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Segmentation of brain images from Magnetic Resonance Images (MRI) is an

indispensable step in clinical practice. Morphological changes of sub-cortical brain

structures and quantification of brain lesions are considered biomarkers of neurological

and neurodegenerative disorders and used for diagnosis, treatment planning, and

monitoring disease progression. In recent years, deep learning methods showed an

outstanding performance in medical image segmentation. However, these methods

suffer from generalisability problem due to inter-centre and inter-scanner variabilities

of the MRI images. The main objective of the study is to develop an automated

deep learning segmentation approach that is accurate and robust to the variabilities

in scanner and acquisition protocols. In this paper, we propose a transductive transfer

learning approach for domain adaptation to reduce the domain-shift effect in brain

MRI segmentation. The transductive scenario assumes that there are sets of images

from two different domains: (1) source—images with manually annotated labels; and

(2) target—images without expert annotations. Then, the network is jointly optimised

integrating both source and target images into the transductive training process to

segment the regions of interest and to minimise the domain-shift effect. We proposed

to use a histogram loss in the feature level to carry out the latter optimisation problem.

In order to demonstrate the benefit of the proposed approach, the method has been

tested in two different brain MRI image segmentation problems using multi-centre and

multi-scanner databases for: (1) sub-cortical brain structure segmentation; and (2) white

matter hyperintensities segmentation. The experiments showed that the segmentation

performance of a pre-trained model could be significantly improved by up to 10%. For

the first segmentation problem it was possible to achieve a maximum improvement from

0.680 to 0.799 in average Dice Similarity Coefficient (DSC) metric and for the second

problem the average DSC improved from 0.504 to 0.602. Moreover, the improvements

after domain adaptation were on par or showed better performance compared to

the commonly used traditional unsupervised segmentation methods (FIRST and LST),

also achieving faster execution time. Taking this into account, this work presents one

more step toward the practical implementation of deep learning algorithms into the

clinical routine.

Keywords: deep learning, domain adaptation, magnetic resonance imaging, brain, segmentation, sub-cortical

structures, white matter hyperintensities, transductive learning
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1. INTRODUCTION

Medical image segmentation is a pivotal task in diagnosis,
treatment, and surgical planning, and monitoring disease
progression over time. Quantification of brain structures and
brain lesions from Magnetic Resonance Images (MRI) is crucial
as they are biomarkers for neurological and neurodegenerative
disorders. However, manually annotating MRI images is a time-
consuming and a laborious task, which has to be done by
experts with knowledge in disease-specific aspects and anatomy.
Therefore, there is a need for accurate and automated methods
to carry out different segmentation problems in brain MRI—
e.g., brain structure (González-Villà et al., 2016), multiple
sclerosis (MS) (García-Lorenzo et al., 2013), and brain tumour
(Bakas et al., 2018).

In recent years, deep learning methods—in particular,
Convolutional Neural Networks (CNNs)—have shown a
remarkable advance in the field of brain MRI segmentation
for many different applications (Akkus et al., 2017; Bernal
et al., 2019). Unlike the traditional hand-crafted features, CNNs
learn task-specific features directly from observed data (LeCun
et al., 2015). Most CNN based approaches for medical image
segmentation in literature are usually trained and tested with
images that share common characteristics—the same scanner
and acquisition protocol. However, the performance of such pre-
trained networks decline when tested on images with different
MRI characteristics, i.e., images from a different domain (MRI
scanner, protocol). Deep learning methods cannot generalise
to unseen domains where the image scans vary in brightness,
contrast, and resolution. Therefore, the network has to be re-
trained using the images from this new domain, requiring expert
annotated labels. This commonly faced issue is known as the
domain-shift problem, which hinders the applicability of deep
learning methods in practice. Moreover, the data-driven nature,
which demands a vast amount of expert annotated images, often
makes fully retraining a CNN impossible.

Transfer learning strategy is an effective way to adapt a
pre-trained neural network to a new domain. This procedure
consists in retraining only a few last layers, which can be
done using a remarkably smaller number of annotated images
(Ghafoorian et al., 2017; Valverde et al., 2019). However, it is not
always possible to obtain even a few images to perform transfer
learning for domain adaptation. Therefore, other unsupervised
domain adaptation methods are active research topics in medical
image analysis. A recent work of Orbes-Arteainst et al. (2019)
proposed an unsupervised domain adaptation approach in a
similar fashion to transfer learning with teacher-student learning
strategy. The authors used knowledge-distillation technique
where a supervised teacher model is used to train a student
network by generating soft labels for the target domain.

In general, unsupervised domain adaptation methods could
be categorised into: (1) image-level, where the images of
two domains are harmonised to share similar characteristics;
and (2) feature-level approaches where the CNN itself is
adapted to be more invariant to different imaging domains.
Common approaches for the image-level domain adaptation
include traditional pre-processing steps (Shah et al., 2011;

Fortin et al., 2016). One of the common challenges of
the traditional approaches include image artefacts that may
appear during intensity transformations that reduce the image
quality. Moreover, it was shown (Kushibar et al., 2019) that
approaches such as standardising images using the Nyúl
histogram matching (Nyúl et al., 2000) or mixing datasets from
different domains during training cannot overcome the effect of
the domain-shift.

More complex Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014) based approaches have also been
introduced for translating images into a new target domain.
However, most of the works in the literature propose synthesising
images from a different imaging modality. For example, Huo
et al. (2018), utilise CycleGAN framework to generate CT images
from MRI to allow splenomegaly segmentation without using
manual annotation on CT. Also, Zhang et al. (2018) proposed
a modified CycleGAN approach for multi-organ segmentation
on X-ray images using Digitally Reconstructed Radiographs
by performing pixel-to-pixel style transfer from one modality
to another. Although such approaches have shown promising
results, there is still a lack of GAN based methods for single-
modality image harmonisation.

Some feature-level domain adaptationmethods have also been
proposed in recent years. Such methods employ a transductive
learning strategy for domain adaptation. In the transductive
scenario, the images without expert annotations from unseen
domain are included in the training process with the aim
to minimise the domain-shift effect. Adversarial training of
the network is a well-known transductive learning method.
Similarly to GAN architectures, the training strategy consists
of two network paths: one for classifying the input patch,
and another to force the network to learn domain-invariant
features by discriminating source and target domains. Recent
work of Kamnitsas et al. (2017) utilises an adversarial training
approach for unsupervised domain adaptation from Gradient
Echo images to Susceptibility Weighted Images for brain lesion
segmentation task. Moreover, an adversarial domain adaptation
from Whole Slide pathology to Microscopy images has been
studied in Zhang et al. (2019). Chen et al. (2020) proposed
simultaneous image to image translation and domain alignment
between CT andMRI images using amodification of a CycleGAN
for cardiac and abdominal multi-organ segmentation. However,
more investigation is needed for the adversarial training for
domain adaptation for a scenario where the domain difference
is subtle—i.e., multi-site and single-modality images.

There are some drawbacks of GAN based and adversarial
training strategies. These methods are usually formulated as a
competition between two agents: discriminator and segmenter
(Yi et al., 2019). In general, the objective for the latter can
vary according to the task (e.g., it is called generator for image
synthesis), but in most cases the objective of the former is to
differentiate between two distributions. In this non-convex min-
max formulation, the training of the network can be difficult and
unstable, which requires a careful selection of architecture, weight
initialisation, and hyper-parameter tuning (Roth et al., 2017).
For example, Li et al. (2020) proposed an adversarial approach
for single modality domain adaptation with flip-label technique
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where the labels of the discriminator model were partly inverted
during training to minimise over-fitting.

Other feature-level transductive domain adaptation methods
perform domain distribution discrepancy minimisation to learn
domain-invariant features. Most of the advancements of such
approaches are done for computer vision with natural images
(Damodaran et al., 2018; Rozantsev et al., 2018; Kang et al.,
2019). However, only a few works have been proposed in medical
imaging field for single-modality images. One of the recent
domain adaptation approaches is the work of Ackaouy et al.
(2020) for multi-site brain multiple sclerosis lesion segmentation.
The authors adopted a joint distribution optimal transport
framework proposed in Damodaran et al. (2018) to compare
the source and target distributions and bring them closer in
a feature-level.

In this paper, we propose a feature-level transductive domain
adaptation method that can be trained without extensive
hyper-parameter tuning. Similarly to Ackaouy et al. (2020),
our proposed method aligns the network feature distributions
between two different domains by forcing the convolutional
and fully connected layers to produce similar activation maps
by minimising the histogram distribution differences. The
images from a new domain are incorporated within training
transductively and do not require expert annotated ground
truths. To show its robustness and applicability, we utilise
and evaluate our domain adaptation approach for two active
brain MRI segmentation problems—brain sub-cortical structure
segmentation and brain White Matter Hyperintensities (WMH)
segmentation. We compare the performance of our proposal
with segmentation results without domain adaptation as well as
the unsupervised state-of-the-art approaches for each problem:
(1) FIRST (Patenaude et al., 2011) for sub-cortical structure
segmentation; and (2) LST (Schmidt and Wink, 2019) for WMH
lesion segmentation.

2. DATASETS AND PRE-PROCESSING

We used publicly available and in-house datasets to test
the performance of our proposed method for the selected
segmentation tasks. Internet Brain Segmentation Repository1

(IBSR) and Multi-Atlas Labelling Challenge (MICCAI2012)
datasets (Landman and Warfield, 2012) were used for the
sub-cortical structure segmentation problem. For the WMH
segmentation, one dataset comes from an international WMH
lesion segmentation challenge (Kuijf et al., 2019), and another
from the Vall d’HebronHospital Centre (Barcelona, Spain). More
information for each dataset is given below.

2.1. Sub-cortical Brain Structure
Segmentation
2.1.1. Motivation
The sub-cortical structures are located beneath the cerebral
cortex and include the thalamus, caudate, putamen, pallidum,
hippocampus, amygdala, and accumbens. Their deviations in
volume over time are considered as biomarkers of neurological

1https://www.nitrc.org/projects/ibsr.

diseases such as bipolar disorder (Frazier et al., 2005), Alzheimer’s
(De Jong et al., 2008), schizophrenia (Rimol et al., 2010),
Parkinson’s disease (Mak et al., 2014), multiple sclerosis
(Houtchens et al., 2007), and are used for pre-operative
evaluation and surgical planning (Kikinis et al., 1996), and
longitudinal monitoring for disease progression or remission
(Storelli et al., 2018). The volumes of the sub-cortical structures
differ drastically, in average, 8,500 and ≈ 550 mm3 for largest
thalamus and smallest accumbens structures, respectively. This
makes the segmentation task more challenging by introducing an
unbalanced class problem.

2.1.2. Multi-Atlas Labelling Challenge—MICCAI 2012
The MICCAI 2012 dataset consists of 35 T1-w images in total
with 15 training and 20 testingMRI scans. In our experiments, we
used the 20 testing set only for testing purposes and they were not
included in the training or validation processes in order to follow
the rules of the Multi-Atlas Labelling challenge. All T1-w scans
have 1mm3 isotropic resolution and image dimensions are 256×
256 × 256 voxels. All images in this dataset were acquired using
the same Siemens (1.5 T) MRI scanner. Manually annotated
ground truth masks were provided for 134 structures in total,
from which 14 classes were extracted for the seven sub-cortical
structures corresponding to the left and right hemispheres.

2.1.3. Internet Brain Segmentation Repository—IBSR
The IBSR dataset contains 18 T1-w images in total which
are publicly available under the Creative Commons: Attribute
license (CC-BY, 2020) as part of the Child and Adolescent
Neuro-Development Initiative (CANDI) (Kennedy et al., 2012).
The image volumes in this dataset come in three different
resolutions—0.84×0.84×1.5, 0.94×0.94×1.5, and 1 × 1 ×

1.5mm3—and were acquired using two differentMRI scanners—
GE (1.5 T) and Siemens (1.5 T). Manual annotations for all IBSR
images were provided by the Center for Morphometric Analysis
at Massachusetts General Hospital and consist of 43 different
structures in total (Rohlfing, 2012). For our experiments, we
selected the 14 labels corresponding to seven sub-cortical
structures with left and right parts separately.

2.2. White Matter Hyperintensity Lesion
Segmentation
2.2.1. Motivation
White Matter Hyperintensities are brain lesions that appear
bright in T2-weighted and Fluid Attenuated Inversion Recovery
(FLAIR) sequences. The presence of the WMH lesions can be
from different factors including small vessel disease (Van Norden
et al., 2011), multiple sclerosis (Kutzelnigg et al., 2005), stroke
or dementia (Debette and Markus, 2010). Monitoring the lesion
load and appearance of new lesions is important for diagnosis,
longitudinal analysis, and treatment planning (Polman et al.,
2011). In contrast to the sub-cortical structure segmentation task,
WMH lesions can appear anywhere in the brain within the white
matter and can be of different shape and size. Taking into account
the importance of lesion load quantification as biomarkers for
different neurodegenerative disorders, this task is a relevant and
a challenging segmentation problem.
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2.2.2. White Matter Hyperintensities Segmentation

Challenge—WMH 2017
The WMH 2017 dataset provides T1-w and FLAIR scans for 60
patients in total and were acquired from three different sites2: (1)
UMC Utrecht—3T Philips Achieva with 1 mm3 isotropic T1-w
and 0.96×0.95×3.0mm3 resolution FLAIR sequences; (2) NUHS
Singapore—3 T Siemens TrioTimwith 1mm3 isotropic T1-w and
1.0 × 1.0 × 3.0 mm3 resolution FLAIR sequences; and (3) VU
Amsterdam—3 T GE Signa HDxt with 0.94 × 0.94 × 1.0 mm3

T1-w and 0.98 × 0.98 × 1.2 mm3 resolution FLAIR sequences.
All T1-w volumes were re-sampled to their corresponding FLAIR
images. Ground truth labels for the WMH lesions were manually
annotated and peer-reviewed by experts (Kuijf et al., 2019).

2.2.3. In-House Dataset—Vall d’Hebron Hospital,

Barcelona (VH)
This dataset contains MRI images for 28 patients with clinically
isolated syndrome or early relapsing multiple sclerosis. All MRI
scans were acquired in the same 3T Siemens TrioTim scanner
that include T1-w and FLAIR images with 1.0 × 1.0 × 1.2 and
0.49 × 0.49 × 3.0 mm3 resolutions, respectively. Similarly to
the WMH 2017 dataset, all T1-w images were re-sampled to
their corresponding FLAIR sequences. The WMH lesions were
manually annotated and peer-reviewed by experts from the Vall
d’Hebron Hospital centre. The MRI volumes were included in
this dataset after the patients gave their informed consent which
was approved by the Institutional Review Board.

3. METHODS

3.1. CNN Architecture
In this work, to study the domain-shift problem and to evaluate
our transductive domain adaptation approach, we took the
recent architecture proposed in Kushibar et al. (2018), which
achieved state-of-the-art performance for sub-cortical brain
structure segmentation. The CNN is shown in Figure 1 and
consists of three paths to process 2D patches of size 32 ×

32. Each path is equipped with five convolution layers, which
are followed by a fully connected layer. The outputs of these
paths are concatenated together with an additional 15 units
corresponding to atlas probabilities for the 14 sub-cortical brain
structures and the background. According to Kushibar et al.
(2018), incorporation of the atlas probabilities as spatial prior to
guide the network significantly improved the performance. For
the case of WMH lesion segmentation the number of units for
the atlas probabilities is changed to three, which correspond to
white matter, grey matter, and cerebro-spinal fluid probabilities.
Finally, it is followed by fully connected layers to mine and
classify the produced output from the preceding layers. Three
2D patches are extracted for every voxel from the axial, sagittal
and coronal views of a 3D volume, making 2.5D patch samples.
Next, each orthogonal 2D patch of the 2.5D sample is inputted to
the three paths of the CNN. Although full 3D patches contain
more surrounding information per voxel, it is more memory-
demanding than using 2D patches in voxel-wise segmentation

2https://wmh.isi.uu.nl.

setup. Therefore, employing 2.5D patches is a good trade-off
between memory and contextual information for the network
(Kushibar et al., 2018).

3.2. Pre-processing
Some commonly used image pre-processing techniques were
applied to all of the images in the four datasets. First of all,
we non-linearly registered atlas probabilities to the images using
the fast free-form deformation method (Modat et al., 2010) that
was implemented by the NiftyReg tool3. We used the well-
known Harvard-Oxford probabilistic atlas (Caviness Jr et al.,
1996) distributed with the FSL (v5.0) tool4. Note that the
number of probabilistic maps for the structure segmentation
problem is 14, whereas it is 3 for the WMH lesion segmentation
which correspond to the three tissue types. In the next step,
we skull-stripped all the MRI volumes—i.e., removed non-brain
structures, such as the eyes and skull—using the ROBEX (v1.2)
tool (Iglesias et al., 2011). Additionally, we performed bias-field
correction to remove intensity inhomogeneities from the images
using the FSL-FAST tool. All subject volume intensities were
normalised to have a zero mean and unit variance before training
and testing the pipeline. Note that the images provided in WMH
2017 Challenge were already bias-field-corrected, co-registered,
and the 3D T1-weighted images were aligned (re-sampled) with
the FLAIR images by the organisers (Kuijf et al., 2019).

3.3. Initial Training
Before adapting the network to a new domain for a certain
task, we assume that the network is pre-trained for the same
segmentation problem. Therefore, in this section, we describe
how the initial training was done for each segmentation task.

For the sub-cortical structure segmentation problem, we
used the same initial training process as described in Kushibar
et al. (2018). All samples were extracted from the 14 sub-
cortical structures, and the background (negative) samples were
selected only from the structure boundaries within a five-voxel
margin. Extracting the negative samples in this way allows
the network to learn the most difficult areas of the region
of interest that correspond to the structure borders. Next, the
atlas probabilities for 14 structures and the background are
extracted, corresponding to all training samples and making a
vector of size 15. These probabilities provide the network with
spatial information and guide it to overcome intensity-based
difficulties in some MRI volumes such as imaging artefacts and
abnormalities caused by neurological diseases as black holes that
appear next to the structures (Kushibar et al., 2018).

For the WMH lesion segmentation task, we used a cascaded
training strategy as described in Valverde et al. (2017), where the
network was trained in two stages. In the first step, the network
is trained with a balanced number of samples extracted from all
lesion voxels and an equal number of negative voxels randomly
selected from non-lesion parts of the brain. Then, the same set
of training images is segmented to obtain initial lesion masks.
In the second stage, the network is also trained with a balanced

3http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg.
4http://www.fmrib.ox.ac.uk/fsl.
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FIGURE 1 | The CNN architecture has three convolutional branches and a branch for spatial priors. 2D patches of size 32× 32 pixels are extracted from three

orthogonal views of a 3D volume. For sub-cortical structure segmentation, the spatial prior branch accepts a vector of size 15 with atlas probabilities for each of the

14 structures plus the background, whereas for the WMH lesion segmentation the vector size is three corresponding to white matter, gray matter and cerebrospinal

fluid. Histogram loss is computed from the activation maps of the layers, highlighted with dashed blue rectangles. (A) CNN pipeline; (B) Convolutional layers.

set containing all lesion samples, however, the negative samples
are extracted only from the voxels that were incorrectly classified
in the first segmentation stage. This step is equivalent to a false
positive reduction step.

For both tasks, the training samples were extracted along with
their atlas probabilities, and randomly split into training and
validation sets with 75 and 25% proportions, respectively. The
training of the network was performed in batches of 128 for 200
epochs. An early-stopping protocol was defined with patience
20—i.e., the training stops if no increase was observed in the

validation accuracy for 20 consecutive epochs. Optimisation was
conducted for the categorical cross-entropy loss function using
the Adam optimisation method (Kingma and Ba, 2014) with a
learning rate of 10−2.

3.4. Transductive Domain Adaptation
In the problem of domain adaptation we refer to source and
target domains, where the former is the image domain with
ground truth labels used in the initial training phase and the latter
represents the new image domain without ground truth masks.
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When looking at the activation maps of the convolutional layers
extracted for source and target, we can observe the differences
in intensity distributions as shown in Figure 2. As can be seen
in Figure 2A, the magnitude of the activation maps for the
source appear brighter compared to the target (Figure 2C). This
demonstrates how the domain-shift problem affects the CNN
in the feature level. Thus, the fully connected layers, which
are used to mine these extracted features, cannot generalise
to a different domain. When performing traditional transfer
learning by re-training the last few layers of the network, we
are adapting the fully connected part to better interpret the
changes shown in Figures 2A,C. However, ground truth labels
are not always available to perform such transfer learning for
domain adaptation.

In this paper, we propose an alternative approach to
traditional transfer learning by adapting the feature maps in
the network instead of retraining the last few layers. Figure 3
illustrates the transductive training process pipeline. First,
features maps are extracted from several layers of the CNN
for source and target training images. Then, the activation
maps from the source domain are mapped to the features of
target domain using a histogram matching technique. Next, we
calculate the distance from the original source features to the
histogram matched feature distributions. This difference is back-
propagated as a histogram loss to encourage the network to
produce feature maps similar to the target.

Let Li be the layers of the CNN that we want to apply the
histogram loss, and let us define Ai and Bi as the activation maps
from the source and target samples for the ith layer, respectively.
Then, the histogram loss is computed as:

Lhist =

L∑

i

LogCosh(Ai,H(Ai,Bi)), (1)

where, H(·, ·) is a function that applies a regular histogram
mapping from source Ai to Bi target, and LogCosh is a logarithm
of hyperbolic cosine that mostly works like the mean squared
error but less affected by occasional large differences in the
feature maps. In this form, the histogram loss is differentiable,
and the loss can be computed easily by storing the histogram
matched matrices for Ai in memory. Moreover, with this
approach, the images from the target domain are included in
training in a transductive manner in the feature level with no
requirement for ground truth labels. An example of histogram
matched feature maps of the source samples is shown in
Figure 2B. Here, we can observe that the spatial integrity is
the same as the original features (Figure 2A) and the intensity
distribution is similar to the target features (Figure 2C).

Note that overall, we aim to minimise the following
loss function:

Ltotal = Lce + λLhist , (2)

where Lce is a cross-entropy loss and λ is a hyper-parameter to
weight the effect of the histogram loss. The cross-entropy loss
is computed using the source images with ground truth labels.
Inclusion of this term is important to make the network learn to

adapt to the changes in the feature maps after the histogram loss
takes effect.

In our experiments, setting λ to be 1.0 showed the best
results. Also, it has to be noted that the performance of the
method was not very sensitive to the values within 1 ± 0.6.
However, much larger or smaller values caused overshooting
or diminished the effect of histogram loss during training. One
could increase or decrease this weight out of the suggested range
when applying for a different task that was not addressed in
this study to change the influence of the histogram loss. The
learning rate was reduced to 10−4 to avoid rapid weight updates.
Applying histogram matching per sample could be limited due
to the variance of histograms from different locations in the
brain. Therefore, the histogram loss is computed over a batch—
in our case batches of 32—hence, the loss is computed over a
distribution rather than per sample, which we note as a necessary
requirement. We empirically chose the last three convolutional,
and all fully connected layers except for the last classification
layer to compute the histogram loss as shown in Figure 1 with
dashed blue rectangles. For both segmentation tasks, using only
one image from source and target sets was sufficient to perform
the domain adaptation.

3.5. Network Testing
To perform a segmentation with a trainedmodel, all 2.5D patches
and corresponding atlas probabilities are extracted from an MRI
volume, then passed through the CNN to obtain a probability
map for each patch.

For the sub-cortical structure segmentation, the final label
is defined using the argmax function. For this task, we used
patches only from a region of interest (ROI) defined by a mask
from the dilated atlas probabilities of the structures. In doing so,
we were able to speed up the segmentation process drastically
because the sub-cortical structures are located in the central
part of the brain. Since the network is well trained to classify
the borders of the structures, there may appear some wrongly
classified voxels, which are removed by keeping only the largest
volume for each class.

For WMH lesion segmentation, we use all the available brain
patches because lesions can be in any place in the brain within
the white matter. The obtained output probability maps from
the CNN are thresholded to produce binary outputs with lesion
candidates. Then, all lesion candidates that are outside the white
matter defined by the registered probabilistic atlas, as well as
candidates that have a volume less than 3 mm3 are removed
(Filippi et al., 2016).

3.6. Experiments and Evaluation
In this section, we describe the experimental setups used to test
our approach for the two different segmentation tasks.

For the sub-cortical structure segmentation problem, we set
up two pre-trained baseline models with MICCAI 2012 and IBSR
dataset images as source. Then, domain adaptation was carried
out in three ways: (1) from IBSR baseline to MICCAI 2012; (2)
from MICCAI 2012 baseline to IBSR-GE; and (3) from MICCAI
2012 baseline to IBSR-SIEMENS. We separated the IBSR dataset
into the IBSR-GE and IBSR-SIEMENS sub-groups according to
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FIGURE 2 | Illustration of some activation maps for (A) source, (B) source after applying histogram matching to the target, and (C) target. Here, 36 example activation

maps from the third convolutional layer are shown with the “seismic” color-map to visually emphasise the differences in magnitudes of the activation maps.

FIGURE 3 | Transductive domain adaptation training pipeline using histogram loss. Ai and Bi are feature maps extracted from the ith layers of the CNN. L is the

number of layers on which the histogram loss is computed. Segmentation loss, in our case cross-entropy loss, is computed using the source ground truth (GT) labels.

LC (LogCosh)—logarithm of hyperbolic cosine function.

the scanner manufacturer. This division was done to perform
evaluation using the images with inter-scanner variability.

For the WMH lesion segmentation task we defined two pre-
trained baseline models with WMH 2017 and VH dataset images
as source. Then, we applied domain adaptation in four ways: (1)
from WMH 2017 model to VH; (2) from VH model to UMC
Utrecht site; (3) from VH model to Singapore site; and (4) from
VHmodel to VU Amsterdam site.

Performing the domain adaptation for this experimental setup
ensures that the source and target domains are different, and
offers a realistic application of our proposal.We also compare our
results with well-known unsupervised segmentation methods for
both tasks. For the sub-cortical structure segmentation, we used
the FSL-FIRST with default parameters, whereas forWMH lesion
we used the LST method with κ thresholds empirically set to 0.4

and 0.1, which showed the best segmentation result for VH and
WMH 2017 datasets, respectively.

For the sub-cortical structure segmentation task we reported
the Dice Similarity Coefficient (DSC), since it is the most
commonly used metric in the literature. The DSC is an overlap
measurement that shows how well the automated segmentation
is aligned with the gold standard; zero being no overlap and
1.0 full overlap. For the WMH lesion segmentation, along with
the overlap DSC measure, we also used the common metrics
of detection—True Positive Rate (TPR) and False Positive Rate
(FPR)—which indicate the method’s performance for detection
and correct classification of the lesion candidates. Both the TPR
and FPR values range between zero and one, where higher values
are better for TPR and lower is better for FPR. Also, we used the
common F-score metric that incorporates both measures to show
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TABLE 1 | DSC results with standard deviations for the pre-trained baseline model without domain adaptation, transductive domain adaptation (TDA), and unsupervised

FIRST method for two-way validation: from IBSR to MICCAI 2012; from MICCAI 2012 to IBSR-SIEMENS; and from MICCAI 2012 to IBSR-GE.

IBSR to MICCAI 2012 MICCAI2012 to IBSR-SIEMENS MICCAI 2012 to IBSR-GE

Baseline TDA FIRST Baseline TDA FIRST Baseline TDA FIRST

Tha.L 0.301 ± 0.195 0.843 ± 0.028* 0.889 ± 0.017 0.842 ± 0.029 0.873 ± 0.023 0.892 ± 0.022 0.681 ± 0.102 0.699 ± 0.111* 0.894 ± 0.015

Tha.R 0.085 ± 0.203 0.857 ± 0.022* 0.890 ± 0.018 0.823 ± 0.026 0.886 ± 0.016 0.889 ± 0.014 0.701 ± 0.108 0.736 ± 0.124* 0.882 ± 0.011

Cau.L 0.867 ± 0.052 0.861 ± 0.057 0.797 ± 0.117 0.862 ± 0.020 0.887 ± 0.014 0.805 ± 0.028 0.801 ± 0.074 0.836 ± 0.046* 0.771 ± 0.047

Cau.R 0.873 ± 0.040 0.865 ± 0.044 0.837 ± 0.046 0.860 ± 0.011 0.864 ± 0.015 0.892 ± 0.016 0.828 ± 0.029 0.834 ± 0.025 0.860 ± 0.026

Put.L 0.888 ± 0.023 0.893 ± 0.022 0.860 ± 0.080 0.891 ± 0.024 0.888 ± 0.032 0.872 ± 0.016 0.852 ± 0.046 0.833 ± 0.053 0.867 ± 0.023

Put.R 0.887 ± 0.023 0.889 ± 0.025 0.876 ± 0.060 0.897 ± 0.008 0.899 ± 0.013 0.875 ± 0.011 0.842 ± 0.056 0.825 ± 0.064 0.883 ± 0.009

Pal.L 0.629 ± 0.083 0.785 ± 0.039* 0.815 ± 0.060 0.671 ± 0.048 0.737 ± 0.012 0.827 ± 0.034 0.557 ± 0.189 0.565 ± 0.182 0.802 ± 0.031

Pal.R 0.654 ± 0.058 0.768 ± 0.055* 0.799 ± 0.088 0.732 ± 0.053 0.785 ± 0.024 0.808 ± 0.055 0.574 ± 0.174 0.586 ± 0.175 0.809 ± 0.028

Hip.L 0.800 ± 0.025 0.814 ± 0.029* 0.809 ± 0.014 0.804 ± 0.044 0.813 ± 0.045 0.811 ± 0.036 0.783 ± 0.037 0.797 ± 0.039 0.804 ± 0.015

Hip.R 0.832 ± 0.019 0.839 ± 0.022* 0.810 ± 0.022 0.817 ± 0.049 0.828 ± 0.053 0.826 ± 0.034 0.795 ± 0.032 0.809 ± 0.031 0.812 ± 0.014

Amy.L 0.672 ± 0.041 0.685 ± 0.047 0.721 ± 0.054 0.630 ± 0.041 0.686 ± 0.053 0.736 ± 0.090 0.540 ± 0.130 0.601 ± 0.103* 0.745 ± 0.050

Amy.R 0.644 ± 0.056 0.671 ± 0.053* 0.707 ± 0.052 0.609 ± 0.074 0.637 ± 0.090 0.756 ± 0.08 0.455 ± 0.097 0.520 ± 0.088* 0.758 ± 0.055

Acc.L 0.695 ± 0.053 0.707 ± 0.060 0.699 ± 0.081 0.694 ± 0.050 0.744 ± 0.036 0.742 ± 0.069 0.646 ± 0.089 0.658 ± 0.084 0.655 ± 0.099

Acc.R 0.697 ± 0.067 0.709 ± 0.070 0.678 ± 0.089 0.634 ± 0.036 0.676 ± 0.042 0.725 ± 0.063 0.582 ± 0.081 0.595 ± 0.073 0.691 ± 0.082

Avg. 0.680 ± 0.038 0.799 ± 0.087* 0.799 ± 0.094 0.769 ± 0.107 0.800 ± 0.094* 0.818 ± 0.073 0.688 ± 0.159 0.707 ± 0.147* 0.802 ± 0.083

Structure acronyms are: Tha.L, left thalamus; Tha.R, right thalamus; Cau.L, left caudate; Cau.R, right caudate; Put.L, left putamen; Put.R, right putamen; Pal.L, left pallidum; Pal.R,
right pallidum; Hip.L, left hippocampus; Hip.R, right hippocampus; Amy.L, left amygdala; Amy.R, right amygdala; Acc.L, left accumbens; Acc.R, right accumbens; Avg., average value.
Significant improvements after domain adaptation over baseline are indicated with “*” and maximum DSC values are shown in bold.

classifier accuracy in correctly detecting lesions, and it ranges
from zero (low) to one (high).

We used the pairwise non-parametric Wilcoxon signed-rank
test (two-sided) to compare the statistical significance of our
results with respect to the results of the pre-trained baseline
model without domain adaptation and the state-of-the-art tools.
The results were considered significant for (p < 0.05). Moreover,
we perform Bonferroni correction to the significance levels
when comparing structure-wise and lesion-wise detection and
segmentation for both of the selected tasks to counteract the
multiple comparisons problem. Therefore, the differences will
be assumed to be significant for (p < 0.0036) and (p <

0.0125) for sub-cortical structure andWMH lesion segmentation
tasks, respectively.

All the experiments were run using a machine with a 3.40-
GHz CPU clock and on a single TITAN-X GPU (NVIDIA corp,
United States) with 12 GB of RAM memory. The network was
implemented using the Keras (Chollet et al., 2018) deep learning
library with Tensorflow backend5.

4. RESULTS

4.1. Sub-cortical Structure Segmentation
Table 1 shows the DSC results of the pre-trained baseline
model without domain adaptation, proposed domain adaptation
method, and FIRST for three datasets. Also, Figure 4 illustrates
segmentation improvements from the baseline after applying
domain adaptation with subject-wise correspondence of the
volumes in the target dataset. When testing the method on

5https://www.tensorflow.org.

the first set, where IBSR was source and MICCAI 2012 was
target, significant improvement in the overall result was observed
after applying the domain adaptation, reaching a DSC of 0.799
compared to the baseline segmentation with the DSC score of
0.680 (p = 2.8 × 10−27). The average DSC of our method
was similar to FIRST and the difference was not statistically
significant (p = 0.160). Significant structure-wise improvements
in the results were also observed for most of the structures when
domain adaptation was applied: left thalamus (p = 8.9 × 10−5),
right thalamus (p = 8.9 × 10−5), left pallidum (p = 8.9 ×

10−5), right pallidum (p = 8.9 × 10−5), left hippocampus
(p = 1.9 × 10−4), right hippocampus (p = 0.002), and right
amygdala (p = 8.9× 10−5).

Significant improvement from 0.769 to 0.800 in overall DSC
was achieved using the domain adaptation to the MICCAI 2012
baseline (p = 2.1 × 10−13), when tested on the IBSR-SIEMENS
dataset. Also, improvements for most of the structures were
observed compared to the baseline, however, not significant (p >
0.0036). The average DSC for FIRST was better compared to our
method (p = 0.008), however, our domain adaptation method
showed better or similar results for all structures, except for the
pallidum and amygdala.

The second subset of the IBSR dataset (IBSR-GE) showed to
be the most difficult to obtain better segmentation results as can
be also seen in Figure 4, where the increase in DSC was smaller
compared to other targets. However, significant improvements
were achieved by using domain adaptation, improving the
average DSC of the baseline from 0.688 to 0.707 (p = 6.8 ×

10−10). Also, performance improvements were achieved for most
of the structures and significant increases were observed for left
thalamus (p = 0.002), right thalamus (p = 0.0009), left caudate
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FIGURE 4 | Comparison of sub-cortical structure segmentation between direct testing (Baseline) and after domain adaptation (TDA). Black dots refer to each subject

volume in the target dataset. The connecting lines show correspondence for improved (green) and decreased (red) DSC values.

FIGURE 5 | Qualitative results for sub-cortical structure segmentation: (A) Ground truth; (B) FIRST segmentation; (C) Pre-trained baseline CNN output without

domain adaptation; (D) After domain adaptation. Arrows indicate: top → pallidum; bottom → thalamus.

(p = 0.0005), left amygdala (p = 0.0009), and right amygdala
structures (p = 0.0004). The average DSC of FIRST (0.802) was
significantly higher than our approach (p = 1.7 × 10−15) and
similar behaviour was observed formost of the structures. Similar
outcome with this sub-group of the IBSR dataset has also been
noticed in Kushibar et al. (2019) which will be further discussed
in section 5.

Some qualitative results are shown in Figure 5 for the
MICCAI 2012 dataset image as target. As can be seen, the
baseline model did not produce satisfactory segmentation results
for the thalamus and pallidum structures (indicated with
arrows), which were improved after the domain adaptation.
The proposed transductive domain adaptation method for
segmentation greatly improved the model’s performance and
alleviated the segmentation errors caused by the domain-shift.

The training time for this task was 11 min on average per
epoch. Additionally, the segmentation time using our method
was 1.3 min (run on GPU) + 3.7 min (atlas registration, run
on CPU) per volume on average. In contrast, FIRST took 10
min on average to segment all the sub-cortical structures in one
subject volume.

We also tested the proposed method with the well-known
U-Net architecture (Ronneberger et al., 2015) by applying the
histogram loss in the features of the bottleneck layer. The average
DSC for MICCAI 2012 dataset for baseline and after domain
adaptation was 0.815 ± 0.097 and 0.816 ± 0.087, respectively.
Similarly, the SIEMENS subset of the IBSR dataset yielded a
DSC of 0.791 ± 0.103 and 0.790 ± 0.110 for baseline and TDA,
respectively. A slight improvement was observed in DSC for the
GE subset increasing the average from 0.738 ± 0.129 to 0.756 ±
0.115. A more detailed analysis will be discussed in section 5.

4.2. WMH Lesion Segmentation
Table 2 shows quantitative results for the WMH lesion
segmentation using the pre-trained baseline model without
domain adaptation, our proposed domain adaptation method,
and the unsupervised method LST. Additionally, Figure 6

illustrates segmentation improvements with subject-wise
correspondence between baseline and domain adaptation
methods for the subject volumes of the target dataset.

When the WMH 2017 dataset was used as source and VH as
target, a significant improvement was achieved in segmentation,
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TABLE 2 | WMH lesion segmentation results for the pre-trained baseline model without domain adaptation, transductive domain adaptation (TDA), and unsupervised LST

method for four different sites: (1) source WMH 2017 and VH target; (2) source VH to Singapore; (3) source VH to UMC Utrecht; and (4) source VH to VU Amsterdam.

WMH 2017 to VH (3T Siemens TrioTim) VH to Singapore (3T Siemens TrioTim)

Baseline TDA LST Baseline TDA LST

DSC 0.478 ± 0.229 0.536 ± 0.232* 0.410 ± 0.232 DSC 0.636 ± 0.176 0.703 ± 0.198* 0.651 ± 0.176

TPR 0.735 ± 0.208 0.544 ± 0.231 0.319 ± 0.210 TPR 0.314 ± 0.089 0.451 ± 0.106 0.148 ± 0.092

FPR 0.611 ± 0.226 0.480 ± 0.256 0.477 ± 0.273 FPR 0.211 ± 0.186 0.469 ± 0.197 0.510 ± 0.153

F-score 0.270 ± 0.186 0.308 ± 0.187* 0.160 ± 0.140 F-score 0.265 ± 0.102 0.289 ± 0.118 0.106 ± 0.067

VH to UMC Utrecht (3T Philips Achieva) VH to VU Amsterdam (3T GE Signa)

Baseline TDA LST Baseline TDA LST

DSC 0.587 ± 0.203 0.624 ± 0.210* 0.620 ± 0.201 DSC 0.504 ± 0.148 0.602 ± 0.135* 0.581 ± 0.155

TPR 0.464 ± 0.107 0.464 ± 0.148 0.250 ± 0.130 TPR 0.478 ± 0.114 0.483 ± 0.106 0.290 ± 0.105

FPR 0.279 ± 0.151 0.319 ± 0.175 0.352 ± 0.221 FPR 0.284 ± 0.155 0.298 ± 0.184 0.358 ± 0.161

F-score 0.316 ± 0.103 0.318 ± 0.111 0.181 ± 0.091 F-score 0.300 ± 0.108 0.341 ± 0.126* 0.213 ± 0.095

DSC, dice similarity coefficient; TPR, true positive rate; FPR, false positive rate. Highest DSC and F-scores are shown in bold. Statistically significant improvements from baseline are
indicated with “*”.

FIGURE 6 | Comparison of WMH lesion segmentation between direct testing (Baseline) and after domain adaptation (TDA). Black dots refer to each subject volume in

the target dataset. The connecting lines show correspondence for improved (green) and decreased (red) DSC values.

increasing the DSC from 0.410 to 0.536 (p = 0.0002). The F-
score was significantly improved from 0.270 to 0.308 (p = 0.007)
as was the FPR, significantly improving from 0.611 to 0.480 (p =

2.9× 10−5), however, there was a decrease in TPR from 0.735 to
0.544 due to inter-rater variability, which will be further discussed
in detail (section 5). In comparison to the DSC result for LST
(0.410) and the F-score of 0.160, our method yielded significantly
higher DSC (p = 0.001) and detection rates (p = 2.4 × 10−5) at
similar operating points.

Significant improvements were obtained in lesion
segmentation after applying domain adaptation from the
pre-trained baseline without domain adaptation to the Singapore
site, increasing the DSC from 0.636 to 0.703 (p = 0.006). A
slight improvement was achieved in F-score but not statistically
significant (p = 0.156). In comparison to LST, our method
was significantly better in both segmentation and detection,
(p = 0.006) and (p = 0.0002), respectively.

Performing domain adaptation from source VH to the target
UMC Utrecht site significantly improved the DSC from 0.587
of baseline to 0.624 (p = 0.008). There were no improvements
in lesion detection rates, and the differences in F-scores for the
baseline and domain adaptation were not statistically significant
(p = 0.794). The DSC using our method was similar to that
of LST (0.620), and differences were not significant (p = 0.79),
but significantly higher lesion detection rate was observed after
domain adaptation in comparison to LST (p = 0.0003).

When the VU Amsterdam site was used as target, our
approach achieved a significant increase in DSC, improving the
baseline from 0.504 to 0.602 (p = 8.9 × 10−5). The F-score of
our method with 0.341 was also significantly higher than both
LST (p = 0.0006) and baseline (p = 0.0002) values, with
0.213 and 0.300, respectively. The segmentation performance of
our method was slightly better than LST but not statistically
significant (p = 0.433).
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FIGURE 7 | Qualitative results for WMH lesion segmentation. Small lesion (A) and large lesion (B) segmentation improvements are shown. The bottom row depicts

zoomed regions of interests shown in blue rectangles on whole-brain images (top row).

Figure 7 illustrates WMH lesion segmentation examples
for the pre-trained baseline without domain adaptation, after
transductive domain adaptation, and unsupervised LST. As can
be seen, our method produced more refined segmentation than
the baseline and better detection of smaller lesions. On the other
hand, LST produced more false negatives and false positives for
the smaller lesions. Some false negatives for the small lesions
could not be avoided even after applying domain adaptation.

In comparison to the sub-cortical structure segmentation, the
number of voxels in training was varying depending on the
lesion load in the source image. Since the ground truth labels are
available for the source images, we handpicked a representative
image with a large lesion load. It took 14 min on average per
training epoch. Furthermore, the segmentation time per volume
using our method was 4 min (run on GPU) + 3 min (atlas
registration, run on CPU) on average. Whereas LST took 25 min
on average to segment the WMH lesions in one subject volume.

5. DISCUSSION

In this paper, we have introduced a novel domain adaptation
method which minimises the differences in activation maps
between the source and target domains in a transductive manner.
As shown in Figure 2, the convolutional layers of the CNN
produce different intensity distributions due to the variations
in MRI images with different acquisition protocols. In order
to alleviate this domain-shift effect, we performed histogram
matching on the activation maps for the last convolutional layers
as well as the fully connected layers of the network (Figure 1).

In the transductive domain adaptation process, we consider
that manual annotations are only available for the source images,
hence, optimisation of the CNN for segmentation loss can be only
done using the source dataset. Therefore, the histograms of the
activation maps extracted from the source were matched to those
of the target. Then, the histogram loss function (Equation 1)
computes how far the source feature map distributions are from
the ones of target. In this way, the layers of the network are

trained to produce similar activation maps to the target to
minimise the distribution differences between two domains and
jointly training the network to classify the input patches.

As can be seen in the results for the sub-cortical structure
segmentation (Table 1), the performance of the pre-trained
baseline CNN without domain adaptation was low. Moreover,
this could also be observed in the segmentation example for
one of the MICCAI 2012 dataset images (Figure 5), where the
thalamus and pallidum structures were difficult for the network
to segment. This is due to the weaker contrast between the
structure boundaries and the background in comparison to
other sub-cortical structures. On the other hand, the baseline
segmentation for the putamen structure was better even for
the baseline model. Although significant improvements were
observed for both left and right putamen structures when using
our domain adaptation method for the MICCAI 2012 dataset,
this was not the case for the IBSR-SIEMENS and IBSR-GE
datasets. However, the performance of the baseline model was
similar to the one for transfer learning (Kushibar et al., 2019)
due to the high contrast that this structure has compared to the
background, which makes it easier for the network to generalise
between different protocols. Aside from the putamen structure,
our method was effective in improving the performance of the
CNN for all other structures and significantly improved overall
average DSC from the baseline.

The performance of the network after domain adaptation
was similar to that of FIRST for the MICCAI 2012 dataset and
slightly lower for the IBSR-SIEMENS dataset. However, for the
IBSR-GE dataset, the result of domain adaptation was lower
than that of FIRST. The MRI scans of IBSR-GE have imaging
artefacts and lower quality in terms of contrast and brightness,
which makes this subset of the IBSR dataset the most challenging
one. In fact, the result of supervised domain adaptation using
transfer learning with one image (0.784) was still lower than
that of FIRST, and according to Kushibar et al. (2019), it took
three images to significantly outperform FIRST using transfer
learning. Since FIRST is an active-shape based model it is more
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FIGURE 8 | Inter-operator variability in the lesion ground truth masks for the: (A,B) WMH 2017; and (C,D) VH datasets. Blue ellipses indicate the hyperintense tissues

near the ventricles.

robust to imaging artefacts such as motion, and can produce
moderate results despite the present difficulties. However, deep-
learning based supervised methods (Dolz et al., 2018; Wachinger
et al., 2018; Liu et al., 2020) outperform unsupervised ones if an
adequate number of images are used in training.

The proposed method showed similar improvements when
performing domain adaptation from pre-trained baseline
model in the results for the WMH lesion segmentation task
(Table 2). In general, significant improvements were observed
in segmentation for all the experiments, while lesion detection
was improved for some sites only. We have noticed that for
this segmentation problem, inter-operator variability in the
gold-standard lesion masks has an enormous effect on the
lesion detection. As can be seen in Figure 8, the periventricular
hyperintensities are annotated as lesions for the WMH 2017
dataset and not in VH. Moreover, there are more smaller lesions
in the WMH 2017 dataset compared to the VH that have images
with predominantly larger lesions. These differences introduce
more difficulties in terms of better generalisation for the network
and require supervised intervention to mitigate the problems of
inter-operator differences between datasets.

Apart from these challenges, as shown in Figure 7, the
proposed domain adaptation method significantly improved the
segmentation result and produced better delineations of the
lesion boundaries. Also, some smaller lesions were detected better
after the domain adaptation, but some false positives still could
not be avoided.

As shown in Table 2, adapting the network from WMH 2017
to the VH dataset significantly improved overall segmentation
and detection rates. Also, for the images of the VH site, the
results for both the baseline and domain adaptation were better
than that of LST in terms of segmentation and lesion detection.
However, for all the other target sites, we observed that the pre-
trained baseline model without domain adaptation performed
worse than LST and considerable improvements were achieved
after applying domain adaptation. Overall, when adapting the
model from VH to the different sites of the WMH 2017 datasets,
lesion detection was not improved substantially. This was due
to the inter-operator differences in the ground truths, where the

CNN model was specifically trained to classify the small and
periventricular hyperintense tissues as the background. However,
as could be seen in Figure 6, segmentation performance was
increasing for most of the subjects after applying the domain
adaptation. We observed no improvement or decline in DSC for
some subjects when the performance of the baseline was also
low. Additionally, we observed that having at least the same
scanner makes the network to be less affected by the domain
shift. This could be seen in the example of NUHS Singapore
site, which shares the same scanner as VH, but with different
voxel resolution.

In terms of the number of images, our experiments showed
that using only one image was enough for domain adaptation.
This is because the histogram loss is computed only over the
image features and the number of overall samples was adequate
for the network to converge for both tasks. Including more
training images did not improve the segmentation results due
to the inter-operator variability in the expert annotated ground
truths labels but increased the training time.

As could be seen in both the quantitative and qualitative
results, the proposed transductive domain adaptation method is
an effective way to mitigate the problems of domain-shift without
the requirement for expert annotated labels. However, there are
some limitations for domain adaptation when no ground truth
labels are available. As we have seen in the results for the sub-
cortical structure segmentation, transductive domain adaptation
did not improve the DSC for structures where the performance
of the pre-trained baseline model was already satisfactory to
a certain degree. Similar behaviour was also observed when
applying the proposed method with a commonly used U-Net
architecture where the results were similar to the baseline for the
MICCAI 2012 and IBSR-SIEMENS datasets. However, there was
a slight improvement in the case of the IBSR-GE dataset where
the baseline was affected by domain shift compared to the other
sets. In general, we have noticed that U-Net was less affected
by domain shift compared to our selected CNN. Moreover,
it could be that the encoder-decoder architecture makes it
difficult to perform TDA at the feature-level. However, the overall
performance of U-Net when trained from scratch was lower
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than that of the 2.5D approach that achieves the state-of-the-
art results for the sub-cortical structure segmentation (Avg DSC
0.85 vs. 0.87, for UNet and our method in MICCAI 2012 dataset,
respectively). Further investigation on improving the feature-
level domain adaptation in encoder-decoder architectures with
our proposed transductive method will be taken as a future work.

Furthermore, the inter-operator variability between two
datasets also makes it challenging to evaluate such approaches.
We recommend applying the transductive approach for domain
adaptation to overcome extreme performance drops caused by
domain-shift, and when there are no manually annotated images
available. Although manually annotating the MRI scans for both
considered segmentation problems is a time-consuming task,
supervised transfer learning approaches remain a better way to
address the domain-shift problem which could be better than the
traditional unsupervised methods.

In general, most of the methods in the literature address
domain adaptation where the source and target images are
drastically different. Moreover, there are benchmark datasets
that allow such comparisons in computer vision [for example,
MNIST to The Street View House Numbers (SVHN)], but we
still lack such standard datasets in the medical domain. We
believe some medical benchmark datasets with minimal inter-
operator variability in the ground-truths masks will emerge. For
example, the iSeg infant brain tissue segmentation challenge (Sun
et al., 2020) and the MnM Challenge for multi-site and multi-
vendor cardiac MRI segmentation (Campello and Lekadir, 2020)
have recently been organised addressing this challenge. Such
initiatives would definitely serve as a benchmark for domain
adaptation methods. Especially for the cases when the differences
in images are not drastic but still affect the performance of deep
learning based methods. Also, note that in Sun et al. (2020),
the reported top five methods did not propose any domain
adaptation method, and the ones utilising adversarial training or
CycleGAN based approaches were not among the top methods,
which shows how challenging the problem is. Although these
more complex methods have shown their effectiveness in multi-
modality setup, there is still room for improvement in domain
adaptation for multi-site single-modality cases.

6. CONCLUSIONS

In this paper, we have introduced a transductive transfer learning
method for reducing the domain-shift effect in deep learning
caused by differences in MRI scanners and image-acquisition
parameters. In our approach, we computed the histogram loss
defined by the differences in the histogram distributions of
the activation maps for the source and target domains from
the convolutional and fully connected layers of the network.
Minimising the histogram loss forces the convolutional layers to
produce outputs for the source which are similar to those of the
target. The network is end-to-end trainable and does not require
exhaustive hyper-parameter tuning.

In order to implement our pipeline, we used a network
architecture recently proposed in Kushibar et al. (2018), which
had shown state-of-the-art performance in sub-cortical brain

structure segmentation. We employed this architecture to
perform domain adaptation for two different segmentation
problems. The proposed approach was tested with different
experimental setups using inter-site and inter-scanner datasets.

The experimental results confirmed the effectiveness of our
domain adaptation approach for two different segmentation
problems, where it was possible to significantly improve the
performances of the pre-trained baseline models. Performing
similarly to state-of-the-art traditional unsupervised methods,
our approach was able to overcome extreme performance drops
caused by domain-shift problem and achieve faster segmentation
process. Moreover, along with the domain-shift issue, there are
differences in the manual segmentation masks, which makes
evaluation of domain adaptation pipelines more challenging.

In summary, the approach presented in this work, can help
to improve brain biomarker extraction for various neurological
and neurodegenerative disorders, especially in clinical scenarios
where manual annotation are not available. Additionally, we
have made our transductive transfer learning domain adaptation
pipeline available to the research community at https://github.
com/NIC-VICOROB/sub-cortical_segmentation.
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