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Parkinson’s disease (PD) is a neurodegenerative disease that is associated with motor
and non-motor symptoms and caused by lack of dopamine in the substantia nigra of
the brain. Subthalamic nucleus deep brain stimulation (STN-DBS) is a widely accepted
therapy of PD that mainly inserts electrodes into both sides of the brain. The effect of
STN-DBS was mainly for motor function, so this study focused on the recovery of motor
function for PD after DBS. Hemispherical asymmetry in the brain network is considered
to be a potential indicator for diagnosing PD patients. This study investigated the value
of hemispheric brain connection asymmetry in predicting the DBS surgery outcome
in PD patients. Four types of brain connections, including left intra-hemispheric (LH)
connection, right intra-hemispheric (RH) connection, inter-hemispheric homotopic (Ho)
connection, and inter-hemispheric heterotopic (He) connection, were constructed based
on the resting state functional magnetic resonance imaging (rs-fMRI) performed before
the DBS surgery. We used random forest for selecting features and the Ridge model
for predicting surgical outcome (i.e., improvement rate of motor function). The functional
connectivity analysis showed that the brain has a right laterality: the RH networks has
the best correlation (r = 0.37, p = 5.68E-03) between the predicted value and the true
value among the above four connections. Moreover, the region-of-interest (ROI) analysis
indicated that the medioventral occipital cortex (MVOcC)–superior temporal gyrus (STG)
and thalamus (Tha)–precentral gyrus (PrG) contributed most to the outcome prediction
model for DBS without medication. This result provides more support for PD patients to
evaluate DBS before surgery.

Keywords: hemispheric asymmetry, functional connectivity, important feature, resting state functional magnetic
resonance imaging (rfMRI), Parkinson’s disease, improvement of motor function, subthalamic nucleus deep brain
stimulation (STN-DBS)
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INTRODUCTION

Parkinson’s disease (PD) is a common degenerative disease
of the nervous system, including motor symptoms such
as retardation, tremor, and muscle rigidity and non-motor
symptoms. Subthalamic nucleus deep brain stimulation (STN-
DBS) is a widely accepted therapy for PD, especially when the
dopaminergic replacement therapy is unsatisfactory (Kleiner-
Fisman et al., 2006). This technique was also used in the pallidum
and the STN (Benabid, 2003). DBS can significantly reduce the
freeing of gait (Xie et al., 2012), tremor, dyskinesia, or postural
instability (Weaver et al., 2005) and thereby improve the quality
of life. DBS can also reduce the non-motor symptoms (Hwynn
et al., 2011) in PD patients. However, DBS could not ensure a
significant therapeutic effect on each patient. In spite of a careful
patient selection before the operation, some patients may still
show limited or no improvement of their motor functions after
surgery. On the other hand, DBS surgery is expensive at the
moment. Therefore, how to evaluate the possible therapeutic
improvement of each patient especially before the surgery is a
question that deserves serious consideration.

A growing number of studies suggest that the variability
in treatment response may be linked to cortical blood flow
changes (Campbell et al., 2008; Quraan et al., 2014). Research
showed that cortical blood flow change abnormalities in patients
with schizophrenia may be related to the treatment response to
stress symptoms (Masuda et al., 2000). Early scalp acupuncture
treatment can speed up the cortical blood flow of patients
with acute ischemic stroke, thereby promoting the recovery
of motor function (Li et al., 2005). Resting-state functional
magnetic resonance imaging (rs-fMRI) is related to cortical
blood flow, and the method of analyzing rs-fMRI is usually
to construct a brain network. Therefore, the brain network
is shown to have great potential in predicting the treatment
outcome (van Waarde et al., 2015; Kawahara et al., 2017).
Human brain networks can be characterized by estimating
interregional synchronization of neural function with rs-fMRI.
This study focuses on rs-fMRI instead of task-related fMRI
data. There are many measurements (small-worldness, clustering
coefficient, local efficiency, modularity, and rich-hub) (Kaiser,
2008) to assess information exchange and processing of the
human brain networks, which can be measured after the
brain network is converted into a weighted graph. Analyses of
functional networks could provide complementary insights into
brain organization under pathological conditions. For example,
compared to healthy controls, PD patients have lower clustering
coefficient and local efficiency (Luo et al., 2015b) and have
impaired corticostriatal network pathways and related neural
circuits (Hacker et al., 2012).

The dopaminergic denervation of the striatum in PD
occurs asymmetrically at the beginning and becomes bilateral
gradually along with the disease progression (Hornykiewicz,
1966). As such, the accompanying motor dysfunction symptoms
(bradykinesia, tremor, and rigidity) usually begin on the side
contralateral to the most affected nigrostriatal pathway and
later spread to the opposite side. This study of the striatum
in PD indicated that the hemispheric asymmetry of functional

connectivity is an important factor that may affect brain network
organization, which has been demonstrated in healthy subjects
(Tian et al., 2011), patients with Alzheimer’s disease and mild
cognitive impairment (Yang et al., 2017), and patients with
neuropsychiatric disorders (Sun et al., 2015). It has been well
documented that the brain network of PD patients tend to show
asymmetry (Luo et al., 2015a).

Machine learning as a powerful data-driven method has been
widely used in outcome prediction, including outcome of the
DBS surgery (Bermudez et al., 2019; Habets et al., 2020). In
this paper, we aimed at creating a machine learning model
based on functional connectivity profiles to predict the possible
improvements of motor function before the DBS surgery. This
model could help us pick out the unsuitable patients. More
importantly, the machine learning methods may reveal the
potential components that limit the effect of the surgery and
help physician improve the technique. This study involves the
assessment of preoperative rs-fMRI for predicting the DBS-
based improvements of motor function as measured by the
Unified Parkinson’s Disease Rating Scale (UPDRS-III) score.
Four brain networks were constructed for topological analysis,
including intrahemisphere connectivity [left-hemispheric (LH)
network and right-hemispheric (RH) network] and inter-
hemisphere connectivity [homotopic (Ho: the edges link the
geometrically corresponding regions in the two hemispheres)
network and heterotopic (He: the edges link the geometrically
non-corresponding regions in the two hemispheres) network].
The random forest algorithm (Liaw and Wiener, 2002) was used
for feature selection, and the Ridge model was used to predict
the improvement of motor function after the DBS surgery in
each brain (LH, RH, Ho, and He) network. Pearson analysis
was performed on the predicted improvement rate and the real
improvement rate to obtain Pearson’s r and Pearson’s p-values,
which were used to evaluate the correlation between brain
asymmetry and the improvement rate after DBS surgery. In order
to study whether this correlation is affected by age and gender, we
divided patients into younger and older groups and divided them
into male and female groups.

MATERIALS AND METHODS

Participants
This study was approved by the Ethics Committee of Tsinghua
University Yuquan Hospital. All participants gave written
informed consent. This study included 55 patients whose age
ranged from 29 to 77 in Tsinghua University Yuquan Hospital,
Beijing, China, who were diagnosed with idiopathic PD according
to the UK PD Society Brain Bank criteria. The exclusion
criteria included (1) severe suicidal tendency; (2) pregnant or
lactating women; (3) a history of physical diseases that can
affect the assessment of PD such as intracranial tumors and
communicating hydrocephalus; (4) a history of organic brain
disorders such as cerebellum injury, neurological disorders
such as repeated strokes, severe dementia at an early stage
accompanied by memory, language, and behavior disorders, and
other psychiatric disorders; and (5) a history of substance abuse,
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including tobacco, alcohol, or other psychoactive substances. All
participants were right dominant based on screening questions.

The DBS surgery outcome was measured in a medication-off
condition where levodopa should not be taken 12 h presurgery
or postsurgery by the motor section of the UPDRS-III scale
(Antonini et al., 2013). This scale was proposed by a team with
more than 10 years’ experience. All patients were on levodopa
prior to the study. A small number of patients may have mild
confusion after taking levodopa for 1 h. These symptoms will
disappear within 12 h of stopping the medicine. UPDRS-III is
one of the four scales of UPDRS, a clinical scoring system, which
is used to judge the motor function of the pre-operation and
post-operation of each participant. There are 27 items in UPDRS-
III, and each item is divided into a four-level index, from 0
to 4, where 0 is normal and 4 is serious. It is often used to
assess the patient’s progress. For the 55 selected PD patients, the
UPDRS-III score was measured twice before and 6 months after
the DBS surgery. At least two doctors took the measurement
and averaged each time. Among them, presurgical scoring and
postsurgical scoring were performed routinely, independent of
the study and blind to the analysis outcomes. The physicians who
program the DBS and the people who measure these scores after
surgery were blinded to the analysis. The mean preoperative and
postoperative scores were 43.79 ± 11.78 and 15.35 ± 10.67, and
all patients had lower scores after surgery, with a lower UPDRS-
III score and higher degree of motor function. The improvement
of motor function after DBS surgery is assessed by the MUPDRS-
III rate = (UPDRS-IIIpresurgery − UPDRS-IIIpostsurgery)/UPDRS-
IIIpresurgery. The mean MUPDRS-III rate of 55 tested PD patients
is 65.62%± 20.48%.

Surgical Procedure
DBS surgery was performed using a Leksell stereotaxic frame
(Elekta AB, Stockholm, Sweden) under local anesthesia. During
the surgery, the micro-electrodes and STN-DBS electrodes
(PINS L301, Beijing, China) were placed in the left and right
hemispheres of the brain. The microelectrodes were used to
record, and then STN-DBS were implanted bilaterally for
stimulation to evaluate and confirm the site where the best
clinical effect can be obtained. After confirming the placement
of the lead, a pulse generator (G102R, PINS, Beijing, China) was
used to connect the electrodes and was implanted subcutaneously
into the right subclavian region. The optimal stimulation patterns
with the highest UPDRS score and maximum improvement rate
were selected according to the actual situation of the patient.

Image Acquisition
The rs-fMRI, high-resolution T1-weighted structural MRI
data and T2-weighted structural MRI data were acquired on
each participant at Tsinghua University using a 3T Philips
Achieva rs-fMRI scanner equipped with a 32-channel head
coil. Imaging parameters of rs-fMRI were 35 axial slices;
repetition time (TR) = 2,000 ms; scan length in time = 8 min;
echo time (TE) = 30 ms; flip angle (FA) = 90◦; slice
thickness = 4 mm; acquisition matrix = 64 × 64; field of
view (FOV) = 224 × 224 mm2. Imaging parameters of T1-
weighted MRI were as follows: TR/TE = 7.46 ms/3.73 ms,

FOV = 256 × 256 mm2, acquisition matrix = 256 × 256 × 160,
slice thickness = 1.0 mm.

The rs-fMRI (8 min) was performed 2–3 days before the
operation, and the participants were asked not to take levodopa
for more than 12 h before the scanning to keep medication off.
Patients were instructed to relax with their eyes closed and to not
fall asleep during the scan.

The purpose of the research is to use preoperative images to
evaluate postoperative effects, and rs-fMRI can do the prediction
and other analyses. Due to the acquisition conditions, only rs-
fMRI before DBS surgery can be acquired, so the UPDRS-III
score was used to indicate the improvement of the PD patient’s
motor function after the DBS surgery. In brief, rs-fMRI before
DBS surgery was used to evaluate the improvement rate of motor
function after the DBS surgery.

Image Preprocessing and Brain Network
Construction
In the preprocessing of the rs-fMRI data, the first 10 volumes
of each participant were discarded to ensure magnetization
equilibrium, slice timing was corrected with the first slice, and
head motion was corrected by aligning all image volumes with
the first volume. In human rs-fMRI data, a 0.01–0.1 Hz band
pass filter was commonly used to keep only the interesting
frequencies and discard potential noise sources, including the
heart rate and respiration rate, which were ∼1.3 and ∼0.2 Hz,
respectively. Higher-frequency signals were considered as noise
or physiological signals, which are not neuron signal. In order
to perform the group analysis, the functional images were
co-registered to the same participant’s T1-weighted structural
image, which was normalized to the Montreal Neurological
Institute template space.

GRETNA software was used to construct the whole-brain
functional network (246 × 246) (Wang et al., 2015) for each
participant. The nodes of the brain networks come from the
brain segmentation based on the Brainnetome Atlas (BNA) (Fan
et al., 2016), which parcellated the whole brain into 210 (105 for
each hemisphere) cortical and 36 subcortical regions of interest
(ROIs). Then the Pearson correlation coefficients of the rs-fMRI
signal between each two ROIs were computed to acquire a whole-
brain functional network.

Four brain networks were constructed for topological analysis,
i.e., LH network, RH network, Ho network, and He network, as
illustrated in Figure 1.

Connectome-Based Predictive Modeling
For each of the four aforementioned networks (i.e., LH, RH,
Ho, and He), the Ridge model was trained to predict the
improvement rate of motor function after DBS. For each
network, upper triangle elements were used for the input of
the Ridge model. Ridge regression has been used as a statistical
tool to address the small sample size issue since the 1970s
(Hoerl and Kennard, 1970). With the regression coefficient
being limited, Ridge regression is free from overfitting and
high variances associated with correlated coefficients. Therefore,
Ridge regression has many advantages over the traditional
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FIGURE 1 | Brain network construction. To study the correlation of brain symmetry on the off-rate of DBS, the brain network is built by intra- and inter-hemispheric
connectivity. The connection types include intra-left-hemispheric (LH), intra-right-hemispheric (RH), inter-hemispheric homotopic (Ho), and inter-hemispheric
heterotopic (He).

multiple-regression models, and it can effectively deal with a large
number of predictor variables that are far more than the number
of subjects (Li et al., 2006).

Since brain signals are rich and redundant, it is necessary
to perform a feature selection strategy to narrow the range of
features (i.e., functional connections) for each network. Here,
we use the random forest algorithm (Liaw and Wiener, 2002)
to select important features for each brain (LH/RH/Ho/He)
network. The random forest algorithm is time-efficient
in training and can detect the mutual influence between
connections as features and therefore is suitable for selecting
the most important connections in this study. In this paper,
the random forest feature extraction algorithm of the network
(LH/RH/Ho/He) is given from the connection information of
all cortical region pairs in each network. After the feature vector
(upper triangle elements) of the training set was input into the
random forest, the importance of each feature (i.e., connection)
can be obtained, and only the features with higher importance
were retained. Then the retained feature set was applied into
the testing set.

The random forest algorithm in this paper was used to extract
d times from the d features of the LH, RH, Ho, and He networks
with replacement, obtain a sample set, and input it into a
decision tree, which is repeated 20 times. In this way, 20 sample
sets were each input into 20 decision trees. In the extraction
process, the data that were not extracted each time were used

as out-of-bag data (OOB). This part of the data can be used for
the screening of important features: first, the OOB data error
(errOOB1) was calculated, and then noise was added randomly
to the feature X of all samples of the OOB data to calculate the
OOB error (errOOB2) with noise. The importance of the feature
was assessed by X =

∑ (errOOB2 −errOOB1)
20 , and then features with

an importance higher than 0.005 were selected. The selected
features were less affected by noise, and the prediction was more
stable. In the Ridge model, for each topic, we used the percentage
UPDRS improvement score and the numerical connection values
of the above-mentioned cortical region pairs found from the
random forest search (i.e., weights). These were used to train
the classifier in a nested leave-one-out cross-validation (LOOCV)
approach. And the “leave one” here meant leaving a subject in the
training-and-test split. The leave-one-out method was also used
for group analysis.

We adopted nested cross-validation including an inner
fivefold cross-validation and outer LOOCV to measure
prediction accuracy. The structural risk minimization of the
Ridge model was equal to the sum of the loss function and
regularization (L2 norm). The optimal solution was obtained
when the loss function value was as small as possible. The inner
fivefold cross-validation was used to determine the optimal
parameters (e.g., α and max_iter) for the Ridge model by the
grid search method, and LOOCV was used to evaluate the
generalizability of the model. α balances the relationship between
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the two parts of the J(θ) = MSE(y,
_
y ; θ)+ α 1

2
∑n

i=1 θ2
i in the

loss function (MSE was the mean square error, which was a
function of network performance), so that the error is as small as
possible, and max_iter is the number of repetitions of the process
of calculating the loss function of the full sample and performing
a unified gradient update. The R-squared value of the Ridge
formulation is slightly lower than that of ordinary regression
analysis, but the significance of the regression coefficient is
often significantly higher than that of ordinary regression. The
R-squared value is between 0 and 1. The closer to 1, the better
the fitting effect. In the four networks, the R-squared value of LH
is 0.67, the R-squared value of RH is 0.72, the R-squared value
of Ho is 0.64, and the R-squared value of He is 0.5. The features
come from a vector of (N, d), where N is the number of people
and each person is a d-dimensional vector. This d-dimensional
vector comes from the network (LH, RH, Ho, and He) of each
person. There are d column vectors that are d features. The
importance features are selected by random forest. The selected
features and actual MUPDRS-III rate of patients were used as
input in each training procedure of inner and outer loops. The
weighting of each feature (i.e., connection) was determined via
the model training and then used to predict the MUPDRS-III rate

of patients. Then, two indicators (i.e., Pearson’s r and Pearson’s
p) were utilized to measure the performance of predicting the
model in each network.

Group Analysis
The age of the participants ranged from 29 to 77 (mean
age = 58.15 ± 10.13) years. Studies have indicated age-based
variations in rs-fMRI networks such that in 20–80-year age
groups, some aspects of sensory and cognitive resting state
networks show weakening with age (Varangis et al., 2019). To
study the effect of age and gender on the correlation between
brain asymmetry and the improvement of motor function after
DBS surgery, we grouped patients by age and gender. There were
53 participants in the group analysis, excluding one patient with
incomplete data and a 29-year-old patient to narrow the age span
(previously 55 patients). The 53 patients were divided into two
groups as evenly as possible according to age: 26 people aged
34–58 and 27 patients aged 59–77. Also, these 53 patients were
divided into two groups according to gender: 29 males and 24
females. We used the leave-one-out method on feature selection
and the classifier for age and gender group analyses. Inter-
group feature selection was performed instead of intra-group.

FIGURE 2 | The predictability of brain connection on the DBS off-rate. Pearson analysis is used between the off-rate of DBS and the prediction of brain connections
LH, RH, Ho, and He (r, p). The prediction is obtained by the Ridge model.
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TABLE 1 | The top 10 connections in LH (A) and RH (B) with higher importance in
the prediction of the improvement rate in the UPDRS-III score after DBS surgery in
the medication-off condition.

(A)

ID Node name ID Node name LH normalized
connection

value

18 Cingulate gyrus (CG) 18 Cingulate gyrus (CG) 1

17 Insular gyrus (INS) 4 Orbital gyrus (OrG) 0.9

14 Inferior parietal lobule
(IPL)

4 Orbital gyrus (OrG) 0.8

18 Cingulate gyrus (CG) 1 Superior frontal gyrus (SFG) 0.7

18 Cingulate gyrus (CG) 14 Inferior parietal lobule (IPL) 0.6

16 Postcentral gyrus (PoG) 15 Precuneus (PCun) 0.5

3 Inferior frontal gyrus
(IFG)

11 Parahippocampal gyrus (PhG) 0.4

14 Inferior parietal lobule
(IPL)

4 Orbital gyrus (OrG) 0.3

2 Middle frontal gyrus
(MFG)

9 Inferior temporal gyrus (ITG) 0.2

23 Basal ganglia (BG) 3 Inferior frontal gyrus (IFG) 0.1

(B)

ID Node name ID Node name RH
normalized

connections
value

19 Medioventral occipital
cortex (MVOcC)

7 Superior temporal gyrus (STG) 1

24 Thalamus (Tha) 5 Precentral gyrus (PrG) 0.9

11 Parahippocampal gyrus
(PhG)

5 Precentral gyrus (PrG) 0.8

23 Basal ganglia (BG) 1 Superior frontal gyrus (SFG) 0.7

7 Superior temporal gyrus
(STG)

13 Superior parietal lobule (SPL) 0.6

10 Fusiform gyrus (FuG) 5 Precentral gyrus (PrG) 0.5

24 Thalamus (Tha) 14 Inferior parietal lobule (IPL) 0.4

17 Insular gyrus (INS) 5 Precentral gyrus (PrG) 0.3

23 Basal ganglia (BG) 14 Inferior parietal lobule (IPL) 0.2

24 Thalamus (Tha) 8 Middle temporal gyrus (MTG) 0.1

1–6: Frontal; 7–12: Temporal; 13–16: Parietal; 17: Insular Lobe; 18: Limbic Lobe;
19, 20: Occipital Lobe; 21–24: Subcortical Nuclei.

The r- and p-values obtained by Pearson analysis were used as
the evaluation of correlation.

RESULTS

Predicting Improvement in Motor
Function After DBS
The r- and p-values were observed in the LH network (r = 0.15,
p = 0.29), RH network (r = 0.37, p = 5.68E-03), Ho network
(r = 0.29, p = 3.72E-02), and He network (r = 0.08, p = 0.57) as
shown in Figure 2 and Table 1. The above results were obtained
by using the leave-one-out method in both the feature selection
and the classifier.

For group analysis (age and gender), we used the leave-one-
out method on both feature screening and classifiers. Inter-group
feature screening was performed. Among the two groups divided

by age mentioned by the participants, the results were as follows:
r = 0.41, p = 0.04 for the younger group and r = 0.4, p = 0.04
for the older group in the LH network; r = 0.58, p = 1.35E-
03 for the younger group and r = 0.43, p = 0.02 for the older
group in the RH network; r = 0.42, p = 3.37E-02 for the younger
group and r = 0.09, p = 0.66 for the older group in the Ho
network; and r = 0.42, p = 2.9E-02 for the younger group and
r = 0.34, p = 8.66E-02 for the older group in the He network as
shown in Supplementary Table 1A. Patients were also grouped
by gender (male and female), the results were as follows: r = 0.49,
p = 8.71E-03 for the male group and r = 0.16, p = 0.47 for the
female group in the LH network; r = 0.59, p = 7.18E-04 for the
male group and r = 0.47, p = 1.5E-02 for the female group in the
RH network; r = 0.21, p = 0.33 for the male group and r = 0.26,
p = 0.18 for the female group in the Ho network; and r = 0.10,
p = 0.60 for the male group and r = 0.69, p = 2.1E-04 for the female
group in the He network as shown in Supplementary Table 2A.
The comparisons of the results obtained by inter-group and intra-
group feature selection in age and gender groups were shown in
Supplementary Tables 1, 2.

For better interpretation, the four subcortical areas listed were
lateralized. We grouped the 246 ROIs into 48 gyri (24 left gyri
and 24 right gyri) defined by BNA and calculated the top 10
predictive connections between 24 hemispherical gyri in the
LH/RH network. The gyri of each brain hemisphere were further
divided into seven lobes, and the predictive connections selected
by the Ridge model from the perspective of lobes are shown
in Figure 3.

In predicting the DBS outcome, the connectome-based model
showed the best correlation between the predicted value and
the true value in the RH network, and the connection between
medioventral occipital cortex (MVOcC) and superior temporal
gyrus (STG) provided the largest contribution in the prediction.
The top 10 predictive connections (measured by r) of the LH
network and RH network are shown in Table 2, and the predictive
connections of the Ho network and He network are shown
in Figure 4.

DISCUSSION

In this study, we combine an rs-fMRI graph-based network with
a machine learning prediction model to predict the DBS outcome
based on brain hemispheric asymmetry. Previous studies on the
DBS of PD mainly focused on the accuracy of surgery such
as the Lead-DBS v2 method with precise electrode positioning
(Horn et al., 2019), stimulation such as closed-loop DBS (Rosin
et al., 2011), and treatment such as an omics method for
prospective targeted therapy for refractory depression (Rivaposse
et al., 2018), etc. In addition, research involving the prediction
of brain asymmetry in PD patients had different statistical
indicators from this study that were based on the value of
voxel-mirrored homotopic connectivity to assess the asymmetry
of the hemispheric function and its morphology (Gan et al.,
2020), and there were also different prediction methods from
this study using the human connectome as a connectivity profile
(Horn et al., 2017). The brain asymmetry study that similarly
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FIGURE 3 | Important brain connections by feature selection of LH (A,C) and RH (B,D). The value is the important connection corresponding to the important
feature selected by random forest. It ranges from 0 to 1, which is proportional to the importance of the brain connection. Important brain connections by prediction
of LH (C) and RH (D). This value is the important connection obtained by using the Ridge model for prediction. The important connections between 24 brain areas
are connected by curves.

TABLE 2 | The correlation of the four networks for the improvement of motor
function after DBS surgery.

LH RH Ho He

r, p r = 0.15,
p = 0.29

r = 0.37,
p = 5.68E-03

r = 0.29,
p = 3.72E-02

r = 0.08,
p = 0.57

uses machine learning was the analysis of depression (Jiang et al.,
2019), not an analysis of PD.

On the basis of stable prediction, further brain analysis could
be conducted assisted by this preoperative predicting model.
We were able to characterize networks associated with the
outcome of DBS surgery therapy in 55 PD patients. Our findings

might provide a potential neural biomarker that can detect the
hemispheric asymmetry in brain networks for predicting the DBS
outcome before surgery.

From the perspective of asymmetry, the degree of intra-
nodes and inter-hemispheres reveals that network asymmetry
is widely distributed in the human brain functional network.
At the functional connection level, the DBS operation recovery
of PD showed a rightward advantage in the brain. The
RH and Ho networks had significantly predictive effects.
It was also found that the symptoms of PD such as
hallucinating, dreaming, and frequent dozing may be related
to right-hemisphere dysfunction (Stavitsky et al., 2008), and
late-stage PD patients exhibited greater atrophy in the bilateral
occipital and right-hemisphere−predominant cortical areas
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FIGURE 4 | The important brain connections of Ho (A) and He (B). The nodes represent the corresponding brain area, and the edges are the important connection
between the areas. The normalized values of the edges indicate the importance of brain connection.

(Claassen et al., 2016). Reduced structural connectivity in the
right hemisphere of PD patients was also found with freezing of
gait (Fling et al., 2013). STN-DBS with two electrodes provided
the opportunity to modify stimulation parameters for each
hemisphere (Lizarraga et al., 2017), which may alleviate the
hemispheric asymmetry in PD patients.

In two groups divided by age, the results of inter-group
feature selection showed that all four networks (LH, RH, Ho,
and He) of the older group had a low correlation between
the predicted value and the true value on the improvement of
motor function after DBS surgery. The correlation of the RH
network in both groups was higher than that of the LH network
reflected by r-, p-values, and the contrast for laterality for the
RH network was much clearer for the older group. As for two
groups divided by gender, the RH network was most predictive
in the male group, and the He network was most predictive
in the female group, which significantly correlated with the
improvement rate of DBS surgery in participants. Both male and
female groups had significant laterality in the RH network. The
male group had higher r-values in the LH and RH networks
compared with the female group, while the female group had
higher r-values in the Ho and He networks compared with the
male group.

The connection between the MVOcC-STG and thalamus
(Tha)–precentral gyrus (PrG) had the greatest contribution to the
prediction of surgical outcome in the predictive model based on
the RH network. It was reported that MVOcC was metabolically
and structurally altered in PD (Ellmore et al., 2020). Compared
with that in the HC group, STG exhibited significant reduction of
nodal efficiency in PD patients with mild cognitive impairment
(Wang et al., 2019), and the functional connectivity between
left supramarginal–STG (Wiesman et al., 2016) in PD patients
was reduced. The change in activity of Tha neurons in the
motor circuits was identified as the most marked differences in
PD (Halliday, 2009), and Tha was also considered as a suitable
stimulation position for PD patients (Caparroslefebvre et al.,

1994), which was centrally located in the pathway of the model
of the basal ganglia motor circuit and can inhibit movement
(Alexander et al., 1991; Kocabicak et al., 2012). The fibers
from cerebellar deep nuclei to PrG were implicated in speech
deterioration of PD patients (Fenoy et al., 2016). These ROIs are
related to the symptoms of PD, indicating the effectiveness of the
predictive model.

In the Ho and He networks, the top 10 predictive connections
(measured by r) were all distributed in the inferior frontal gyrus
(IFG), middle frontal gyrus (MFG), and superior frontal gyrus.
These results indicated that the frontal lobe of the Ho and
He networks played an important role in predicting the DBS
outcome. It was widely accepted that the changes in cognitive
function in PD were most closely related to the frontal lobe
(Obeso et al., 2012). For the brain functional connection, the
connections between the dorsolateral prefrontal cortex (DLPFC)
and the IFG, superior frontal gyrus (SFG), and MFG in PD
patients were significantly reduced (Dong et al., 2020). The
frontal lobe “N30” status indicated the severity of PD movement
and can effectively respond to dopamine deficiency (Claassen
et al., 2016). “N30” resulted from distinct oscillating and phasic
generators in the frontal cortex, and the “N30” component of
somatosensory evoked potentials has been recognized as a crucial
index of brain sensorimotor processing and has been increasingly
used clinically (Cebolla et al., 2011). From the perspective of brain
biomarkers, the accumulation of Lewy body in the frontal lobe
was related to the risk of PD (Crane et al., 2016). In terms of
the improvement rate of UPDRS-III for PD patients, the frontal
cortex thickness and cortical atrophy in the frontal lobe may
be an obvious predictor of poor prognosis of PD patients after
STN-DBS (Muthuraman et al., 2017).

In the LH network, the top 10 predictive connections
(measured by r) were almost distributed in the inferior parietal
lobule (IPL), postcentral gyrus (PoG), and precuneus (Pcun),
which indicated that the parietal lobe of the LH network may
show great correlation for predicting the outcome after DBS.
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Previous studies have shown that PD-related cognitive
patterns (PDCPs) were characterized by reduced metabolism
in the frontal and parietal regions (Huang et al., 2007),
which also confirmed the above-mentioned correlation
between the frontal lobe of the He and Ho networks in
PD patients. For the motor sequence learning task for PD,
it was found that a longitudinal decline in activation was
related to learning of motor function in the parietal lobe
region (Carbon and Eidelberg, 2006). In the case of ON
and OFF STN-DBS, gait images can induce activity in the
auxiliary movement area and the upper right parietal lobule
(Weiss et al., 2015).

There are several limitations in our study. Firstly,
the sample size is relatively small for machine learning
techniques, which may limit the predictive performance
of the generated model. Besides, the existing asymmetry
in the cortical structure may bring bias to the
experiment. Although symmetrical templates were used,
the influence of methodological asymmetry cannot be
completely eliminated.

CONCLUSION

In this study, we predicted the DBS outcome based on brain
hemispheric asymmetry in 55 PD patients. By using random
forest to select the important connections and the Ridge
model with suitable parameters to predict the improvement
rate in UPDRS-III, we proved that the RH network can
better predict the improvement rate among the four intra-
and inter-brain networks (LH, RH, Ho, and He). Besides,
the ROI analysis showed that MVOcC-STG and Tha-PrG
of the RH network contributed most in predicting the
improvement rate in DBS surgery in the medication-off
condition, which has a clinical significance for the presurgical
analysis of DBS.
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