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We propose a neural network model for the jumping escape response behavior observed

in the cricket cercal sensory system. This sensory system processes low-intensity air

currents in the animal’s immediate environment generated by predators, competitors,

and mates. Our model is inspired by decades of physiological and anatomical studies.

We compare the performance of our model with a model derived through a universal

approximation, or a generic deep learning, approach, and demonstrate that, to achieve

the same performance, thesemodels required between one and two orders of magnitude

more parameters. Furthermore, since the architecture of the bio-inspired model is

defined by a set of logical relations between neurons, we find that the model is open

to interpretation and can be understood. This work demonstrates the potential of

incorporating bio-inspired architectural motifs, which have evolved in animal nervous

systems, into memory efficient neural network models.

Keywords: neuromorphic computing, neural networks, backpropagation, computational neuroscience, cercal

system, insect neuroscience, escape response, machine learning

1. INTRODUCTION

Neurons are the fundamental computational units in models of connectionist approaches to
artificial intelligence (McCulloch and Pitts, 1943; Hodgkin and Huxley, 1952). They can be
understood computationally as defining a linear hyper-plane in an input feature space through
the application of an activation function to a weighted sum of these features. While single neurons
alone can solve only simple “linearly separable” tasks, networks of such neurons can together solve
more complex, non-linear, problems (Minsky and Papert, 1969). The predominant approach in
recent years toward developing and training neural networks to solve specific problems has been
that of deep learning (LeCun et al., 2015), which can attribute its success to the combination of
two important ideas. The first is the universal approximation theorem (Cybenko, 1989) which
states that a fully-connected feed-forward hidden layer of neurons is capable of approximating
any continuous function—given an appropriate combination of synaptic parameters. The second
is the use of batch backpropagation with stochastic gradient descent (Linnainmaa, 1976; Rumelhart
et al., 1986) as a means of determining the synaptic parameter values that link together these
successive layers of neurons. However, deep learning models with hidden layers are characterized
by non-convex loss surfaces. As such, backpropagation converges to a locally-optimal configuration
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of parameters, not necessarily the global optimum, as a function
of their random initialization. In order to improve the quality
of these local minimas the solution has been to include many,
hence deep, wide neural network layers (Choromanska et al.,
2015), although this ultimately leads to unwieldy and memory
inefficient models which are difficult, arguably impossible, to
interpret (Gilpin et al., 2018).

An important approach within deep learning, first proposed
in the 1980’s as the “neocognitron” (Fukushima, 1980), has
developed into the field of convolutional neural networks
(CNNs) which achieve state of the art performance in
applications related to image processing. This is in spite of
the fact CNNs are composed of a subset of the parameters
of a fully-connected feed-forward network of an equivalent
depth (Krizhevsky et al., 2012). Crucially, CNNs which were
originally inspired by research into the cat visual cortex (Hubel
and Wiesel, 1962), and more recently the Drosophila visual
system (Tschopp et al., 2018), have demonstrated the potential
of applying backpropagation to task-appropriate neural network
architectures inspired by biology—as an alternative to the use
of universal approximators. Other deep learning architectures,
namely attention-based models (i.e., Transformers) (Bahdanau
et al., 2014) and generative adversarial networks (Goodfellow
et al., 2014), have lead to respective leaps in machine translation
and novel data-point generation that further reinforce the
importance of architectural innovation in neural networks and
deep learning.

In the field of neuromorphic computing, where a more
“bottom-up” approach is taken to artificial intelligence, research
into biological nervous systems has, as in the case of CNNs,
also provided a source of architectural inspiration. This has
led to models which, for example, incorporate dynamical and
topological motifs inspired by the Drosophila visual, the honey-
bee olfactory, honey-bee central complex, cricket auditory, and
cockroach motor systems into models for motion detection
(Dalgaty et al., 2018), contrast enhancement (Schmuker et al.,
2014), path integration (Stone et al., 2017), temporal pattern
detection (Sandin and Nilsson, 2020), and locomotion (Beer
et al., 1992), respectively. However, such approaches have
been somewhat limited by lack of an effective means of
defining model parameters, whereby manual parameter tuning
or correlation-based Hebbian learning rules (Hebb, 1949) are
typically employed.

In this paper we propose a computational neural network
model for the air current evoked jumping escape response
studied in the cricket cercal system. Instead of manual tuning
or Hebbian learning, we employ the backpropagation algorithm,
more commonly used in the deep learning setting, as a means
of model parameterization. In contrast with deep learning,
however, backpropagation is not used to find an arbitrary local
loss minimum based on a random parameter initialization,
but instead as a means of steering the parameters toward
optimal values consistent with the logical structure of the bio-
inspired architecture that relates neurons to one another. We
find that, when applied to the detection of a simulated attacking
predator, the optimized cercal system model is able to obtain
the same performance as multi-layer perceptrons (MLPs), which

are based on the universal approximation theorem—although
requiring between one and two orders of magnitude fewer
parameters. Ultimately, the results provide a strong basis for the
incorporation of biologically inspired architectures into memory
efficient neural network models and serve as a reminder that
intelligence in animal nervous systems is often more than than
learning—it also arises from innate, evolved neural architectures
that are built-in from birth.

2. MATERIALS AND METHODS

2.1. The Cricket Cercal System
The cricket cercal system has been under investigation for several
decades, leading to an understanding of many of its neural
and biomechanical components (reviewed extensively in Jacobs
et al., 2008; Ogawa and Miller, 2019). The nervous system of
the cricket is characterized by a chain of ganglia along a nerve
cord which runs from the head of the animal down to the
rear of the body pictured in Figure 5B (Insausti et al., 2008,
2011). Signals from various sensory and motor systems ascend
up or descend down the nerve cord between the ganglia where
information is processed to mediate the animal’s behavior. The
interneurons making up the cercal sensory system are contained
in the Terminal Abdominal Ganglion (TAG) at the very posterior
end of the nerve cord (Figures 1B–D). This cercal sensory system
mediates the detection and analysis of air currents which activate
sensory receptors on the crickets two rear cercal appendages.
These appendages, or cerci, are long antenna-like structures, each
of which is covered by up to a thousand filiform hairs as pictured
in the electron microscopy image of Figure 1A (Magal et al.,
2006; Miller et al., 2011; Heys et al., 2012). Below each hair there
is a sensory neuron which, under mechanical displacement of
the hair, will fire action potentials that propagate along an axon
into the TAG (see Figure 1C). The ensemble of all of the sensory
afferents on the two cerci project to specific locations within
the TAG and form a sensory feature map (Bacon and Murphey,
1984; Jacobs and Theunissen, 1996, 2000; Paydar et al., 1999).
Different spatial regions of this map represent information about
air-current direction and velocity transduced around the animals
cercal appendages.

Within the TAG, there are approximately twenty large
spiking interneurons (Figure 1D), which receive direct excitatory
synaptic input from the filiform sensory afferents (Jacobs and
Murphey, 1987). These are “projecting” interneurons: they send
axons up the nerve cord to higher ganglia (Figure 5B). There
are also an unknown number of small local interneurons within
the TAG which do not send axons up the nerve cord (Bodnar
et al., 1991; Baba et al., 1995). Many of these local interneurons
are non-spiking, or “graded release,” neurons which interconnect
between themselves and the large spiking interneurons. Each
of the large spiking interneurons has a unique anatomical
projection of its dendritic trees within the sensory afferent map
(Jacobs et al., 1986; Jacobs and Theunissen, 1996). As a result,
each of these interneurons has a unique specific responsiveness
to the different properties of the external air current stimuli.
The ensemble activity pattern of these interneurons form a
compressed representation of the stimulis which is sent up the
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nerve cord to higher ganglia. This representation is then, in
turn, used to initiate appropriate behaviors in other areas of
the nervous system. For this study, we restrict our terminal
abdominal ganglion model to neurons and stimuli that concern
the escape response behavior.

We have developed a reduced model of the cercal system. It
consists of 24 neurons: 16 neurons that represent an integrative
input layer, seven neurons in a hidden layer which represents the
projecting interneurons within the TAG, and a single neuron in
the “output layer,” supposed to exist in a higher motor ganglion
in the animal, whose response denotes whether a jumping escape
response should be initiated. The characteristics of the neurons in
these three layers, and the rationale for their inclusion and inter-
connectivity with other neurons, is described in the following
sections and diagrammed in Figure 4. Before that, however, we
introduce the statistical simulation method used to generate the
spiking activity of the cricket’s ensemble of cercal hairs that act as
the input for our model.

2.2. Statistical Model of Filiform Hairs
In the cricket cercal system, neural processing begins
at the cercal filiform hairs. The structure, distribution,
biomechanical, and electrophysiological properties of these
sensory receptor hairs have been studied extensively in
several labs over the previous three decades. Of particular
relevance to the modeling studies presented here, the
stimulus-response properties of a very large sample of filiform
hairs to air current stimuli having different velocities and
directions have been recorded with neurophysiological
electrodes (Landolfa and Jacobs, 1995; Landolfa and
Miller, 1995; Shimozawa et al., 1998; Miller et al., 2011).
The data presented in these publications served as the
basis for the specification of our model parameters. In
particular, Figures 2, 7 of Landolfa and Miller (1995) show
the experimental apparatus and an example spike train
recorded during experiments that were used as the basis for
our simulations.

There are hairs of many different lengths on each cercus, and
the length of each hair determines the range of frequencies, or
speeds, of air currents to which it is most responsive. Longer
hairs are more responsive to slower air currents and short ones to
faster air currents. Each filiform hair has a spiking neuron at its
base which is mechanically activated when the hair is displaced.
These sensory neurons have been observed to fire even under
extremely low background air current intensity, at rates of up
to hundreds of spikes per second (Landolfa and Miller, 1995).
The base of each hair is constrained in a complex mechanical
socket such that it can pivot freely along only one specific axis.
Characterization of socket orientation distributions on the cerci
have revealed four distinct populations—hairs that are sensitive
to air currents directions coming from 45, 135, 225, or 315◦

relative to the head of the animal, which by convention points
to 0◦ . Further studies on the distribution of hair lengths revealed
a bi-modal distribution of hairs into two broad but overlapping
length categories (Magal et al., 2006). In functional terms, this
general distinction can be used to categorize the two groups
of hairs as responding more readily to either slow air currents

(long hairs) or fast air currents (short hairs). Given that there are
two cerci, each containing populations of long and short hairs
that are sensitive to four directions of air current, there are 16
sub-populations of cercal filiform hairs which respond optimally
to specific, restricted combinations of air current direction and
speed. A further study noted another response characteristic of
a hair as a function of its length. For an accelerating burst of
fast air, shorter filiform hairs respond with a reduced latency
with respect to longer ones (Steinmann and Casas, 2017).
Whether an anatomical adaptation or a happy coincidence this
latency provides a useful signature in the recognition of an
attacking predator.

Based on these findings we developed a statistical model for
the generation of spikes for sixteen sub-populations of hairs: one
for each air current angle (45, 135, 225, or 315◦ ) for each of two
hair lengths (long or short) for each of the two cercus (left or
right). Each sub-population is composed of N hairs.

This model was used to generate individual simulation runs,
each one second in duration, of the ensemble spiking activity
of all 16 × N sensory neurons. Each simulation is specified by
five parameters. Two of these parameters are (1) the background
intensity and (2) the prevailing background direction of the
ambient air current. These background air currents correspond
to the main source of “noise” that would be expected in a realistic
situation that could confound the animal’s ability to detect the
presence, distance, and direction of a predator. Essentially the
background air current imposes a variable level of activity in the
receptor cells that, in turn, would lead to a background activity
in the interneurons of the TAG. The other three simulation
parameters correspond to the simulated predator attack. They
specify (3) the attack angle, (4) the attack speed, and (5) the
amplitude of the air current that is assumed proportional to the
attacker size. For each individual one second simulation, values
for these five variables are random-uniformly sampled between a
lower and upper bound. An attack stimulus is presented one per
simulation, resulting in a peak air-current intensity at either 350
or 700 ms during this one second. The statistical model generates
16 sets ofN sensory neuron spike-times: one per sub-population.

The specific protocol for defining the responses of individual
receptor hairs to an attack stimulus was as follows. For each
receptor of each sub-population, the baseline firing pattern due
to background air drift within the 1 s interval is set by sampling
from a uniform random variable between 0 and 1 s. Each of
these samples corresponds to a spike-time. An integer number of
such samples are made for each hair according to the background
intensity: if the intensity of the background air-current is greater,
more spike-times are sampled during the simulation to reflect
this. The limiting rate for each particular hair was determined
by the length and orientation of that hair. Baseline rates of short
hairs were half that of long hairs. Furthermore, baseline rates
for hairs responding optimally to the direction of the prevailing
background direction drew additional samples and hairs sensitive
to the opposite direction drew fewer. The specific parameters
were drawn from earlier published studies (Landolfa and Miller,
1995). At either 350 or 700 ms during the simulation, a simulated
attack, originating from an angle, θ , between 120 and 240◦ (i.e.,
from behind the animal) occurs. Rather than corresponding to an
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FIGURE 1 | Optical and scanning electron microscopy images of the cricket and its terminal abdominal ganglion. (A) Three panel image showing different extents of

zoom of the cricket cercal hairs. (Right) An image of a wood cricket. A green rectangle highlights the base of its right cercal appendage. (Center) a scanning electron

microscopy image of the base of a crickets cercus. A green circle highlights one of the sockets within which cercal hairs pivot. (Left) A scanning electron microscopy

image of a cercal hair embedded within a socket. (B) An optical microscopy image of an isolated terminal abdominal ganglion. The two extensions at the base of the

image correspond to the cercal nerves, where the sensory neuron axons from the hair receptors on the two cerci project into the ganglion. The two vertical extensions

at the top of the image are the two axon bundles composing the nerve chord that ascends up to higher ganglia. (C) An image of the TAG where cobalt chloride dye,

appearing almost black in high concentrations, has been used to stain the afferents projecting from the left cercus into the ganglion. (D) An image of the TAG where

dye has been used to stain the cell bodies, dendrites, and the axonal projections up the nerve chord, of a subset of giant interneurons.

attack onset, these times reflect instead the point at which the air-
current intensity resulting from an attack is at its greatest levels.
The attack angle impacts the probability of a hair responding
to this attack as a function of its orientation pθ and on which
cercus (left or right) the hair exists on pside. In order to determine
whether a hair responds to an attack, we perform a Bernoulli
trial with success probability p. If this trial succeeds, an attack is
incorporated into the existing set of uniformly distributed firing
spike-times by sampling one additional spike-time from a normal
distribution aligned with the attack time (either 350 or 700 ms
per simulation). Specifically, long hair sensory receptors sample
a firing timestamp from a normal random variable centered on
either 350 or 700 ms, and the short hair sensory receptors sample
from a normal random variable shifted backwards (toward zero)
in time by 10 ms—reproducing the response latencies and the
effect of a ramping air-current reported in Steinmann and Casas
(2017). The standard deviation of the normal random variable is

equal to the inverse of the attack speed. The probability to sample
an additional spike-time from these normal random variables
is impacted by an additional parameter corresponding to the
attacker size s. Ultimately, hair sub-populations with a preferred
direction, θp, oriented toward the attack angle and the sub-
populations on the cercus that are on the same side of the animal
as the attack originates from respond more. The probability, p, is
defined as:

p = pθ × pside × s, (1)

pθ = (1− β1)× cos|θp − θ | + β1, (2)

pside = ((1− β2)× exp(
−|π − θ |

α
)+ β2. (3)

The attacker size, s, is a number between 0.75 and 1, β1/2 are
the minimum response probabilities for pθ and pside, respectively,
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and α defines how the response intensity decays on the contra-
lateral cerci to the attack as a function of the attack angle, θ . An
example of the raster plots obtained using this statistical model
for the eight sub-populations of sensory hairs under moderate
background air-current, a predominant background drift coming
from 45◦ and an attack at 700 ms are plotted in Figure 2.
Under closer inspection, faint vertical bars of spike-times align
around the time of attack—the result of superimposing the spikes
generated from the attack on top of those sampled uniformly
during the simulation. These raster plots are consistent with
similar observations of the neurophysiology in the real system
reported in Landolfa and Miller (1995). Further full examples,
resulting from two different sets of input parameters and
including the responses of the sub-populations responsive to fast
air-currents too, can be found in Supplementary Figures 1, 3.

2.3. Input Layer: Feature Map Neurons
In the cricket TAG, this information on air-current direction
and speed, represented by the ensemble firing pattern of the
sensory neurons, is preserved through sub-population specific
projections of sensory neuron spikes to specific locations within
a sensory feature map. In each location of this feature map,
the thousands of sensory neuron spikes that propagate from
the cerci merge into continuous analogue signals which denote
the intensity of a particular environmental feature (Bacon and
Murphey, 1984; Miller et al., 1991; Jacobs and Theunissen, 1996,
2000; Paydar et al., 1999). TAG interneurons are then observed
to read out various properties of this feature map through
specific dendritic arborizations in particular spatial locations of
the feature map.

We propose to model this feature map using an input layer of
16 neurons. Each of these 16 neurons integrates the spiking input
from one of the 16 sub-populations of hairs on the left and right
cerci. They also implement a leaky-integration model, in other
words a parallel resistor-capacitor circuit fed by a current source.
They can be described using the differential equation;

dVc

dt
=

iinR− Vc

RC
. (4)

A current iin is injected into the circuit at each spike-time
recorded by the statistical filiform hair model, resulting in a
capacitor voltage Vc which decays in time to zero in the absence
of an input current. In this paper we use 0.1 pF, 200G�,
and 1 pA as the capacitor, resistor and current pulse values,
respectively. This model allows the neuron to integrate temporal
information within a time window defined by the product of
R and C. Based on observations of interneurons in the TAG,
which appear to receive excitation above and below a set-point
due respective increases and decreases from ambient background
air-current levels, we apply a hyperbolic tangent function to the
difference between the instantaneous capacitor voltage, Vc, and
its average over the training set, of D points, to approximate
results published in Landolfa and Miller (1995). In other words,
under stimulation by average instantaneous background air
currents, the output of the 16 input layer neurons should be close

to zero;

Vout = tanh(Vc −
1

D

D
∑

x=0

Vx), (5)

where D is the number of training data points. This
results in an activation Vout for each of the neurons in
the input layer that provides the input for the neurons
in the next hidden layer. An example of the evolving
activations of the eight input neurons integrating the
spike-timing information of the sub-populations of sensory
hairs responsive to slow air-currents (due to the raster
plots shown in Figure 2) are shown in Figure 3. Vertical
dashed lines indicate the time of an attack, in this case at
700 ms. Further examples, showing the activation voltages
of all sixteen input layer neurons (due to the raster plots
shown in Supplementary Figures 1, 3) are plotted in
Supplementary Figures 2, 4, respectively.

2.4. Hidden Layer: Cercal Interneurons
The hidden layer, borrowing the term from models based
on the universal approximation theorem (Cybenko, 1989), is
modeled as a seven neuron circuit based on our interpretation
of results that have been published in past neurophysiological
studies. This group of seven interneurons includes four neurons
“tuned” preferentially to four specific air current directions,
two interneurons tuned preferentially to different air current
speeds (and relatively insensitive to direction of those air
currents), and a final interneuron whose activity indicates the
overall “global” background air current intensity across all
directions. These neurons represent these specific quantities
through logical connections to specific subsets neurons in the
input layer and, through additional lateral interactions between
interneurons, shape an optimal representation that can be
used to drive the models outputs. This network architecture
is depicted in the three panels of Figure 4. Each of the
16 input layer neurons are identified using a grid which
categorizes them by angle, speed, and side in Figure 4. The
rationale for the connections between the neuron elements are
as follows.

• Directional interneurons: Past studies have documented
several projecting interneurons that are responsive to
low velocity air currents from a very restricted range
of directions, and suppressed by air currents from the
opposite directions; i.e., they are directionally selective (Jacobs
et al., 1986; Miller et al., 1991). These interneurons have
been observed to have dendritic arbors in locations of
the TAG feature map which receive sensory excitation
from air currents from the direction the interneurons
is responsive to Bacon and Murphey (1984) and Jacobs
and Theunissen (1996). In our model these neurons are
labeled as d45, d135, d225, and d315. Each of these
interneurons receive input from the corresponding slow
input layer neurons from both the left and right cerci as
in Figure 4A.

• Speed interneurons: Other interneurons have been observed
to be responsive to a much broader range of directions
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FIGURE 2 | Raster plots of the sensory hair spike time in the eight populations of sensitive to slow air currents. Sub-populations corresponding to the left an right

cercus as well as the four preferred directions are indicated by vertical and horizontal dashed lines. Each raster plot marks the spike-time of each neuron in a

sub-population (identified as a number between 0 and 59) with a blue point.

FIGURE 3 | Plots of the Vout signal of the eight input neurons that integrate the spikes from eight sub-populations of sensory hairs. The input neurons receiving

excitation from the left an right cercus as well as the four preferred directions are indicated by vertical and horizontal dashed lines. Vertical dashed lines within each

plot marks the time of an attack during the one second simulation.

and instead appear predominantly sensitive to different
air current speeds from the rear of the animal (Bodnar
et al., 1991; Miller et al., 1991). In Figure 4A, these are
labeled as slow and fast that respectively receive input

from the input layer neurons encoding air currents coming
from behind due to slow and fast stimuli (originating
from long and short receptor sub-populations on the
cerci, respectively).
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• Global regulation interneuron: The seventh interneuron in
the model is defined as the “global regulation” cell, labeled
as glob for short in Figure 4C. Extracellular recordings of
the ascending spiking activity from the TAG have shown,
somewhat counter-intuitively, that the giant interneurons
are more active in a relatively calm laboratory setting than
in the field, where background air current intensity is
considerably greater (Dupuy et al., 2012). That has lead to the
proposal of a global regulation, or a background subtraction
mechanism, at play in the cercal system. Furthermore,
interneurons have been reported in the cricket TAG which
are responsive to low speed air currents coming from
all directions (Baba et al., 1995). Inspired by these two
findings we propose to include the interneuron glob in
the cercal escape system model as depicted in Figure 4C

which receives input from the slow input layer neurons in
all directions on the left and right cerci and then sends
regulatory synapses to the other six interneurons in the
hidden layer.

As well as the specific connection pattern from the input
layer neurons to the interneurons in the hidden layer, we
also incorporate functional lateral connections between these
interneurons. Lateral inhibitory connections have been proposed
in the cercal system (Jacobs et al., 1986; Miller et al., 1991) based
on observations of direction encoding neurons being inhibited
under air current stimuli coming from the opposite direction
to which they are sensitive. Detailed neurophysiological data
about the neural basis for these interconnections is however
very sparse, although several non-spiking local interneurons
have been studied (Bodnar et al., 1991; Baba et al., 1995)
which could well implement these connections. In our model,
we do not explicitly include any extra local interneurons to
mediate these lateral interactions. Rather, we define direct all-to-
all synaptic connections between each of the four directionally
selective neurons and between the two speed encoding neurons
in addition to uni-directional synaptic connections from the
speed encoding neurons to the four directionally selective
ones. These connections are depicted in Figure 4B. Instead
of defining these as inhibitory connections we allow their
sign and magnitude to be determined through the synaptic
parameter optimization process that is described in the following
section. Each of these seven interneurons, like those in the
input layer, implement hyperbolic tangent activation functions
on a weighted summation of their inputs and a bias term.
The bias terms of each of the neurons determines the
activation of the neuron in the absence of external input,
corresponding to the resting membrane potential of the
biological cells.

2.5. Output Layer: Jump Neuron
In the animal, it is supposed that the resulting cercal
representation ascends to a higher motor ganglion, one of those
pictured in Figure 5B, which, given a certain activation pattern,
triggers a central pattern generator to coordinate an escape
motor response. Therefore, we propose that each of these seven

interneurons in the hidden layer of themodel synapse onto a final
jump neuron as depicited in Figure 5A.

In our model, the jump neuron implements a sigmoid
activation function on the weighted sum of the interneuron
activations, and a bias term. In this fashion, the output can
be viewed as the probability that the original ensemble spiking
activity pattern of the sensory neurons on the two cerci represents
the signature of an attacking predator.

2.6. Model Training
In order to determine the synaptic parameters that connect
the input layer neurons to the interneurons, the interneurons
to the jump neuron as well as the lateral connections between
the interneurons, we apply the backpropagation algorithm
(Rumelhart et al., 1986) in the context of a supervised machine
learning problem. An input dataset was generated by running
1,000 independent simulations of the described statistical model
of the cricket filiform hairs. In order to be compatible with our
first order model, that does not describe temporal dependencies,
the resulting waveforms that are generated by the neurons in the
input layer are sampled after the potential attack events at 350
and 700 ms—providing two static snapshots per 1 s simulation.
As a function of whether the attack occurs at 350 or 700 ms,
these two vectors of 16 instantaneous input neuron activations,
are labeled as 1 (attack) or 0 (ambient). Each of these points
is also labeled with a prevailing wind direction corresponding
to 45◦, 135◦, 225◦, or 315◦. This results in a labeled dataset of
2,000 points, each described with 16 features. The dataset was
randomly shuffled and then cut into training and testing sets of
equal size.

A multi-objective cost function was defined as the sum of the
binary cross-entropy loss of the jump neuron, with respect to the
attack or ambient label, and the categorical cross-entropy loss
of the four directional sensitive interneurons. The losses were
combined with equal weight. Intuitively this optimizes the model
to simultaneously detect an attack signature and determine
the prevailing direction of the background air currents. An
additional weight decay (L2-norm regularization) term (Krogh
and Hertz, 1992) was summed with these two losses in order to
discourage the optimization from converging to a solution with
large parameters values and, possibly, over-fitting to the test data
split. The loss function is therefore written as:

L = −
1

N

(

∑

N

y∗jump ln yjump + (1− y∗jump) ln (1− yjump)

+
∑

N

y∗dir · ln ydir +
∑

W

λ

2
||w||2

)

, (6)

where y∗jump and yjump and y∗
dir

and ydir refer to the respective

labels and neuron activations of the jump output and direction
encoding vector, N to the training data points of the mini-batch,
W to the number of weights, w, of the neural network and where
ln is the natural log operator.

In order to implement the lateral connections between the
interneurons without introducing cyclic loops into the model,
these synaptic connections were “unrolled by one step.” This
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FIGURE 4 | Architecture of the cercal system escape response model. Colors of synaptic connections do not correspond to synaptic inhibition or excitation but

instead are used to help distinguish between sets of synapses. (A) The feed-forward connections between each of the input layer neurons and the six interneurons

each of which encodes a particular property of the input. (B) The lateral connections between interneurons, including the (green) mutual connectivity between the

directionally selective neurons, (red and blue) the lateral connections from the air speed sensitive neurons onto the directionally selective interneurons and (black) the

mutual lateral connections between the air speed sensitive neurons. (C) The global regulation network which receives (green) synapses from all of the low frequency

air current input layer neurons and sends regulatory synaptic connections to each of the six interneurons.

is required to avoid the backpropagated gradients from circling
indefinitely. This was achieved by applying the activation
function to the weighted sum of the inputs from the input layer
neurons and the glob neuron in a first step and then applying, in
a second step, the same activation function to the sum of the first
activation with the weighted sum of the lateral connections and
the bias term.

The derivative of the mean of this loss over a mini-batch of
eight training data points was used to update model parameters
inline with the root mean square propagation (RMSprop)
stochastic optimization algorithm (Tieleman and Hinton, 2012)
over fifty training epochs. The PyTorch automatic differentiation
python framework was used to build and train the proposed
TAG model (Paszke et al., 2017). The TAG model parameters
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FIGURE 5 | (A) The activations of the seven interneurons included in the cercal escape system model ascending up the nerve cord to a higher ganglia. Such a higher

ganglion is proposed to contain a neuron or group of neurons, here labeled jump, that looks for certain patterns of activation in the seven interneurons to activate a

jump central pattern generator, labeled as jump CPG, to initiate an escape motor routine. (B) An optical microscopy image of the ganglion chain of the wood cricket,

stained using a cobalt chloride dye. The terminal abdominal ganglion sits at the base of this chain which ascends up to the central brain contained within the head of

the animal. Intermediate ganglion, which for example control one of the insects motor systems, appear as more densely stained red dots along the chain.

were not initialized randomly at the beginning of the training
process. Rather, initial values of one, zero and negative one
are deterministic assigned to each parameter are set inline with
the logical structure of the model—for example the synapses
connecting glob to the other interneurons were initialized to
negative one. This was determined to be important in allowing
the model to converge to an optimal configuration in 50 epochs
as in the random seeding study of Supplementary Figure 5.

2.7. Multi-Layer Perceptron Models
In order to compare the test accuracy and memory
requirements of the optimized TAG model, single and
three fully-connected hidden-layer neural network models,

characteristic of a generic deep learning (LeCun et al.,
2015) approach, are used. These were also implemented
using the PyTorch framework. They were trained using
the adaptive moment estimation optimization (Adam)
algorithm (Kingma and Ba, 2014). The models were trained
over one thousand epochs using the same mini-batches
as the TAG model. On average this was observed to be
the number of epochs required for the parameters of the
larger among the MLPs to converge to a loss minimum (see
Supplementary Figure 6). It is also informative to note that this
represents an order of magnitude more epochs that required
to train the TAG model—requiring only fifty epochs (see
Supplementary Figure 5).

Frontiers in Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 612359

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dalgaty et al. Cercal System Neural Network Model

In order to prune the MLPs, the distribution of the absolute
values of the weights was sorted into an ascending order and the
weight values below a certain percentile were set equal to zero. To
train the sparsified models, the sum of the L1 norm of the weights
(Lasso regression) was added to the loss function of the model
(Tibshirani, 1996). The derivative of this term has the effect of
forcing a considerable number of weights close to zero—resulting
in a sparse MLP.

3. RESULTS

3.1. Model Evaluation
In order to evaluate the proposed terminal abdominal ganglion
(TAG) cercal escape system model we use receiver operating
characteristic (ROC) curves. A ROC curve plots the true (TPR)
and false positive rate (FPR) as the probability threshold, that
rectifies the activation of the sigmoidal jump neuron into a
jump (1) or don’t jump (0) output, is increased from zero
to one in regular steps. To reflect the imbalance between the
consequences of not detecting true positive (succumbing to a
predator) and responding to false positives (wasting a relatively
unimportant amount of energy; Bennet-Clark, 1975). We define
the metric “tolerated” FPR, which is the false positive rate that
must be tolerated in order to achieve a minimum true positive
rate, to assess the model. We fix the minimum TPR to 0.95 in
this evaluation.

Figure 6A plots the ROC curves resulting from an “ablation”
study of the proposed TAG model, whereby combinations
of individual components are considered separately in four
different versions (I, I+L, I+G, and I+L+G) of the model.
Specifically, the curves correspond to I—only the interneurons,
I+L—the interneurons plus their lateral connections, I+G—the
interneurons plus the global regulation network, and I+L+G—
the interneurons plus the lateral connections as well as the global
regulation network. For means of comparison, the ROC curve
of a logistic regression model, effectively a single neuron taking
input from all sixteen feature map neurons, is plotted in black.
In the case of model I, it is observed that, despite increasing
the number of neurons from one (i.e., the logistic regression
model) to seven, there is a decrease in the tolerated FPR. This
indicates that the extraction and combination of specific features
alone does give rise to an effective model. In model I+L, the
addition of lateral connections between the interneurons is seen
to greatly reduce the tolerated FPR and noticeably increase
the area bounded under the ROC curve. This demonstrates
the importance of allowing neurons, each encoding different
properties of the total sensory landscape, to communicate and
compete via lateral synapses—increasing the contrast between
their responses. In model I+G, the lateral connections are
removed and the global regulation network is added. While the
tolerated FPR deteriorates with respect to model I+L, there is
still a slight improvement with respect to the ROC curve of the
logistic model and greatly improved with respect to the neurons
acting alone. This suggests a further importance in regulating the
activations of the interneurons as a function of the background
air current intensity which, intuitively, should make it easier for
the jump neuron to recognize the activation pattern of an attack

superimposed on top of fluctuating background air currents.
Finally, in model I+L+G, the full network model is optimized:
all lateral connections and the global regulation mechanism are
included. The resulting ROC curve, plotted in blue, bounds
noticeably more area than any of the other models and achieves
tolerated FPR of 0.07—well below that of the other models.
This demonstrates that, while the lateral and global connections
independently provided modest gains with respect to the logistic
model, it is their interplay and the simultaneous application of
contrast enhancement and background subtraction that gives
rise to the most adept model. While lateral connections are
a commonly observed feature in animal nervous systems, this
result provides a foundation for the proposal in Dupuy et al.
(2012) that a global regulatory mechanism is present in the
cricket cercal system. The tolerated FPR of each model version,
as well as the number of synaptic parameters required per
model, are summarized in the bar-chart of Figure 6B. Here it is
noteworthy that, for a relatively modest two-fold increase in the
number of parameters, the tolerated FPR reduces by more than
three times.

3.2. Comparison With Multi-Layer
Perceptrons
To understand the utility of this bio-inspired TAG model
architecture it will be informative to compare it against
the tolerated FPR and memory requirements of a multi-
layer perceptron derived through the universal approximation
approach; whereby the synaptic weights that link successive
layers of neurons in a fully-connected feed-forward fashion are
optimized using backpropagation (Rumelhart et al., 1986; LeCun
et al., 2015). The number of neurons per hidden layer, where
each hidden layer is composed of the same number of neurons,
is increased logarithmically and trained and tested using the
same train and test data sets as with the TAG models. The
resulting tolerated FPR, as well as the number of parameters,
for each of these different sized models is plotted in the bar-
plots of Figures 7A,B for the single and three hidden layer
models, respectively.

The tolerated FPR and the number of parameters in the TAG
model I+L+G are plotted as horizontal green and blue dashed
lines for means of comparison. What is striking is that, for the
multi-layer perceptrons to obtain an equivalent performance to
the TAGmodel I+L+G, they are seen to require between one and
two orders of magnitude more synaptic parameters. Specifically,
to match the TAG model performance, the single hidden layer
neural network is seen to require between 128 and 256 neurons
and, for the three hidden layer model, between 16 and 32 neurons
per layer.

However, as the number of hidden layer neurons are further
increased, the tolerated FPR of these larger, more memory
intensive, models drops below that of the TAG model—in some
cases obtaining a tolerated FPR of 0.03. To understand whether
this investment in memory is worthwhile, we use the Akaike
information criterion (AIC) (Akaike, 1998). The AIC provides
a number proportional to the sum of the model size and the
negative log-likelihood of the model and as such offers a means of
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FIGURE 6 | Performance of the four ablated versions of the TAG model. (A) Four receiver operating characteristic (ROC) curves are plotted showing how the true and

false positive rates vary as the probability threshold on the sigmoidal output jump neuron is increased. Vertical dashed lines show the tolerated false positive rate (FPR)

for a minimum true positive rate of 0.95. (B) Pairs of bar plots for each ablated version of the TAG model show the tolerated FPR given a minimum TPR of 0.95 (green

bars, left y-axis) and the number of parameters required by the model version (blue bars, right y-axis).

FIGURE 7 | The performance of the single and three hidden-layer multi-layer perceptrons used as a means of comparison against the TAG model. (A) Pairs of bar

plots over a range of hidden layer sizes for a single MLP. The bars show the tolerated FPR (green bars, left y-axis) and the number of parameters required by the

model version (blue bars, right y-axis). Dashed horizontal lines show (green) the TAG model tolerated FPR and (blue) the number of parameters required in the TAG

model. The minimum TPR is 0.95. (B) Pairs of bar plots over a range of hidden layer sizes for a three hidden layer MLP. The bars show the tolerated FPR (green bars,

left y-axis) and the number of parameters required by the model version (blue bars, right y-axis). Dashed horizontal lines show (green) the TAG model tolerated FPR

and (blue) the number of parameters required in the TAG model. The minimum TPR is 0.95.

Frontiers in Neuroscience | www.frontiersin.org 11 February 2021 | Volume 15 | Article 612359

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dalgaty et al. Cercal System Neural Network Model

FIGURE 8 | The Akaike information criterion (AIC) is plotted in log-log scale

over range of hidden layer width for (orange) a single hidden layer and (peach)

a three hidden layer deep learning models. Horizontal dashed lines show the

AICs of a (gray) logistic regression model and (blue) the TAG model.

comparing the efficiency of each solution—a lower AIC indicates
a more efficient model. The AIC of the single and three hidden
layer MLPs are plotted as a function of the hidden layer size
in Figure 8. Additional horizontal dashed lines show the AIC
score of the logistic regression (gray) and TAG models (blues).
It can be clearly seen that the TAGmodel is comfortably the most
efficient solution to the problem and that, for the extremely large
deep learning models which obtain the lowest tolerated FPRs, the
AIC score explodes owing to the huge complexity of the model.
Furthermore, it is indicative to note that, even for small hidden
layer sizes, it is difficult to justify the choice of a model based
on the universal approximation theorem model over the use of
a lower complexity logistic regression model.

In order to complete this comparison, we extend it to
the case of pruned multi-layer perceptrons—whereby memory
requirements can be reduced by deleting synaptic weights with
optimized values close to zero (LeCun et al., 1989). Specifically
we consider a pruned version of the MLPs in Figures 7A,B

and an additional version of each trained where an L1-norm
regularization term is summed with the loss function in order
to enforce sparsity in the resulting model (Tibshirani, 1996).
The weight distributions of these MLP models are plotted in
Supplementary Figure 7 where it can be seen that the models
trained using the L1-norm loss function have weights grouped
very tightly around zero. The tolerated FPR as a function of the
percentage of pruned weights in the single and three hidden layer
MLPs containing 256 and 32 neurons in each of their hidden
layers, respectively is plotted in Figures 9A,B. These dimensions
were selected in each case since this was the number of neurons

per hidden layer, per MLP, that allowed a lower tolerated false
positive rate than the TAG model. In each case, as the extent of
pruning increases, the tolerated FPR, after a varying period of
robustness, also increases—the point at which the tolerated FPR
exceeds that of the TAG model is indicated using a labeled dot
in Figures 9A,B. While the L1-norm regularized models permit
a considerable reduction in the number of weights with respect
to the standard MLP before a degradation in the tolerated FPR
is observed, the number of parameters required in order to
maintain a performance equivalent to that of the TAG model
architecture was still over an order of magnitude greater than our
bio-inspired architecture.

3.3. Model Interpretation
In addition to their low memory efficiency, models like MLPs
which are based on the universal approximation theorem suffer
from another major drawback in their lack of interpretability
(Gilpin et al., 2018). Namely, it is difficult to ascertain as to
why certain combinations of input features lead to certain
output predictions as a function of the cascading layers of
synaptic weights determined via backpropagation. This poses
ethical and practical problems in many applications of artificial
intelligence such as that addressed here which, certainly from
the perspective of the cricket, can be considered as a safety-
critical application whereby taking action based on the model
outputs entails potentially dangerous consequences (i.e., not
jumping in the presence of an attacking predator). In contrast
to the wide fully-connected layers of neurons in MLPs, the
proposed TAG model contains eight neurons and 63 synapses—
each defining a set of logical relationships between the neurons
which each have well-defined functional roles. As such, based
on the optimized synaptic weight values, we make a first-order
structural interpretation of the TAG model.

A table of these optimized synaptic weights which
interconnect the input layer neurons with the interneurons
is shown in Figure 10A. Each cell in the table contains the
synaptic weight value resulting from the backpropagation
based training. The majority of these feed-forward connections
are excitatory such that, without consideration of the lateral
connections, the interneuron activations would be proportional
to the activations of the input layer neurons that connect to them.
Therefore, the activation of each of the directional neurons for
example, encodes the instantaneous intensity of slow air currents
coming from each of the four input air current directions. It
is interesting to note the imbalance in the excitation received
from the left and right cerci in the cases of d135, d225, and fast
whereby sensory activity coming from 135◦ is stronger from
the left cercus and activity from 225◦ is stronger from the right.
This in fact appears to model the dependency on attack direction
described in Equations (2) and (3) whereby attacks coming from
the left-hand side excite the sensory neurons oriented at from
135◦ more; and those from the right-hand side excite the 225◦

sensory neurons more.
Elevated co-activations of d135, d225, and fast will therefore

correlate with an attack event—in particular the activation of
fast. Another feature that stands out is the weak negative feed-
forward connections from the input neurons, corresponding to
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FIGURE 9 | Relationship between the tolerated false positive rate and the percentage of the weights closest to zero pruned for the standard (blue) and L1-norm

regularized (green) models. The horizontal dashed line shows the tolerated false positive rate achieved by the TAG model. The number associated to each dot, drawn

when the relationship crosses the horizontal dashed line, denote how many parameters the model required to match the tolerated FRP for the TAG model. (A) For the

case of a single hidden layer MLP with 256 neurons in the hidden layer. (B) For the case of a three hidden layer MLP with 32 neurons per hidden layer.

air-flow from attack angles, that help decouple the high air-
currents resulting from an attack and the activation of globwhich
is intended encode the overall background air-current intensity.
Intriguingly, the inhibition coming from the 135◦ input neurons
on the left and right cerci is, in this case, elevated with respect to
that coming from 225◦. This angular asymmetry is also observed
in the weak excitatory inputs from 135◦ and 225◦ inputs from the
right and left cerci, respectively that are pre-synaptic to the fast
neuron and, for the authors, it unclear what is the purpose of this
subtle adaptation.

A second pair of tables in Figure 10B shows the sign and
weight of the optimized synaptic weights inter-connecting the
hidden layer neurons as well as their optimized biases. An
immediately eye-catching feature is the symmetry observed
in the connectivity pattern between the direction encoding
interneurons. These interneurons are all seen to strongly inhibit
their opposing counterpart—for example the complimentary
negative synaptic connections between d45 and d225. Excitingly
this is consistent with predictions that have been made
regarding the biological system whereby the reduction in
directional interneuron activity, when presented with an air-
current stimulus contrary to its preferred direction, has been
attributed to the existence of laterally inhibiting interneurons
between them (Miller et al., 1991). Furthermore, these hidden
layer interneurons send excitatory lateral connections to their
ipsa-lateral and contra-lateral direction encoding neurons—
notably the excitation toward the contra-lateral neuron is
consistently greater. Based on the presence of the predicted
lateral inhibitory interactions, this result hints at the possible
existence of additional lateral excitatory connections in the
biological system.

The post-synaptic connection weights of glob onto the six
interneurons seen in Figure 10B suggest a very interesting
functional role of this neuron. Since these weights are negative

and glob implements a hyperbolic tangent activation function,
therein activating negatively for low background speed and
positively for high background speed, glob acts as an excitor
given lower background air current levels but, intriguingly, as
an inhibitor when the background levels are higher. This latter
effect results from the positive product of the negative neuronal
activation and the negative synaptic weight value. This is once
again an exciting result given the prediction on the presence of
a global regulatory or background subtraction mechanism in the
biological system (Dupuy et al., 2012).

Finally, it is informative to read off the synaptic weights
connecting the hidden layer interneurons to the output
jump neuron as a logical “bar-code”—offering a means of
understanding what combinations of interneuron activations
lead to certain output responses. The jump neuron is inhibited
due to pre-synaptic connections from d135, d225, and glob.
This is likely an adaptation that allows the model to reduce the
false positive rate under high background air current levels or
high prevailing air-currents originating from the same directions
as an attack. Another noteworthy feature of this synaptic bar-
code is the opposing strong inhibition and strong excitation
from the pre-synaptic slow and fast interneurons. Once again,
since the neurons implement hyperbolic tangent functions,
the respective negative and positive co-activation of slow and
fast will result in a joint strong positive excitation of jump.
This suggests that a key distinguishing feature of an attack is
the divergence between the activations of fast and slow. The
optimized TAG model further enhances this divergence in fact
using the lateral connections between slow and fast. In the hidden
layer, slow synapses positively onto fast, and fast negatively onto
slow—the more positive the activation of fast therefore, the
more negative the resulting activation of slow and vice versa.
For a similar functional interpretation of the TAG model (see
Supplementary Note 1).
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FIGURE 10 | Tables of synaptic weight parameters between pre- and post-synaptic pairs of neurons. The number in each cell shows the value of the weight and the

color of the cell denotes the sign and magnitude of the weight. Red cells indicate positive weights and blue ones negative weights. (A) The table of synaptic weights

between each of the sixteen input layer neurons and the seven interneurons. (B) The table of synaptic weights used for each pre- and post-synaptic interneuronal

connection. The values of the interneuron biases, corresponding to their resting values, are shown below the table.

4. DISCUSSION

The objective of this work was to develop a neural networkmodel
of the jumping escape response of the cricket cercal system.
Although the model architecture was inspired from research
into the biological system, several trade-offs were made from

the standpoint of practicality. For example, the sensory feature

map, realized in the animal through a complex network of
sensory afferents, was simplified into sixteen leaky-integrating

hyperbolic tangent neurons. Despite deviating from the exact

biology, these practical modeling choices were still able, however,
to capture the fundamental underlying computing principles

of the system. This highlights the difference between bio-
mimicry and bio-inspiration, at least in the context of neural
network modeling: the former aims to precisely reproduce
biology while the latter takes inspiration from its key principles
without necessarily reproducing them in the same fashion. It
is interesting to note that these design choices also result in
a technologically-plausible model that naturally lends itself to
a future silicon neuromorphic implementation. The required
hyperbolic tangent, sigmoid and leaky-integration functions are
readily implemented using numerous analogue or digital silicon
circuits (Lansner and Lehmann, 1993; Indiveri et al., 2011;
Davies et al., 2018; Dalgaty et al., 2019). Similarly, the event-
based input generated by the models sensory neurons can be
realized through the use of delta-modulator circuits (Corradi

and Indiveri, 2015) and the inputs of these delta-modulator
circuits could be provided by existing bio-mimetic micro-
electro-mechanical systems (MEMS) implementations of cricket
filiform hairs (Krijnen et al., 2006). Furthermore, as shown
in Supplementary Figure 8, the proposed model demonstrates
robustness when subjected to substantial random permutations
of its optimized parameter values. The model therefore may also
be well-suited to a resistive memory array based implementation
(Thomas, 2013) of its synaptic weight matrix where, due to
inherent programming randomness (Ambrogio et al., 2014),
weight values are subject to similar deviations from their desired
values. Despite this deviation from the exact biology, two
predictions from electrophysiological studies were found, in
our model, to be of computational importance in the efficient
detection of the simulated attacking predators. Specifically
the presence of lateral inhibitory connections between the
directionally selective interneurons predicted in Miller et al.
(1991) as well as the global regulation, or background
subtraction, mechanism proposed in Dupuy et al. (2012). These
results raise the exciting question as to what else our neural
network model might tell us about the mechanisms at play in
the real cercal system. For example, could the lateral excitatory
connections between directionally sensitive interneurons or the
lateral connections that encourage the diversion in activation
between air current speed encoding neurons also exist in the
biological system?
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While this cercal system escape response model was inspired
by research pertaining to the cricket terminal abdominal
ganglion, it shares a number of common principles found in
other perception systems and across species. Most marked are
the parallels between it and features of the Drosophila visual
system that has recently come under intense investigation. For
instance, just as the filiform hairs on cricket cerci sort local air-
currents into one of four angles (45, 135, 225, or 315◦); the
elementary motion detection circuits in the lamina and medulla
visual system layers of Drosophila sort local motion into one
of four cardinal directions (up, down, left, and right) (Maisak
et al., 2013). Also, just as specific regions of the TAG integrate
spikes from the sensory neurons of the cerci into distinct regions
corresponding to direction, the array of elementary motion
detection circuits integrate their global activity in specific regions
of the Drosophila lobular plate—forming a similar directional
and spatial feature map of its visual scene to that in the
cricket TAG. Furthermore, in a similar fashion as to how the
seven interneurons in our TAG model form a compressed
representation of the thousands of spikes triggered on the two
cerci, Drosophila boils down the equally high dimensional space
of its original optical input into a representation of twenty-
seven interneurons (Wu et al., 2016). Each of these interneurons,
as in our model too, encode certain properties of the visual
scene. One of the most interesting parallels with the optimized
TAG model is the observation that the giant fibre neuron of
Drosophila, that descends to the animals motor ganglion to
initiate a jumping escape response, sums excitatory and delayed
inhibitory input from two of these interneurons; one encoding
stimulus speed and the other stimulus size (Ache et al., 2019).
This resonates with the excitation and delayed (inline with
Steinmann and Casas, 2017) inhibition from the fast and slow
neurons in our model. These findings point to the application
of common architectural principles across sensory modalities
and between different species. This observation mirrors similar
findings whereby striking parallels have been drawn between the
common computing principles and neural circuits applied in the
visual systems of insects and mammals—in spite of the fact that
they have been evolving independently for over half a billion
years (Borst and Helmstaedter, 2015).

In this paper we have proposed a neural network model
of the cricket cercal system escape response, based on decades
of research into the neurobiology of this system. The model
was optimized using the backpropagation algorithm and applied
to the task of detecting the signature of a simulated attacking
predator. When compared with the multi-layer perceptrons,
indicative of a generic deep learning approach, it was found
that the proposed TAG model was able to obtain the same
performance with between one and two orders of magnitude
fewer synaptic parameters. This advantage was maintained
when comparing against pruned and sparsified models too.
The bio-inspired model architecture was also deemed to be
further orders of magnitude more efficient according to the
Akaike information criterion that measures the trade-off between
model performance and model complexity. Additionally, based
on the inherent structure of the logical relations between the
neurons of the model, a first-order structural interpretation

was made of the models optimized synaptic parameters. These
key results indicate the latent potential in incorporating bio-
inspired architectures into neural network models for improving
their memory efficiency and also their interpretability—two
of the major drawbacks in the application of deep learning
approaches based on the universal approximation theorem
(Cybenko, 1989). Future work on this modeling project should
focus on the extension of the model to second-order behaviors
through the incorporation of temporal properties in the neuron
activation functions and the investigation of techniques such as
backpropagation-through-time (Werbos, 1990) and three-factor
learning rules (Bellec et al., 2020) for the determination of the
model parameters. Not only will this allow temporal sequences
to be input to the model instead of static snapshots, but could
provide further insights into the workings of the biological
system and shed further light on other predictions regarding
it—its potential use of coincidence detection mechanisms for
example (Mulder-Rosi et al., 2010).

What is clear is that, contrary to the prevailing directions
in deep learning, intelligence in animal nervous systems is
more than learning. Rather, innate architectures, discovered
over the course of evolution and regularized by material
and energy constraints, provide built-in solutions for many
tasks that share common characteristics to those being
addressed via deep learning approaches. Further to looming
detection as discussed here, more complex behaviors, courtship,
and burrowing for example, are also understood to be
hardwired from birth (Tinbergen, 1951; Weber and Hoekstra,
2009). With the advent of recent methods that permit
increasingly detailed study of animal nervous systems, ranging
from electron microscopy based connectome reconstruction
(Takemura et al., 2017) to optogenetic-based electrophysiology
(Deisseroth, 2011), subsequent years promise that the neural
architectures present in biological nervous systems can be
more readily discovered and then transferred into neural
network models. An important question to address with
future work into the development of such bio-inspired neural
network architectures is how an approach like this can be
scaled to larger models and more complex tasks. Could, for
instance, many function-specific bio-inspiredmodules optimized
through backpropagation, like that presented here, be inter-
linked in a larger topology to arrive at something that
resembles an “artificial nervous system” rather than an artificial
neural network?
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