.2019.00095

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment

in time,” in Advances in Neural Information Processing Systems (Montral, QC),

1412–1421.

Simonyan, K., and Zisserman, A. (2014a). “Two-stream convolutional networks

for action recognition in videos,” in Advances in Neural Information Processing

Systems (Montreal, QC), 568–576.

Simonyan, K., and Zisserman, A. (2014b). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.

Srinivasan, G., Panda, P., and Roy, K. (2018). Stdp-based unsupervised feature

learning using convolution-over-time in spiking neural networks for energy-

efficient neuromorphic computing. ACM J. Emerg. Technol. Comput. Syst. 14,

44. doi: 10.1145/3266229

Srinivasan, G., and Roy, K. (2019). Restocnet: Residual stochastic binary

convolutional spiking neural network for memory-efficient neuromorphic

computing. Front. Neurosci. 13:189. doi: 10.3389/fnins.2019.00189

Srivastava, N., and Salakhutdinov, R. R. (2013). “Discriminative transfer learning

with tree-based priors,” in Advances in Neural Information Processing Systems

(Lake Tahoe), 2094–2102.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning

with neural networks,” in Advances in Neural Information Processing Systems

(Montreal, QC), 3104–3112.

Tavanaei, A., Kirby, Z., and Maida, A. S. (2018). “Training spiking convnets by

stdp and gradient descent,” in 2018 International Joint Conference on Neural

Networks (IJCNN) (Rio de Janeiro: IEEE), 1–8.

Teerapittayanon, S., McDanel, B., and Kung, H.-T. (2016). “Branchynet: Fast

inference via early exiting from deep neural networks,” in 2016 23rd

International Conference on Pattern Recognition (ICPR) (Cancun: IEEE),

2464–2469.

Thiele, J. C., Bichler, O., and Dupret, A. (2018). Event-based, timescale invariant

unsupervised online deep learning with stdp. Front. Comput. Neurosci. 12:46.

doi: 10.3389/fncom.2018.00046

Thiele, J. C., Bichler, O., and Dupret, A. (2020). “Spikegrad: an ann-equivalent

computation model for implementing backpropagation with spikes,” in

International Conference on Learning Representations (Addis Ababa). Available

online at: https://iclr.cc/Conferences/2020

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). “Extracting

and composing robust features with denoising autoencoders,” in Proceedings

of the 25th International Conference on Machine Learning (Helsinki: ACM),

1096–1103.

Wu, J., Xu, C., Zhou, D., Li, H., and Tan, K. C. (2020). Progressive tandem learning

for pattern recognition with deep spiking neural networks. arXiv preprint

arXiv:2007.01204.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct

training for spiking neural networks: faster, larger, better,” in Proc.

AAAI Conf. Artif. Intell. 33, 1311–1318. doi: 10.1609/aaai.v33i01.330

11311

Yan, Z., Zhang, H., Piramuthu, R., Jagadeesh, V., DeCoste, D., Di, W., et al. (2015).

“Hd-cnn: hierarchical deep convolutional neural networks for large scale visual

recognition,” in Proceedings of the IEEE International Conference on Computer

Vision (Santiago: IEEE), 2740–2748.

Zenke, F., and Ganguli, S. (2018). Superspike: supervised learning in

multilayer spiking neural networks. Neural Comput. 30, 1514–1541.

doi: 10.1162/neco_a_01086

Zhou, S., LI, X., Chen, Y., Chandrasekaran, S. T., and Sanyal, A. (2020). Temporal-

coded deep spiking neural network with easy training and robust performance.

arXiv preprint arXiv:1909.10837.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Srinivasan and Roy. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 October 2021 | Volume 15 | Article 603433

https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/TNNLS.2018.2805098
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2018.00608
https://doi.org/10.1109/TCAD.2017.2681075
https://doi.org/10.1145/3007192
https://iclr.cc/Conferences/2020
https://doi.org/10.3389/fnins.2019.00621
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1145/3266229
https://doi.org/10.3389/fnins.2019.00189
https://doi.org/10.3389/fncom.2018.00046
https://iclr.cc/Conferences/2020
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1162/neco_a_01086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	BlocTrain: Block-Wise Conditional Training and Inference for Efficient Spike-Based Deep Learning
	1. Introduction
	2. Related Work
	2.1. Local Training of Deep Neural Nets
	2.2. Fast Inference for Deep Nets

	3. Spike-Based Input Representation, Neurons, and BPTT
	4. BlocTrain Training and Inference Algorithm
	4.1. Block-Wise Complexity-Aware Training
	4.2. Fast Inference With Early Exit

	5. Results
	5.1. Experimental Setup
	5.2. ResNet-9 SNN on CIFAR-10
	5.3. ResNet-11 SNN on CIFAR-100
	5.4. VGG-16 SNN on CIFAR-100

	6. Discussion
	6.1. BlocTrain Hyperparameters Heuristics
	6.2. Blocking Strategy for Deeper SNNs
	6.3. Comparison With Early Inference
	6.4. Comparison With End-to-End Training
	6.4.1. Accuracy Comparison
	6.4.2. Training Time Comparison

	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

