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Recently, due to the emergence of mobile electroencephalography (EEG) devices,

assessment of mental workload in highly ecological settings has gained popularity. In

such settings, however, motion and other common artifacts have been shown to severely

hamper signal quality and to degrade mental workload assessment performance.

Here, we show that classical EEG enhancement algorithms, conventionally developed

to remove ocular and muscle artifacts, are not optimal in settings where participant

movement (e.g., walking or running) is expected. As such, an adaptive filter is proposed

that relies on an accelerometer-based referential signal. We show that when combined

with classical algorithms, accurate mental workload assessment is achieved. To test

the proposed algorithm, data from 48 participants was collected as they performed

the Revised Multi-Attribute Task Battery-II (MATB-II) under a low and a high workload

setting, either while walking/jogging on a treadmill, or using a stationary exercise bicycle.

Accuracy as high as 95% could be achieved with a random forest basedmental workload

classifier with ambulant users. Moreover, an increase in gamma activity was found in the

parietal cortex, suggesting a connection between sensorimotor integration, attention,

and workload in ambulant users.

Keywords: EEG, physical activity, amplitude modulation features, wearable sensors, adaptive filtering, mental

workload assessment

1. INTRODUCTION

Many professions, such as first responders (firemen, policemen, paramedics) and pilots are often
faced with cognitive challenges including information overload, multitasking, interruptions, and
fatigue. All these factors increase stress and reduce the efficiency with which this complex set of
tasks is performed (Grtner et al., 2019). In many cases, these individuals are also exposed to a
combination of physical and mental factors that further contribute to a high mental workload
(MW), thus resulting in increased chances for errors, which could be life threatening. As such,
MWmonitoring has gained popularity in recent years.

Mental workload assessment can follow three methods: subjective, behavioral, or
instrumental/objective. Subjective assessment relies on users reporting their perceived levels
of mental workload and the NASA task load index (TLX) (Hart and Staveland, 1988; Cao et al.,
2009) has been widely used. Behavioral methods, in turn, rely on task performance metrics (e.g.,
accuracy, response times, error rate) to characterize MW states. As can be seen, it is difficult
for subjective and behavioral assessment methods to provide real-time measures of MW, thus
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have limited applications in closed-loop systems to improve task
performance. This is where instrumental or objective methods
have filled a gap. With such systems, real-time correlates of
MW are obtained and unobtrusive neuronal and physiological
measures have been explored, such as electroencephalography
(EEG), electrocardiography (ECG), and galvanic skin response,
amongst others.

With the popularization of wearable devices and improved
dry electrode technologies, EEGs have emerged as a potential
candidate for automated instrumental MW assessment (Lean
and Shan, 2012; Mullen et al., 2015). Successful applications
have been shown in aircraft pilots and car drivers (Borghini
et al., 2014), and air traffic controllers (Aricò et al., 2016), to
name a few. Numerous different features have been explored
and shown useful, including power spectral, magnitude, and
phase coherence (Aghajani andOmurtag, 2016; Dimitrakopoulos
et al., 2017; So et al., 2017). For example, increases in theta and
decreases in alpha band powers have been shown in prefrontal
and parietal brain regions when task difficulty increases (Borghini
et al., 2014). Temporal complexity measures have also shown
some robustness against ocular and muscular artifacts (Tiwari
et al., 2019) and spectro-temporal measures have been shown
to provide complementary information to conventional power
spectral ones (Albuquerque et al., 2019). Most available works,
however, have relied on stationary users, such as sitting pilots
and drivers (Borghini et al., 2014; Johnson et al., 2015), or have
controlled for body movements (Hogervorst et al., 2014).

Practical applications, however, have users that are highly
ambulatory (e.g., first responders). It is known that dry
electrodes are very sensitive to movement artifacts, which
could severely hamper MWmonitoring performance (Morikawa
et al., 2013). In our previous work, we explored the use of
several conventional EEG enhancement algorithms to gauge
their benefits in instrumental measurement of MW in highly
ecological settings (Rosanne et al., 2019). We found that while
some improvements were seen relative to using noisy raw data,
overall MW measurement performance levels remained lower
than what has typically been reported for stationary users.
This is due to the fact that existing enhancement algorithms
have been developed and optimized to remove muscle and
eye blink/movement artifacts, and not necessarily movement
artifacts seen with, e.g., running.

To overcome this limitation, here we propose the use of
an adaptive filter to remove movement-specific motion artifacts
from mobile EEG data. Accelerometry signals measured from
the participant’s torsos are used as reference signals for the
adaptive filter. The algorithm was tested on a database collected
in-house from 48 participants while they performed the Multi-
Attribute Task Battery-II (Santiago-Espada et al., 2011) under
two workload conditions (low and high) and two physical activity
(PA) types (stationary bike and treadmill), each at three activity
levels (none, medium, and high). Experimental results show
the proposed algorithm accurately removing body movement
artifacts and resulting in MW monitoring performance as high
as 97% and independent of activity type and level.

Lastly, with the enhanced signals available, we conducted an
in-depth analysis of the top features selected for MW assessment,

thus obtaining insights into the cognitive processes involved
during the workload task under physical activity. We found
typical patterns related to visuo-motor control, attention, and
fronto-parietal communication; patterns that would otherwise
have been lost due to movement artifacts.

The remainder of this paper is organized as follows: section
II describes the materials and methods used in the experiment.
Section III presents and discusses the obtained results, and
section IV presents the study conclusions.

2. MATERIALS AND METHODS

2.1. Data Collection
Data was collected from 48 participants (23 females, 27.4 ± 6.6
year old), of which 22 utilized a treadmill during the experiment
and 26 a stationary bike. Participants using the treadmill were
asked to wear a safety harness around their chest in order to
avoid falls. The experimental protocol was approved by the Ethics
Boards at INRS and Université Laval, participants provided
written consent, andweremonetarily compensated for their time.

The experimental protocol comprised two MW levels
(low/high) elicited through the MATB-II software, which
has participants executing three simultaneous tasks: system
monitoring, tracking, and resource management, as presented in
Figure 1. Low and high MW settings were implemented based
on changing the difficulty levels for each of the three tasks. As
an example, a low MW task was composed by “easy” versions of
the three tasks. Participants used an Xbox 360 joystick to interact
with the MATB-II interface.

While executing MATB-II, subjects were asked to either bike
or walk/jog on a treadmill at three levels of physical activity (PA):
no movement, medium (treadmill: 3 km/h, bike: 50 rpm), and
high (treadmill: 5 km/h, bike: 70 rpm). In total, six combinations
of MW and physical activity were tested. The experiment was
then split into six sessions, each one corresponding to one of
the six combinations described above, counterbalanced to avoid
ordering effects. Each session took 10 min to run and was
systematically followed by a 5-min break. Before every session,
two baseline periods were recorded. The first corresponded to
1 min without task nor physical activity. The second, in turn,
corresponded to 1 min with only physical activity at the same
level to be executed in the upcoming session. At the end of
the experiment, each subject was asked to fill the NASA-TLX
questionnaire (Hart and Staveland, 1988) to subjectively evaluate
their perceived workload levels, as well as the reported their
fatigue levels using the Borg scale (Borg, 1998).

EEG data was acquired from the participants using the
Neurolectrics Enobio 8-channel portable headset with the
following channel locations according to the international 10–
20 system: Fp1, Fp2, AF7, AF8, T9, T10, P3, P4 (see Figure 2).
Signals were collected at a sampling rate 500 Hz and were
later downsampled to 250 Hz. Two virtual inter-hemispheric
bipolar signals were also computed, namely Fp1-Fp2 and P3-P4.
Movement activity was also recorded with a sampling rate of 50
Hz using the embedded accelerometer available in the Zephir
Bioharness wearable device, which was placed on the chest of
each subject. Accelerometry data was upsampled to 250 Hz to
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FIGURE 1 | Graphical interface of the MATB-II software used to modulate high and low MW levels.

coincide with the EEG data. The interested reader is referred to
Albuquerque et al. (2020) for more details about the database.

2.2. Movement Artifacts
To illustrate the effects of movement, particularly in the
walking/jogging conditions, Figure 3 depicts the average spectral
representation of each of the eight EEG channels, as well as that
of the accelerometer signals (bottom plot) during 10 s of the
high physical activity condition. Here, the accelerometer signal
corresponds to a L2-normalization of the accelerometer x, y,
and z axes. As can be seen, particularly for the frequency range
below 10 Hz, there is a significant effect from gait/movement
on the EEG spectra, something previously reported in the
literature (Zhang et al., 2014; Nathan and Contreras-Vidal,
2016). As movement artifacts are known to be detrimental
to EEG quality (Gao et al., 2010; McMenamin et al., 2011),
this has motivated the proposal of an adaptive filter using the
accelerometer signal as a reference signal.

Movement artifacts observed in EEG signals can be caused
either by a relative movement between the skin and the electrode
(Burbank and Webster, 1978) or by a change in electrical

potential when the skin stretches and contracts duringmovement
(de Talhouet andWebster, 1996; Kearney et al., 2007). Movement
artifacts have been reported to span spectral content between 0.11
and 20 Hz (Bouten et al., 1997), thus overlap with frequency
bands relevant for mental workload monitoring (Mak et al.,
2013). Conventional EEG enhancement algorithms, traditionally
developed for ocular and muscle artifacts (Urigüen and Garcia-
Zapirain, 2015; Mucarquer et al., 2019; Zou et al., 2019), have
been shown to help with ambulatory users. For example, in
Gwin et al. (2010), independent component analysis (ICA)
and component-based template regression was used to remove
gait movement artifacts from EEG event related potentials.
ICA-based decomposition was also used to remove head
movements in Onikura and Iramina (2015). Notwithstanding,
these conventional solutions have been shown to interfere with
MW assessment (Rosanne et al., 2019). Moreover, ICA-based
enhancement methods typically rely on human intervention to
remove artifactual components, thus have limited use in real-time
applications. Adaptive filtering, in turn, has been used to reduce
head movement artifacts (Mihajlović et al., 2014) and simulated
random noise in EEGs (Raya and Sison, 2002). To the best of
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FIGURE 2 | Electrode placement using the international 10–20 system.

our knowledge, however, the use of adaptive filtering, with or
without combined “blind” filtering approaches (i.e., that do not
rely on human intervention), has yet to be quantified for EEG-
based mental workload monitoring of ambulant users. We aim
to fill this gap.

2.3. Adaptive Filtering
Figure 4 depicts a block diagram of the adaptive filtering scheme
explored herein. Signal x(n) corresponds to the accelerometer
signal, whereas s(n) corresponds to the neuronal activity signal.
From the accelerometer signal, movement artifacts are modeled
and represent y(n). When added to the neuronal activity signal
s(n), the output represents the noisy EEG signal d(n) = s(n) +
y(n) recorded during physical activity. The goal of the adaptive
filter is to find the optimal distortion weights Ŵ(n) from the
accelerometer signal x(n) to best estimate the movement artifacts
via ŷ(n) and remove their effects from the noisy EEG signal
via e(n) = d(n)− ŷ(n).

More specifically:

ŷ(n) = Ŵ(n) ∗ x(n), (1)

and

e(n) = d(n)− ŷ(n),

e(n) = y(n)+ s(n)− ŷ(n).
(2)

The filter weights are found using the normalized least mean
squares (NLMS) procedure (Diniz, 1997) for loss function C(n)
using the steepest descent algorithm, i.e.:

∇ŵHC(n) = ∇ŵHE
[

e(n)2
]

= E
[

2e(n)∇ŵH e(n)
]

= −2E
[

x(n)e(n)
]

,

(3)

FIGURE 3 | Average spectral representation of the eight EEG signals and the

accelerometer signal over 10 s of recording for the low MW and high PA

condition.

FIGURE 4 | Block diagram of proposed adaptive filter.

where ∇ is the gradient operator and E [·] the expected value.
This leads to the following update rule:

ŵ(n+ 1) = ŵ(n)+ µE
[

x(n)e(n)
]

, (4)

where µ/2 is the step size.
We approximate the last term using the single-sample

unbiased estimator E
[

x(n)e(n)
]

= x(n)e(n)
|x(n)|2

, thus simplifying

(4) to:

ŵ(n+ 1) = ŵ(n)+
µx(n)e(n)

|x(n)|2
. (5)

Here, a filter length of 500 samples was used, corresponding
to a signal duration of 2 s. Figure 5 depicts the noisy and
enhanced EEG signals, as well as the accelerometry signal, to
visually showcase the movement effects on the EEG signal and
the effectiveness of the adaptive filter.
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FIGURE 5 | Time representation of a 5-s EEG segment from electrode AF8

before (blue) and after (black) adaptive filtering. The L2-normalization of the x,

y, and z accelerometry axes is represented in orange.

2.4. Benchmark Enhancement Algorithms
As mentioned previously, numerous EEG enhancement
algorithms exist. Most have been developed to remove eye and
muscular artifacts. Some are completely autonomous, whereas
others rely on expert supervision. Here, four algorithms widely
used for automatic (i.e., not relying on human intervention) EEG
enhancement are used as benchmarks. They are used alone or in
combination with each other. The following configurations are
applied to the entire signals prior to epoching:

• ASR: artifact subspace reconstruction (ASR) is a method
developed to remove transient and large-amplitude artifacts
from noisy EEG. It relies on principal components analysis
to reject large-variance components prior to reconstruction.
The method relies on automatically identifying clean portions
of the EEG signal and using these segments to determine
thresholds for rejecting components. As stated in Chang et al.
(2019), ASR has become the standard benchmark for EEG
enhancement. The interested reader is referred to Mullen et al.
(2015) for more details on the ASR method.

• ADJUST: Automatic EEG artifact Detection based on the
Joint Use of Spatial and Temporal features (ADJUST)
is an automatic artifact removal method that relies on
“templates” of the effects of stereotyped artifacts (e.g., due
to eye movements, blinks, and heart beats) on independent
components. Components related to stereotyped artifacts are
then removed and the signal is reconstructed. It has been
reported that non-stereotyped artifacts, such as those due to
movement, are not accurately removed with ADJUST and
multiple methods are needed. More details about ADJUST can
be found in Mognon et al. (2011).

• Wavelet-ICA: Wavelet-enhanced independent component
analysis (ICA) relies on wavelet coefficient thresholding of
independent components to reject artifactual components.
The method has been shown to outperform conventional ICA

and to better preserve EEG spectral and phase coherence
properties (Castellanos and Makarov, 2006), especially for
low-density EEG configurations (Cassani et al., 2014).

• HAPPE: The Harvard Automated Processing Pipeline for
Electroencephalography (HAPPE) is a pipeline suitable for
low density EEG channels and limited data samples. It relies
on wICA and multiple artifact rejection algorithm (MARA)
to detect artifactual components for rejection. The interested
reader is referred to Gabard-Durnam et al. (2018) for complete
details on the HAPPE method.

• Algorithm Combinations: In addition to the combined
methods approach in HAPPE, the following additional
benchmark algorithmic combinations were also explored:
ASR + wICA and ASR + ADJUST. Moreover, the
proposed adaptive filter was also used in combination
with the benchmark algorithms to explore their combined
effectiveness. Henceforth, results represented as “Raw” assume
no enhancement, “AF” when only the adaptive filter has been
applied, and methods combined with AF will be preceded by
the prefix “AF_.”

2.5. Feature Extraction
Prior to feature extraction, EEG signals were first filtered with a
FIR band-pass filter in the range 1–45 Hz. The following feature
sets were extracted from the raw and enhanced signals:

2.5.1. Power Spectral Density
Power Spectral Density (PSD) features measure signal power
across different subband frequencies. In this study, nine
frequency bands were considered, namely: δ (1–4 Hz), θ (4–8
Hz), α (8–12 Hz), β (12–30 Hz), low γ (30–45 Hz), δ to β (1–
30 Hz), θ to β (4–30 Hz), low α (8–10 Hz), and high α (10–12
Hz). The relative power of each of these bands was calculated by
normalizing per-band values by the full-band power. A total of
90 PSD features were extracted. Numerous studies have reported
the usefulness of such features for mental workload assessment
(Liu et al., 2017; Craik et al., 2019; Zhang et al., 2019).

2.5.2. Phase and Magnitude Spectral Coherence
Phase and Magnitude Spectral Coherence (PMSC) features
are useful for measuring connectivity between cortical regions
as these techniques measure co-variance of the phase and
magnitude between two signals. The interested reader is referred
to Aoki et al. (1999) for more details on PMSC computation.
PMSC is computed for two pairs of electrodes, namely FP1-FP2
and P3-P4 for each 5 sub-bands (δ, θ , α, β , γ ). A total of 20
PMSC features were extracted. These features are motivated from
Zhang et al. (2014) and Zarjam et al. (2015) that have shown their
usefulness in mental workload assessment.

2.5.3. Amplitude Modulation Rate-of-Change
Amplitude Modulation (AM) rate-of-change features quantify
the rate-of-change of specific frequency sub-bands and
provides insight into cross-frequency magnitude-magnitude
coupling/interactions and reveals interactions between different
brain processes (Tort et al., 2010; Voytek et al., 2010; Seeber
et al., 2014), as well as long-range communication (Zanto et al.,
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2011; Clayton et al., 2015). The interested reader is referred
to Trambaiolli et al. (2011) and Fraga et al. (2013) for more
complete details on the measure. A total of 140 features were
extracted that provide robustness against movement artifacts, as
described in Albuquerque et al. (2018).

2.5.4. Phase and Magnitude Spectral Coherence of

Amplitude Modulation Features (PMSC-AM)
PMSC-AM extends the capacity of PMSC features to amplitude
modulations. These features were recently proposed for affective
state monitoring and showed useful for arousal and valence
prediction (Clerico et al., 2015, 2018). They are explored here for
the first time as correlates of mental workload. These features are
based on the modulated signals of each band which make a total
of fourteen signals per channels (see Clerico et al., 2018 for more
details). After splitting the signals into epochs, the magnitude
spectral coherence and phase coherence is then computed for
the FP1-FP2 and P3-P4 channel pairs only. A total of 56 features
were extracted.

2.6. Feature Selection and Ranking
Feature selection is a common step in classification tasks to
remove redundant (Peng et al., 2005) or irrelevant features
(Blum and Langley, 1997) and for dimensionality reduction (Fan
and Fan, 2008) to improve classification performance. In this
study, we rely on the so-called minimum Redundancy Maximum
Relevance (mRMR) filter method (Peng et al., 2005) which not
only finds the most relevant features for the task at hand, but
removes features with highmutual information, thus minimizing
redundancy. The algorithm has been shown to be extremely
useful for EEG-based affective state assessment (e.g., Cassani
et al., 2014; Clerico et al., 2018). In addition to feature selection,
we further rank the importance of the top-features using a
wrapper-based method. It is important to emphasize that feature
selection/ranking is not crucial here, given the number of features
explored. Nonetheless, we use it to obtain insights into the
neuronal patterns related to mental workload during activity and
how such patterns may be affected by movement artifacts.

2.7. Classification and Hyperparameter
Tuning
We are interested in exploring the effects of movement artifacts
and, consequently, EEG enhancement on mental workload
assessment. Here, we assume the binary problem of classifying
low vs. high mental workload levels. Two conventional classifiers
are explored, namely random forest (RF) (Qi, 2012) and support
vector machine (SVM). A repeated (10 times) 10-fold cross
validation testing setup is used.

For hyperparameter tuning, the cross-validation grid search
available in the scikit-learn library (Pedregosa et al., 2011) was
explored. This approach, however, yielded a high number of trees
(around 500) for the RF classifier, as compared to the amount
of available data (Oshiro et al., 2012). As an alternative, we
empirically fixed tree depth to 8 and stopped adding trees once
the evolution of the area under the curve—receiver operating
characteristics (AUC-ROC) became constant across out-of-bag
conditions. Next, a similar strategy was used to optimize tree

FIGURE 6 | Evolution of AUC-ROC for training and out-of-bag (oob) sets as a

function of number of trees.

FIGURE 7 | Evolution of AUC-ROC for training and out-of-bag (oob) sets as a

function of tree depth.

depth and we fixed the number of trees to the value found in
the previous analysis. In both cases, a stratified 5-fold cross-
validation procedure was used with all subjects to ensure reliable
generalization performance.

Figure 6 shows the evolution of AUC-ROC scores for the
training and out-of-bag (oob) sets as a function of number of
trees. When building each random tree in the forest, not all
features and samples of the dataset are used. Instead, a small
randomly-selected set called the bootstrap bag is used to build
a single tree; this bag is different for each tree. The oob set, thus,
corresponds to the remaining unused samples. The accuracy with
the oob set is shown to stabilize at around 100 trees. Moreover,
Figure 7 depicts accuracy as a function of tree depth. As can be
seen, for the out-of-bag set the accuracy plateaus at around a
depth of 10. Henceforth, these values are used in our experiments.

Figure 8 presents accuracy values obtained during a grid
search to find the optimal C and γ values of the support vector
classifier. It can be seen that the best accuracy is reached with
C = 310 and γ = 0.001 with a Radial Basis Function kernel;
these values are used henceforth.
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FIGURE 8 | Accuracy hyperparameter grid search for the SVM classifier.

3. RESULTS AND DISCUSSION

3.1. Classification Performance
3.1.1. Ablation Study
In order to estimate the impact of the adaptive filter on
EEG enhancement, mental workload classification accuracy
is reported with and without its use. Tables 1, 2 present
classification accuracy values for the RF and SVM classifiers,
respectively. While each column corresponds to a tested
benchmark enhancement algorithm, with or without (termed
“Base”) adaptive filtering, each row corresponds to a specific
feature set used for classification in the low and high physical
activity (PA) conditions. Row labeled “All” indicates fusion of
all features. Results reported are the average of a 10-fold cross-
validation test setup repeated ten times by shuffling the partitions
each time. Whenever the achieved results with the adaptive
filter were significantly different (based on a paired t-test) than
without, results are indicated with superscripts “†” and “‡” for
p ≤ 0.05 and p ≤ 0.01, respectively.

As can be seen from the Tables 1, 2, the adaptive filter
significantly improved accuracy for most tested configurations,
particularly for features derived from the amplitude modulation
analysis, as well as for the high physical activity conditions in
which movement artifacts are most pronounced. Overall, the RF
classifier consistently outperformed the SVM.

For PSD based features, the best results were achieved with a
combination of ASR and ADJUST methods (93.68%), followed
closely by HAPPE and AF (92.96%) for low physical activity

conditions and the ASR-wICA-AF combination for high PA
conditions. Similar accuracy values were achieved for the AM and
PMSC feature sets. The PMSC-AM features, on the other hand,
resulted in the lowest values, thus suggesting that they may not be
useful for mental workload assessment when used alone. Overall,
fusion of the different feature sets showed to result in the highest
accuracy for both RF and SVM classifiers, thus suggesting their
complementarity. The highest accuracy achieved was of 97.90%
with the HAPPE-AF combination for both the high and low PA
conditions. Such findings show that by combining all feature sets
with the proposed adaptive filtering and HAPPE enhancement
methods, the same mental workload measurement accuracy can
be achieved despite physical activity levels.

3.1.2. Effect of Number of Features
The results reported in Tables 1, 2 relied on all extracted features.
In order to investigate the impact of feature dimensionality on
overall accuracy, Figure 9 depicts the achieved accuracy as a
function of number of features used, in decreasing importance,
as ranked by mRMR. Here, the AF-HAPPE enhancement
combination is used with the RF classifier and the average
accuracy over a single 10-fold cross-validation setup is used. For
this comparison, default classifier parameters are used in order to
gauge the effectiveness of the features per se, and not the classifier.
As can be seen, sharp increases in accuracy are achieved with the
first 60 features and then slight increases occur after 100 and then
200 features are considered. A small gap is seen for both low and
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TABLE 1 | RF mental workload classification accuracy for different feature and enhancement algorithm configurations.

Raw ASR ADJUST HAPPE ASR_ADJUST ASR_wICA wICA

Random forest
Base AF Base AF Base AF Base AF Base AF Base AF Base AF

low PA 86.27 85.59‡ 88.60 89.71‡ 89.23 88.89 86.25 92.96‡ 93.68 90.37‡ 92.34 92.73 88.66 90.87‡
PSD

high PA 87.15 85.05‡ 89.55 89.89 89.92 89.76 89.57 90.91‡ 89.14 91.80‡ 94.13 94.61‡ 89.14 91.69‡

low PA 83.91 84.28† 84.78 86.48‡ 88.12 88.26 83.90 91.93‡ 91.94 87.28‡ 87.26 89.47‡ 84.83 87.88‡
AM

high PA 83.83 84.77‡ 86.84 89.21‡ 88.27 89.08‡ 87.33 89.36‡ 87.62 89.13‡ 90.91 92.60‡ 85.59 89.27‡

low PA 84.23 85.76‡ 82.67 82.66 90.05 92.26‡ 87.85 95.15‡ 89.38 87.08‡ 84.33 82.44‡ 84.66 86.03‡
PMSC

high PA 82.07 82.78‡ 80.74 79.95‡ 86.79 88.08‡ 89.80 90.51‡ 89.90 84.84‡ 82.44 80.46‡ 81.31 83.81‡

low PA 65.79 70.81‡ 67.89 68.32 66.62 71.92‡ 73.84 78.34‡ 67.77 64.99‡ 70.18 67.48‡ 65.56 70.19‡
PMSC-AM

high PA 67.90 74.10‡ 67.57 67.66 69.59 70.56‡ 71.46 75.71‡ 68.46 64.78‡ 67.75 67.05† 68.59 72.09‡

low PA 89.17 95.03‡ 90.23 94.32‡ 92.55 95.65‡ 93.24 97.90‡ 96.21 93.56‡ 93.61 95.86‡ 90.49 96.22‡
All

high PA 88.89 91.20‡ 90.77 93.39‡ 94.22 95.36‡ 94.54 97.89‡ 93.36 93.54 94.95 95.19 90.20 93.97‡

TABLE 2 | SVM mental workload classification accuracy for different feature and enhancement algorithm configurations.

Raw ASR ADJUST HAPPE ASR_ADJUST ASR_wICA wICA

SVM
Base AF Base AF Base AF Base AF Base AF Base AF Base AF

low PA 59.31 59.35 61.72 60.16‡ 64.08 67.16‡ 67.98 73.57‡ 70.72 71.37 66.66 63.13‡ 59.99 59.82
PSD

high PA 64.22 66.56‡ 65.78 67.81‡ 68.40 70.00‡ 67.56 73.58‡ 67.61 71.91‡ 69.29 70.96‡ 64.79 70.07‡

low PA 56.75 59.03‡ 58.37 61.05‡ 61.63 69.18‡ 62.69 73.39‡ 69.48 68.65† 60.74 62.74‡ 56.15 59.63‡
AM

high PA 62.49 65.35‡ 66.67 64.64‡ 68.88 69.66‡ 66.16 70.94‡ 68.45 70.36‡ 68.80 66.77‡ 63.27 67.22‡

low PA 60.25 72.25‡ 60.70 69.61‡ 61.59 68.45‡ 63.94 75.11‡ 70.45 68.22‡ 61.06 69.71‡ 61.07 73.27‡
PMSC

high PA 60.43 71.86‡ 65.79 68.48‡ 67.97 69.62‡ 70.80 72.98‡ 72.09 67.64‡ 66.35 69.04‡ 60.05 71.34‡

low PA 56.05 62.53‡ 56.57 58.89‡ 56.03 62.04‡ 59.83 65.23‡ 59.37 58.68† 56.60 58.04‡ 55.36 59.79‡
PMSC-AM

high PA 59.35 65.37‡ 59.63 60.29 61.36 61.69 59.11 63.43‡ 58.49 58.61 59.96 62.62‡ 60.10 64.21‡

low PA 64.94 78.34‡ 66.59 73.54‡ 73.28 80.25‡ 78.88 87.49‡ 76.60 79.58‡ 68.22 75.37‡ 66.87 77.39‡
All

high PA 71.37 81.09‡ 73.31 76.26‡ 78.33 81.03‡ 79.38 86.93‡ 78.94 77.88‡ 74.42 77.72‡ 71.22 81.86‡

high physical activity conditions once all 306 features are used. If
feature dimensionality is of concern, the achieved results and the
small gap between low and high PA conditions suggest that 236
features can be a good compromise (94 and 90%, low and high
PA, respectively), followed by 111 features (91 and 87%, low and
high PA, respectively). For comparison, with the top-60 features,
accuracy of 84 and 88% are achieved, respectively.

3.2. Top-Ranking Features
To obtain insights from top-selected features, we performed
an in-depth analysis of the top-60 features selected from the
combined “All” feature set in the low and high physical activity
conditions using both the raw data and the top-performing
AF_HAPPE enhanced data; Table 3 lists these features.

As can be seen, for all conditions tested, modulation spectral
features resulted in the majority of the top 60 features.
For example, for the high PA conditions without and with
AF_HAPPE processing, they corresponded to 50 and 70% of
the top features, respectively. This corroborates findings from
Albuquerque et al. (2018, 2019) and Clerico et al. (2018) that
show the importance of such features for mental workload
and affective state assessment, as well as their robustness to
movement artifacts.

FIGURE 9 | Accuracy vs. number of features for a RF classifier and a

combined AF-HAPPE enhancement pipeline.

Coherence based measures, in turn, were the second top-
performing features and appeared mostly in high PA conditions.
They represented ∼17 and 18% of the top features for the
raw and enhanced conditions, respectively. Coherence measures
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TABLE 3 | Top-60 features for different physical activity (PA) and signal processing

conditions.

Raw AF_HAPPE

Low PA High PA Low PA High PA

β-mα-P4 msc-β-mθ-FP1-

FP2

γ -mγ -FP1-FP2 phc-β-mδ-FP1-

FP2

α-mδ-AF8 msc-δ-P3-P4 δ-P3-P4 γ -mδ-P4

tab-FP1 γ -mδ-T10 γ -mβ-P4 β-mδ-T9

α-AF8 α-mθ-T10 α1-T9 γ -mθ-AF8

θ-mθ-FP1 α-mδ-FP1 β-mα-AF7 β-mθ-AF8

γ -mδ-P4 γ -mθ-FP2 θ-mθ-T9 β-mθ-P4

γ -mθ-T10 β-mδ-AF7 γ -mδ-P4 γ -mδ-AF8

θ-mθ-T9 β-mθ-P4 dtab-T10 θ-mθ-P3-P4

θ-mθ-FP1-FP2 β-mδ-FP1-FP2 β-mθ-AF7 tab-FP2

θ-mθ-T10 β-mδ-T10 θ-P3-P4 γ -mα-FP1-FP2

α1-FP1-FP2 α-mθ-AF8 δ-mδ-FP1 α-T9

α-mθ-P3 α-mδ-P3 γ -mθ-FP2 γ -mδ-FP2

γ -mθ-FP2 msc-α-mδ-FP1-

FP2

γ -mδ-P3 β-T9

γ -mβ-FP2 α-FP2 tab-T9 msc-γ -mδ-FP1-

FP2

θ-mδ-FP1-FP β-mα-P4 β-mδ-P3 β-mδ-FP2

α-mθ-P3-P4 α-AF8 γ -mδ-FP2 α2-P4

γ -mα-P3 θ-mδ-FP1-FP2 dtab-T9 dtab-P3

dtab-T9 α2-T10 θ-mθ-FP1-FP2 γ -mθ-T10

β-mβ-P3-P4 θ-FP2 γ -mβ-AF8 β-mθ-FP2

tab-T9 tab-FP2 γ -mδ-FP1 γ -P3

δ-mδ-AF7 α2-T9 β-P3 β-mθ-T9

phc-δ-mδ-P3-P4 β-mθ-P3 γ -mγ -FP2 γ -mθ-FP2

γ -mβ-P4 γ -mα-P3-P4 θ-mδ-FP1 γ -mβ-P3

β-mβ-T9 γ -mα-FP2 phc-β-mθ-P3-P4 γ -FP1

β-mβ-P3 θ-T10 γ -mγ -P3 δ-AF8

dtab-AF7 β-mδ-P3-P4 θ-mθ-P3 β-mα-FP1-FP2

γ -mα-FP2 dtab-T9 γ -mγ -FP1 γ -mθ-FP1-FP2

θ-T10 β-T10 β-mθ-FP1 γ -mθ-P4

γ -mα-T9 tab-T10 γ -mγ -P3-P4 δ-mδ-FP1

θ-mθ-AF8 γ -T9 γ -mβ-FP1-FP2 β-mα-AF7

γ -mθ-P3 θ-mθ-P3 β-mα-P3 θ-mδ-P4

γ -T10 dtab-FP1 γ -mθ-FP1 msc-β-mθ-FP1-

FP2

δ-AF7 β-P3 α2-T9 δ-mδ-AF8

δ-mδ-P3-P4 msc-γ -FP1-FP2 β-mδ-P4 tab-FP1-FP2

α-mθ-T10 msc-α-mθ-FP1-

FP2

δ-mδ-P4 β-AF8

β-mδ-P3-P4 α-mθ-FP2 δ-P4 β-mθ-P3

γ -mθ-P3-P4 α1-P3-P4 phc-θ-P3-P4 β-P3-P4

β-mδ-P3 γ -mδ-P3-P4 γ -mβ-FP1 γ -mδ-T9

α-T10 δ-mδ-P4 γ -mα-FP1-FP2 α1-T10

α2-P3-P4 γ -P3 θ-mδ-P3 δ-mδ-FP2

θ-mδ-P4 α1-T9 β-mα-P4 msc-β-mβ-FP1-

FP2

β-mθ-P3-P4 β-mθ-P3-P4 β-mθ-P3-P4 β-mδ-P4

θ-mδ-T10 α-mδ-FP2 β-mβ-P4 α-T10

msc-β-mδ-P3-P4 γ -T10 γ -mθ-FP1-FP2 γ -mγ -T9

(Continued)

TABLE 3 | Continued

Raw AF_HAPPE

Low PA High PA Low PA High PA

phc-β-P3-P4 β-P3-P4 β-mβ-FP2 msc-δ-P3-P4

α-mδ-P4 msc-β-mδ-FP1-

FP2

γ -mα-FP1 msc-β-mα-FP1-

FP2

γ -FP1-FP2 δ-FP1-FP2 δ-mδ-P3-P4 msc-γ -mθ-FP1-

FP2

θ-P3-P4 msc-γ -mθ-FP1-

FP2

γ -mβ-FP2 γ -mα-P3-P4

phc-δ-P3-P4 β-P4 δ-FP1-FP2 γ -mα-T9

α1-P3-P4 tab-P4 γ -mβ-P3-P4 δ-mδ-P4

β-mδ-T9 δ-T9 β-mβ-FP1-FP2 msc-δ-FP1-FP2

α1-T9 dtab-T10 γ -T10 β-mδ-AF7

γ -mδ-P3-P4 α-mδ-T10 γ -mγ -T10 β-mβ-P3-P4

θ-P4 msc-β-FP1-FP2 γ -mβ-T10 γ -mθ-AF7

α2-P4 msc-θ-FP1-FP2 γ -mα-P3-P4 γ -mθ-P3-P4

dtab-P3 dtab-P4 β-mδ-P3-P4 γ -mβ-P3-P4

θ-FP2 δ-P3-P4 θ-mδ-P3-P4 msc-θ-FP1-FP2

β-FP2 tab-T9 α-mδ-T9 β-mθ-AF7

α2-T9 msc-δ-FP1-FP2 dtab-FP1 msc-α-FP1-FP2

α-P3 β-FP2 γ -mα-T10 phc-γ -FP1-FP2

Feature names are self explanatory and follow the feature-electrode notation; “tab”
corresponds to 4–30 Hz spectral subband power; “dtab” to 1–30 Hz; “phc” to phase
coherence; and “msc” to magnitude square coherence.

have been linked movement and visual-motion discrimination
and are indicative of the additional mental resources involved
during physical activity (Händel and Haarmeier, 2009; Cheron
et al., 2016). The important coherence features were mostly
extracted from the pre-frontal regions, which have been
linked to mental workload and attention (Mandrick et al.,
2013), while a few were extracted from parietal regions, thus
suggesting some contribution of balance control also involved
(Hülsdünker et al., 2015).

Regarding brain hemispheres, features from the right regions
were selected slightly more often than the left hemisphere,
particularly in high PA conditions. This corroborates previous
work (Perennou et al., 1999) that has shown the existence
of a right hemispheric dominance for postural control. Inter-
hemispheric signals, in turn, corresponded to roughly 33% of
the top features for all PA conditions. Within the top features,
inter-hemispheric parietal features typically appeared in low
PA conditions, whereas inter-hemispheric pre-frontal features
appeared during high PA conditions. This suggests a shift in
visuo-motor (Iacoboni and Zaidel, 2004) and attention (Vossel
et al., 2016) aspects during low PA, to more complex motor
behaviors and sensorimotor integration aspects with high PA
(Geschwind and Iacoboni, 1999). Overall, in the enhancement
scenario, the parietal regions were responsible for the majority
of the top features, followed closely by the pre-frontal cortex,
for both low and high PA conditions. These results are in line
with the classical mental workload literature with non-ambulant
users (Aoki et al., 1999; Holm et al., 2009; Borghini et al., 2012;
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Mandrick et al., 2013; Käthner et al., 2014; Al-Shargie, 2019),
thus further showing the promise of the proposed adaptive
filtering scheme.

Lastly, regarding EEG subband frequencies, as expected,
adaptive filtering combined with HAPPE reduced the importance
of features extracted from θ and α bands, as these have the
highest overlap with the accelerometry data. It did, on the other
hand, boost the importance of features extracted from the β and
γ bands. It is well-known that γ is highly sensitive to muscle
activity (Muthukumaraswamy, 2013) and HAPPE is known to
remove such artifacts. With the proposed enhancement scheme,
γ features (and γ − mδ) remained consistent between low and
high PA conditions and covered aspects related to sensory motor
integration (Aoki et al., 1999; Sauseng et al., 2015), attention
(Sammer et al., 2007; Wang et al., 2017), and balance control
(Gwin et al., 2011; Sipp et al., 2013). The importance of the
β band, in turn, has been observed in other studies during
intense physical exercises (Rahman et al., 2019), anticipation in
a decision making game (Cohen et al., 2009) and increment of
cognitive control and attention (Kakkos et al., 2019).

4. CONCLUSIONS

This paper has proposed the use of an adaptive filtering scheme to
remove movement artifacts from EEG signals for robust mental
workload assessment. Experimental results have shown that the
proposed adaptive filtering scheme is best combined withHAPPE
and can result in 97% mental workload prediction accuracy for
both low and high physical activity conditions. Moreover, an
in-depth analysis of the top-selected features have shown the

importance of modulation spectral features for the task at hand,
as well as the potential of the proposed enhancement solution at
maintaining important discriminant information from the EEG

for mental workload measurement, in particular those captured
by γ frequency band-based features.
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