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The impact of brown adipose tissue (BAT) metabolism on understanding energy
balance in humans is a relatively new and exciting field of research. The pathogenesis
of obesity can be largely explained by an imbalance between caloric intake and
energy expenditure, but the underlying mechanisms are far more complex. Traditional
non-selective sympathetic activators have been used to artificially elevate energy
utilization, or suppress appetite, however undesirable side effects are apparent with
the use of these pharmacological interventions. Understanding the role of BAT, in
relation to human energy homeostasis has the potential to dramatically offset the
energy imbalance associated with obesity. This review discusses paradoxical effects
of caffeine on peripheral adenosine receptors and the possible role of adenosine in
increasing metabolism is highlighted, with consideration to the potential of central rather
than peripheral mechanisms for caffeine mediated BAT thermogenesis and energy
expenditure. Research on the complex physiology of adipose tissue, the embryonic
lineage and function of the different types of adipocytes is summarized. In addition,
the effect of BAT on overall human metabolism and the extent of the associated
increase in energy expenditure are discussed. The controversy surrounding the primary
β-adrenoceptor involved in human BAT activation is examined, and suggestions as to
the lack of translational findings from animal to human physiology and human in vitro
to in vivo models are provided. This review compares and distinguishes human and
rodent BAT effects, thus developing an understanding of human BAT thermogenesis to
aid lifestyle interventions targeting obesity and metabolic syndrome. The focus of this
review is on the effect of BAT thermogenesis on overall metabolism, and the potential
therapeutic effects of caffeine in increasing metabolism via its effects on BAT.
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INTRODUCTION

Increases in the prevalence of overweight and obesity are a major health problem in people of
all ages (Engin, 2017), with considerable concern in the rise of metabolic syndrome in children
and adolescents (Gepstein and Weiss, 2019). Obesity is the accumulation of excess adipose tissue
that has adverse impacts on physical healthy lifestyle patterns (Block et al., 2004; Drewnowski
and Specter, 2004; Boardman et al., 2005; Abell et al., 2007; Gibson, 2011; Corral et al., 2012;
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Quick et al., 2013; Wang et al., 2013), and is positively
correlated with poor health outcomes in cardiovascular disease,
diabetes, cancer, and an array of musculoskeletal disorders
(Anandacoomarasamy et al., 2008; Dehal et al., 2011; Liu et al.,
2011; Willey et al., 2011; Ma et al., 2012; Vranian et al., 2012;
Zhang and Rodriguez-Monguio, 2012). In addition to these
chronic diseases, obesity is a major risk factor for higher risk of
mortality due to COVID-19 (Pettit et al., 2020).

The development of obesity can largely be explained by an
imbalance between caloric intake and total metabolic activity
(Schwartz et al., 2017). Lifestyle interventions consisting of diet
and exercise are common treatments for obesity, premised on
the mistaken assumption that correcting the energy imbalance
will lead to weight loss. However, there is a growing body
of evidence suggesting that simple caloric restriction and
exercise are insufficient on their own to promote and maintain
weight loss (Greenway, 2015; Vettor et al., 2020). A lack of
effective options for long-term weight reduction and subsequent
weight maintenance exacerbates the enormity of the obesity
problem; individuals who successfully complete behavioral and
dietary weight-loss programs eventually regain most of the
lost weight. A meta-analysis of 29 long term weight loss
studies show that within 2 years more than half of the lost
weight is regained, and by 5 years more than 80% of the
lost weight is regained (Anderson et al., 2001). Consequently,
identifying pharmacological therapies that may promote weight
loss, through increased energy expenditure via thermogenesis,
may be a way to augment current interventions for long term
weight reduction (Ursino et al., 2009; Nedergaard and Cannon,
2010; Dulloo, 2011; Whittle et al., 2013).

Although the pathogenesis of obesity is far from fully
understood, a large amount of effort is being undertaken to
ameliorate obesity itself. Understanding the role of brown
adipose tissue (BAT), in relation to human energy homeostasis
and the potential to pharmacologically increase metabolism is
an exciting and active research interest. Early estimates have
suggested that increasing BAT thermogenesis in 50 g of BAT can
increase metabolism by as much as 25% (Brooks et al., 2005).
White adipose tissue (WAT) is distinctly different from BAT
both in terms of physiology and embryonic development (Lee
et al., 2013b). In simple terms, WAT stores energy, and BAT
dissipates energy and releases heat (Cannon and Nedergaard,
2004). Surprisingly, in terms of development, BAT is closer in
lineage to skeletal muscle rather than adipose tissue (Timmons
et al., 2007; Cannon and Nedergaard, 2008; Seale et al., 2008;
Kajimura et al., 2010; Lepper and Fan, 2010; Petrovic et al., 2010),
with a large amount of mitochondria located in both BAT and
skeletal muscle compared with WAT (Porter et al., 2016). This
allows for the oxidative demand and heat production of activated
BAT (Porter et al., 2016).

Activation of BAT thermogenesis is regulated by the
sympathetic nervous system through β-adrenoreceptors in
rodents, and is presumed to also be the case in humans (Cannon
and Nedergaard, 2004). The neural pathway that controls
the regulation of BAT thermogenesis has been thoroughly
investigated and described in rats (Morrison and Nakamura,
2011). While there is overlap (Nazari et al., 2020), the neural

pathway controlling the cardiovascular system appears to be
different to that which controls thermoregulatory reflexes
(Rathner et al., 2008). Sympathetic premotor neurons in the
rostral raphe pallidus neurons regulate sympathetic outflow to
BAT (Morrison, 2016) and are likely only weakly baroreceptor
sensitive (Rathner et al., 2001), whereas the premotor neurons
in the rostral ventrolateral medulla mediates baroreflex related
sympathetic discharge (Morrison, 1999). Understanding the
role of the different neural nuclei within the BAT regulatory
pathway, particularly within the hypothalamus, is paramount
to identifying pharmacological substances that may selectively
activate BAT thermogenesis and increase energy expenditure,
without necessarily altering whole body homeostasis.

Caffeine is the psycho-stimulant component of coffee,
other beverages and various supplements (e.g., certain pre-
workout powders) (Smith, 2002). There is ample evidence that
caffeine increases thermogenesis acutely in both rodents and
humans (Trimble, 1963; Velickovic et al., 2019), however the
direct mechanism is unclear. Certain studies investigating the
thermogenic and metabolic effects of caffeine have focused on
caffeine acting directly on the BAT tissue at high doses (Astrup
et al., 1990). However, these previous studies fail to consider
that caffeine acts centrally to increase arousal (Ferre, 2010). This
raises the possibility that previously reported caffeine evoked
thermogenesis may have a central component, through acting on
the thermoregulatory pathway underlying BAT thermogenesis. It
remains uncertain if low, non-anxiogenic doses of caffeine, which
activate arousal pathways centrally, are sufficient to activate
thermogenesis. The focus of this review is on the effect of
BAT thermogenesis on overall metabolism, and the potential
therapeutic effects of caffeine in increasing metabolism via
its effects on BAT.

THERAPEUTIC AND THERMOGENIC
EFFECTS OF CAFFEINE

Caffeine is a purine alkaloid (Ashihara et al., 2008) found
in many food products and beverages and is likely the most
widely consumed psycho-active drug worldwide being the
psycho-stimulant component of coffee and other beverages
and supplements (Smith, 2002). Caffeine has a number of
physiological effects including increases in human endurance,
physical performance, cognition, resting energy expenditure,
and improvements in behavioral functions such as mood
(Glade, 2010). Previous studies have demonstrated therapeutic
effects of caffeine in metabolic parameters, hypertension, and
hepatic fibrosis, which are components of metabolic syndrome.
Caffeine (0.1% in drinking water) has been shown to decrease
insulin concentrations and plasma glucose in rats fed high-fat
and high-sucrose diets, respectively, with a decrease of mean
arterial pressure in the two pathological models (Conde et al.,
2012). Additionally, caffeine consumption attenuated weight gain
adiposity in rats fed a high-fat diet (Conde et al., 2012). In human
patients undergoing liver biopsy for clinical indications, a higher
daily caffeine consumption is associated with a decrease in the
severity of liver fibrosis (Modi et al., 2010).
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Caffeine contained in coffee has been shown to induce
lipolysis, thermogenesis, insulin secretion, and fat oxidation in
both non-obese and obese humans (Astrup et al., 1990; Bracco
et al., 1995; Acheson et al., 2004). In fact, consuming six cups
of coffee (600 mg) within 12 h would be expected to induce a
100 kcal increase in daily energy expenditure (Dulloo et al., 1989).
However, to date, there is little evidence that coffee consumption
promotes significant weight loss in humans. This appears to be
due to habituation to caffeine-induced catecholamine responses
and lipolysis with prolonged use (Dekker et al., 2007).

Caffeine has been administered therapeutically in
combination with ephedrine (mixed α and β-adrenoceptor
agonist) to increase metabolism and activate BAT thermogenesis
in rodents (Kim et al., 2011). Ephedrine itself has been shown
to activate BAT thermogenesis in lean humans acutely but
not in obese humans (Carey et al., 2013, 2015). However,
both of these drugs have notable side effects, and caffeine at
high doses is known to have significant adverse cardiovascular
effects on heart rate and blood pressure (Hoehn-Saric and
McLeod, 2000). Within the central nervous system, caffeine
acts as an non-specific adenosine receptor antagonist (Ribeiro
and Sebastiao, 2010). Previous research investigating caffeine’s
physiological effects have generally focused on peripheral
mechanisms (Astrup et al., 1990; Velickovic et al., 2019).
However, in terms of arousal, caffeine’s effect is central (Ferre,
2010), suggesting that caffeine evoked thermogenesis may have
a central component. In rodent studies, low (but stimulatory)
doses of caffeine have previously activated orexinergic neurons
in the dorsomedial hypothalamus and the perifornical areas of
the lateral hypothalamus (Murphy et al., 2003; Sakurai, 2007).
These regions of the hypothalamus have been shown to regulate
sympathetic nerve activity to interscapular BAT, leading to
thermogenesis in rodents (Tupone et al., 2011).

Caffeine works centrally to promote arousal through
antagonism of the adenosine A1A receptor (Murphy et al., 2003),
which releases orexinergic neurons from inhibition (Murphy
et al., 2003). This suggests that central effects of caffeine on BAT
thermogenesis are through its antagonistic action on the A1A
receptor (Table 1). This observation is harmonious with a role
of orexin/hypocretin as a key neuropeptide in the regulation of
energy homeostasis and the sleep-wake cycle (Sakurai, 2007). It
has been demonstrated that there is an increase in both brain
adenosine and A1A receptor in the hypothalamus associated with
the development of obesity in mice (Wu et al., 2017). Finally,
antagonism of A1A receptor with systemic caffeine has been
shown to reduce body weight, increase BAT thermogenesis and
increase oxygen consumption in high fat diet-induced obese rats
(Wu et al., 2017).

The signaling of adenosine is transmitted via adenosine A1
and A3 receptors through Gi/Go family or by A2A and A2B
receptors via Gs family G proteins (Table 1; Fredholm et al.,
2011). The Gi/Go family proteins inhibit adenylate cyclase
(Francken et al., 1998) [which synthesizes cyclic adenosine
monophosphate (cAMP) from ATP (Rivera-Oliver and Díaz-
Ríos, 2014)], and Gs family stimulate adenylate cyclase (Graziano
et al., 1987) thereby modulating the amount of cAMP available
for downstream intracellular signaling. Activation of A1 or A3

receptors work through Gi/Go family (Table 1) and lower cAMP
whereas A2A or A2B work through Gs and increase cAMP
(Cully, 2014). Lipolysis in WAT is inhibited via activation of
A1A receptors (Johansson et al., 2008) which are abundantly
expressed on WAT cells and act via Gi/Go family to reduce cAMP
(Trost and Schwabe, 1981; Mersmann et al., 1997; Tatsis-Kotsidis
and Erlanger, 1999). Increases in intracellular cAMP promote
lipolysis (Arner, 1976). Furthermore, adenosine A2A and A2B
receptor agonists increase lipolysis and BAT thermogenesis
(Gnad et al., 2014), whereas adenosine A1A receptor antagonism
promotes increases in heart rate and oxygen consumption.
Expression of A2A receptors is increased in cold-exposed mice
as well as in brown adipocytes in response to norepinephrine
or intracellular cAMP (Gnad et al., 2014). As caffeine is a non-
specific adenosine receptor antagonist it may influence multiple
peripheral mechanisms that act paradoxically upon adipose tissue
and thermogenesis. As such there remains potential to investigate
effects of combination therapy of caffeine and selective adenosine
A2A or A2B agonists on thermogenesis. Such a combination
therapy may increase the efficacy of caffeine.

In addition to antagonizing adenosine receptors, caffeine
is a non-selective phosphodiesterase inhibitor (Moustafa and
Feldman, 2014). Phosphodiesterase converts cAMP to adenosine
monophosphate, thus caffeine’s action on phosphodiesterase
increases intracellular cAMP (Boswell-Smith et al., 2006). Raising
cellular cAMP could possibly be a peripheral mechanism by
which caffeine increases UCP1 (uncoupling protein 1, which
facilitates a futile cycle in the mitochondria of brown/beige
adipocytes) activity (Fukano et al., 2016). β3-adrenoceptors are
G protein coupled receptors linked to Gs proteins. Activation
of β3-adrenoceptors leads to increased cAMP production, which
in turn activates protein kinase A, which stimulates lipolysis,
releasing free fatty acids and activating UCP1 (Himms-Hagen,
1989; Cannon and Nedergaard, 2004). Additional experiments
investigating the effects of protein kinase A inhibition or cAMP
concentration may provide further information on the role of
cAMP levels in the caffeine response. As such there remains
potential to combine stimulatory doses of caffeine with β3-
adrenoceptor agonists.

Intake of caffeine improves fructose-induced insulin
resistance and hypertension by enhancing central insulin
signaling in rats (Yeh et al., 2014). This is through enhancing
insulin sensitivity within the nucleus of the solitary tract to
prevent hypertension by increasing nitric oxide production.
Adenosine A2A receptor signaling pathway in the nucleus
of the solitary tract mediates nitric oxide production related
with the control of blood pressure (Ho et al., 2008). This is
important because the nucleus of the solitary tract has received
considerable attention for its role in the regulation of metabolism
and body temperature (Székely, 2000; Cao et al., 2010; Grill
and Hayes, 2012). Activation of the adenosine A1A receptor
within the neurons of the nucleus of the solitary tract leads to
a hypometabolic state, inhibiting BAT thermogenesis, reducing
energy expenditure and inhibiting shivering thermogenesis in
rats (Tupone et al., 2013). Suggesting that chronic activation
of adenosine A1A receptors (lowering cAMP levels) in the
nucleus of the solitary tract can reduce energy expenditure
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and induce a metabolic imbalance potentially pre-disposing
individuals to obesity and metabolic disease. As caffeine is
an antagonist at the adenosine A1A receptor, perhaps these
effects may be attenuated or reversed with caffeine treatment.
Interestingly, chronic caffeine consumption diminishes diabetic
symptoms by increasing insulin sensitivity via more efficient
insulin signaling (Park et al., 2007). Moreover, caffeine alleviates
fructose-induced metabolic disturbances in rats (Yeh et al.,
2014). However, several researchers have concluded that caffeine
consumption may increase blood pressure, thus leading to an
elevated risk of hypertension (Savoca et al., 2004; Noordzij
et al., 2005). Conversely, most epidemiological studies have
shown that the habitual intake of caffeinated coffee does
not increase the risk of hypertension, (Savoca et al., 2004;
Geleijnse, 2008) and chronic caffeine intake has been found
to prevent diet-induced hypertension in rats (Conde et al.,
2012). These observations suggest a central mechanism for
caffeine evoked BAT thermogenesis and increases in energy
expenditure, that have possible applications in the clinical care
of individuals with metabolic disease, hypertension, and other
obesity related diseases.

PHYSIOLOGY OF ADENOSINE
RECEPTORS – AS A MECHANISTIC
UNDERSTANDING OF THE
THERAPEUTIC EFFECTS OF CAFFEINE

The purinergic nucleoside signaling molecule adenosine is found
within the sympathetic nervous system (Gourine et al., 2009)
and in the central nervous system, and is both a precursor
and breakdown product of adenosine-triphosphate (Abbracchio
et al., 2009). The A2A receptor is highly expressed on BAT and
appears to have a major role in BAT activation and recruitment
of brown adipocytes (Gnad et al., 2014) which involves the
proliferation and differentiation of precursor cells, and also
hypertrophy of mature brown adipocytes. A2A receptor agonists
increase lipolysis in both murine and human brown adipocytes

(Gnad et al., 2014) as downstream Gs family G proteins will be
activated raising cellular cAMP. Additionally, these same A2A
receptor agonists improved glucose tolerance, increased energy
expenditure, increased [18F]fluorodeoxyglucose (FDG) uptake in
BAT, induced recruitment of brown adipocytes and protected
mice from diet-induced obesity (Gnad et al., 2014). These
findings suggest promising thermogenic effects of adenosine via
direct action on BAT. Previous studies of the effects of adenosine
on brown adipocytes show lipolysis is inhibited in rodents after
exposure to an A1A adenosine receptor agonist (Woodward and
Saggerson, 1986; Table 1).

THE COMPLEX PHYSIOLOGY OF
ADIPOSE TISSUE

“Adipose tissues” found in mammals contain three types of
adipocytes (white, brown, and beige/brite) and are categorized
into two types of tissue (WAT and BAT) (Lee et al., 2013b; Wu
and Spiegelman, 2013). White adipocytes predominantly make
up WAT, with a smaller number of beige adipocytes mixed in Lee
et al. (2013b), and BAT being predominantly brown adipocytes
(Lidell et al., 2013; Rosenwald and Wolfrum, 2014). Some tissue
plasticity occurs because in humans these brown adipocytes
seem to be displaced by white adipocytes under conditions of
aging (Contreras et al., 2014; Zoico et al., 2019). However, it
is unclear whether these are truly white adipocytes or if there
is some form of reverse browning. While historically WAT
was considered simply as a store of energy (in the form of
triglycerides), it is now known that it can also act as an endocrine
organ and secrete adipokines (Coelho et al., 2013). Adipokines
are pro-inflammatory chemical signaling molecules secreted
by adipose tissue (Mancuso, 2016). In obese patients, these
adipokines contribute to low-grade systemic inflammation (Tilg
and Moschen, 2006). Progranulin, lipocalin−2, adiponectin, and
leptin are adipokines which link obesity to the immune system,
and are potential therapeutic targets in obesity-related diseases,
such as diabetes mellitus (Reinehr and Roth, 2018), rheumatoid
arthritis (Carrion et al., 2019), and osteoarthritis (Tu et al., 2019).

TABLE 1 | Actions of adenosine receptor (AdR) subtypes (A1A, A2A, A2B, and A3) on thermogenesis.

AdR
Subtype

Principal Transduction Central/Peripheral Pre/Post
Synaptic

Effect on Thermogenesis

A1A Gi/Go ↓ cAMP Central Pre Central antagonism of the A1A receptor increases BAT thermogenesis in
rodents (Murphy et al., 2003).

Peripheral Post Systemically lipolysis of brown adipocytes is inhibited after exposure to an A1A

receptor agonist in rodents (Woodward and Saggerson, 1986).

A2A Gs family ↑ cAMP Peripheral Post A2A receptor agonists increase lipolysis and activate BAT thermogenesis in
rodent and human brown adipocytes (Gnad et al., 2014). A2A receptor agonists
improve glucose tolerance, increase energy expenditure, and induce
recruitment of brown adipocytes in rodents (Gnad et al., 2014).

A2B Gs family ↑ cAMP Peripheral Post A2B receptor agonists increase lipolysis and activate BAT thermogenesis in
rodent and human brown adipocytes (Gnad et al., 2014).

A3 Gi/Go ↓ cAMP Peripheral Post Antagonism of A3 receptor has no significant effect on modulating lipolysis in
rodent brown adipocytes (Gnad et al., 2014). A3 receptor KO mice have less
abdominal and total body fat, and mice are protected from hypertension and
cardiovascular diseases in a chronic kidney disease model (Yang et al., 2016).
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Each class of adipocyte is functionally, biochemically, and
morphologically distinct. Beige adipocytes are typically dispersed
in WAT (Zoico et al., 2019) and, inactivated, can look
indistinguishable from their white adipocyte neighbors. However,
sympathetic activity, can induce these cells to “brown” (Young
et al., 1984; Sidossis et al., 2015), which is associated with
increased whole-body metabolic rate (Sidossis et al., 2015),
and this browning of WAT is attenuated in β3-adrenoceptor
knockout mice (Jimenez et al., 2003). Browning is a term that
describes the emergence of beige adipocytes in WAT and is
a reversible process which represents adaptation to increased
thermogenic demand. Morphological differences are easily
observed between BAT and WAT, but are less obvious between
white adipocytes and beige adipocytes (Ikeda et al., 2018). White
adipocytes have a large single lipid droplet, containing energy
stored as triglycerides, with the nucleus displaced to the periphery
of the cell (Cinti, 2006). Similar to white adipocytes, beige
adipose tissue are unilocular, however have smaller and multiple
lipid droplets (Park et al., 2014). In contrast, brown adipocytes
typically have a polygonal shape, and multilocular lipid droplets
(de Jong et al., 2019).

The embryonic development of adipocytes, both white and
brown, is common with skeletal muscle, other connective tissues,
and bone that are all generally accepted to arise from progenitor
cells of the mesoderm (Gesta et al., 2007; Billon et al., 2008).
Several studies indicate that the formation of BAT shares a closer
relationship with skeletal muscle, rather than WAT (Timmons
et al., 2007; Cannon and Nedergaard, 2008; Seale et al., 2008;
Kajimura et al., 2010; Lepper and Fan, 2010; Petrovic et al.,
2010). White adipocytes derive from lateral mesoderm, and
are myf-5 negative precursor cells (Sanchez-Gurmaches and
Guertin, 2014). This contrasts with brown adipocytes which
derive from myf-5 positive precursor cells of the paraxial
mesoderm (Sanchez-Gurmaches and Guertin, 2014; Ikeda et al.,
2018). Myf-5 is a necessary gene transcription regulator for
the development of myoblast (Ustanina et al., 2007). Cold
exposure is known to induce proliferation of rodent vascular
endothelial cells and pre-adipocytes (Bukowiecki et al., 1986;
Geloen et al., 1992; Klingenspor, 2003; Lee et al., 2015) in BAT.
The pre-adipocytes differentiate into mature brown adipocytes,
resulting in BAT hyperplasia and enhanced BAT function. It is
interesting to speculate that in humans, in our centrally heated
houses we may keep newborns too warm, perhaps providing an
environmental setting reducing brown adipocyte proliferation
contributing to the emergence of obesity and type II diabetes in
adolescents. Consistent with this, rat pups reared for 8 weeks in
cool environment (18◦C) and then housed in a thermoneutral
environment for 4 weeks had 15% greater interscapular BAT
mass than rats reared in 30◦C environment prior to housing at
thermoneutrality (Morrison et al., 2000). Additionally, rodent
mature brown adipocytes have the ability to proliferate upon
the activation of β3-adrenoceptor, as increases in the number
of brown adipocytes expressing UCP1 following cold exposure
(Fukano et al., 2016). This is confirmed as inhibition of β3-
adrenoceptor with an antagonist (SR59230A, 1 mg/kg) reduces
the number of proliferating brown adipocytes during cold
exposure of 10◦C (Fukano et al., 2016).

Both rodent and human brown adipocytes contain large
numbers of mitochondria (Porter et al., 2016), and therefore
skeletal muscle and BAT have similar oxidative capacities (Porter
et al., 2016). Furthermore, compared to WAT, BAT is also highly
vascularized in humans, this allows for the oxidative demand and
heat dissipation into the body (Cypess et al., 2009).

EFFECT OF BAT THERMOGENESIS ON
METABOLISM

The finding that BAT activity (Vijgen et al., 2011; Madden
and Morrison, 2016; Loh et al., 2017) and volume (Leitner
et al., 2017) is inversely related with adiposity in adult humans
(Wang et al., 2015) has encouraged the assessment of the
role of BAT in metabolic regulation. There is evidence that
the metabolic activity of BAT can offset some of the energy
imbalance associated with weight gain. Estimates of energy
consumption are made on the basis of some experimentally
derived assumptions (Carpentier et al., 2018), as indicated in
Table 2, suggest that BAT thermogenesis can contribute up
to 10% of resting energy expenditure. This is consistent with
measured increases in energy expenditure in humans after β3-
adrenoceptor activation (Cypess et al., 2015; O’Mara et al., 2020).
Interestingly, comparisons between summer and winter seasons
in adult humans following mild cold exposure (15◦C) for 3 h,
shows an increase in non-shivering thermogenesis and resting
metabolic rate by 7% in summer and 11.5% in winter (van Ooijen
et al., 2004). While increasing non-shivering thermogenesis does
not exactly mean increasing BAT thermogenesis, it is certainly a
component. The higher metabolic response in winter compared
with summer indicates cold acclimatization, that is, adaption of
non-shivering thermogenesis over time. This suggests that acute
studies on BAT may not be sensitive enough to detect a maximal
BAT response as environmental conditions may impact on
the total measured energy consumption. Studies investigating a
thermogenic response following chronic exposure to a treatment
may yield compounded results over time.

Clear evidence of the mechanism for BAT activation in
humans remains to be determined. Increases in the thermogenic
capacity of humans and rodents can occur in response to repeated
or long term exposure to cold stimuli or pharmacological
activation with β3-adrenergic receptor agonists in vivo (Cousin
et al., 1992; Yoneshiro et al., 2013; Cypess et al., 2015; Hanssen
et al., 2016; Finlin et al., 2018; O’Mara et al., 2020). Part of the
increased thermogenic capacity is due to the browning of WAT
(Contreras et al., 2016). Therefore, prolonging the activation of
BAT can increase BAT mass (Cannon and Nedergaard, 2004),
resulting from proliferation and hypertrophy of beige adipocytes
which trigger browning of WAT (Wankhade et al., 2016).

Obesity results in increased storage of triglycerides in both
skeletal muscle cells (Goodpaster et al., 2000) and brown
adipocytes (Shimizu et al., 2014). The increased storage of
triglycerides has negative effects on lipolysis and inhibits glucose
metabolism, leading to reduced muscle (and BAT) glucose
utilization (Boden et al., 2001; Boden, 2003, 2006). Activation
of BAT utilizes free fatty acids as a substrate (Penicaud
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et al., 2000), thus increasing fat catabolism. Prolonged BAT
activation in humans improves insulin sensitivity (Finlin et al.,
2018), glucose metabolism and insulin secretion (O’Mara et al.,
2020). Increases in circulating plasma free fatty acids results
in impaired insulin secretion (Kashyap et al., 2003), and
insulin resistance (Boden et al., 2001; Boden, 2006), thereby
increasing blood glucose levels. Therefore, activation of BAT
and beige adipocytes have the potential to address the lipid and
glucose imbalance associated with metabolic disorders in humans
such as type 2 diabetes mellitus with significant implications
for health care.

THE PRIMARY β-ADRENORECEPTOR
INVOLVED IN HUMAN BAT ACTIVATION
(β1, β2, OR β3)

Sympathetic nervous system activity, via β-adrenergic receptors
is a significant regulator of BAT thermogenesis (Cannon and
Nedergaard, 2004). The primary β-adrenoreceptor involved in
human BAT activation remains contentious. In rodents, BAT
is primarily induced through β3-adrenoreceptor stimulation
(Bachman et al., 2002) although β1-adrenoceptors can provide
a functionally compensatory mechanism in β3-adrenoceptor
knockout mice (Chernogubova et al., 2005). β3-adrenoceptors
were also thought to be the primary adrenoceptor of human
brown adipocytes (Cypess et al., 2015). In vivo treatment with
the β3-agonist mirabegron [approved for human use in the
treatment of overactive bladder (Khullar et al., 2013)] at a
dose of 200 mg, four times the recommend therapeutic dose,
increases whole body energy expenditure and BAT thermogenesis
as detected by [18F] fluorodeoxyglucose (18 FDG, glucose PET
analog) uptake (Cypess et al., 2015; Baskin et al., 2018; O’Mara
et al., 2020). However, these doses are accompanied by significant
increases in heart rate and mean arterial pressure (Cypess
et al., 2015; Baskin et al., 2018; Finlin et al., 2018; O’Mara
et al., 2020), possibly implying that at such doses mirabegron
is not selective to β3-adrenoceptors. Mirabegron has 446 times
higher affinity for β3 than β1 or β2-adrenoceptor subtype
(Takasu et al., 2007).

Since the β3-adrenoreceptor is highly expressed in few
organs, such as the urinary bladder, gall bladder, and BAT
and, significantly, is absent from blood vessels, specifically

targeting the β3-adrenoreceptor may be an attractive option for
therapeutically augmenting non-shivering thermogenesis, as it
would be expected that there may be limited adverse effects
(Schena and Caplan, 2019). Evidence for a physiological effect of
β3-adrenergic receptor activity on the human heart is still being
debated (Berkowitz et al., 1995; Gauthier et al., 1996, 1999; Schena
and Caplan, 2019). β3 adrenergic receptors decrease the force of
contraction of the ventricles (Tavernier et al., 2003) and promote
release of nitric oxide (Calvert et al., 2011), which in turn may
have positive impact on cardiac health.

Other β3-adrenoceptor agonists that show effects in rodents,
have limited effects when tested on humans (Weyer et al., 2008).
Various β3-adrenoreceptor agonists, such as L-796568 (Larsen
et al., 2002), ZD7114 and ZD2079 (Buemann et al., 2000),
Ro 40-2148 (Jequier et al., 1992), and BRL 26830 (Connacher
et al., 1988, 1992) have been used in clinical trials to test
for efficacy to induce weight loss, but have produced limited
effects. Furthermore, unforeseen effects such as tremor, and
tachycardia were observed (Connacher et al., 1990), suggestive
of potential β1- and β2-adrenoceptor co-activation. The β3-
adrenoceptor is expressed in both white and brown adipocytes
in both rodents and humans (Chamberlain et al., 1999; Schena
and Caplan, 2019), however in humans β3-adrenoceptor mRNA
levels are much lower (Schena and Caplan, 2019; Blondin et al.,
2020). While in vitro analysis of brown adipocytes reveals
that β1-adrenoreceptors are the predominant adrenoreceptor in
both an immortalized cell line and human BAT biopsies (Riis-
Vestergaard et al., 2020). Furthermore, immunohistochemical
analysis identifies β3-adrenoceptors in intact human adipocytes
and ventricular myocardium, consistent with evidence that β3-
adrenoceptors can mediate lipolysis in human white adipocytes
(De Matteis et al., 2002), and a negative inotropic effect
within the ventricular myocardium (Gauthier et al., 2000).
Thus, in contrast to rodent BAT the adrenergic receptors
involved in humans are still being debated. These differences
between species may be due to multiple factors, such as
differences in the ligand-binding pocket in the β3-adrenoceptor,
expression patterns of β3-adrenoceptor or cross-reactivity with
the β1-adrenoceptor causing cardiovascular adverse effects in
humans, or bioavailability (Arch, 2011; Dehvari et al., 2018;
Loh et al., 2019).

In humans, BAT activation can be inhibited with treatment
of the β-adrenergic antagonist propranolol (80 mg), at doses

TABLE 2 | Brown adipose tissue (BAT) oxidative metabolism and contribution to total body energy expenditure.

Room temperature (22◦C) Mild cold exposure (15–18◦C)

Oxidative metabolism per g of tissue 0.007 ml/g/min 0.012 ml/g/min

Lower BAT mass 3.3 ml/min 5.6 ml/min

Higher BAT mass 15.3 ml/min 26.8 ml/min

Energy Expenditure at 4.8 kcal/L of O2 consumed Room temperature (22◦C) Mild cold exposure (15–18◦C)

Lower BAT mass 0.0158 kcal/min 22.7 kcal/day 1% REE 0.027 kcal/min 38.9 kcal/day 2% REE

Higher BAT mass 0.073 kcal/min 105.1 kcal/day 6% REE 0.125 kcal/min 180 kcal/day 10% REE

Resting energy expenditure (REE) assumes thermoneutrality which means zero (0) BAT activity. Calculations assume an energy expenditure of 4.8 kcal per L of oxygen
consumed (Leonard, 2010) and an adipose tissue density of 0.925 g/mL (Martin et al., 1994). Values are derived from the literature for BAT oxygen consumptions (u Din
et al., 2016), BAT mass range (Leitner et al., 2017), and Resting Energy Expenditure (REE = 1.2 kcal/min = 1728 kcal/day) is based on a 70 kg male (Brooks et al., 2005).
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typically used to inhibit β1-adrenoceptors (Soderlund et al.,
2007). Propranolol is a significantly weaker antagonist of β3-
than β1- or β2-adrenoceptors (Baker, 2005). The implication
of this, is that human BAT thermogenesis may be mediated
through β1- or β2-adrenoceptors, even though β3-adrenoceptors
are present. However, whether the doses of propranolol used were
high enough to block not only β1- but also β3-adrenoceptors or
if human BAT is stimulated mainly via β1-adrenoceptors, is not
clarified in this study (Soderlund et al., 2007). Propranolol has
higher selectivity for β2- rather than β1-adrenoceptors (Baker,
2005), raising the possibility that it is the β2- not β1-adrenoceptor
largely involved in this response. These questions can largely be
addressed, as there are specific β1-adrenoceptor antagonists, such
as CGP 20712A, which has∼1,000–10,000-fold selectivity for the
β1-adrenoceptor (pKB, ∼8.4–9.5) relative to the β2- (pKB ∼5.1)
and β3-adrenoceptors (pKB ∼4.2–4.7) (Seifert, 2011).

In vitro analysis of brown adipocytes shows that UCP1
mRNA expression is raised 6 to 12 fold by dobutamine, a β1-
adrenoceptor agonist, and eight fold by isoproterenol (a non-
selective β-adrenoceptor agonist), whereas neither procaterol
(β2-adrenoceptor agonist), CL314.432, or mirabegron (β3-
adrenoceptor agonists) affected UCP1 (Riis-Vestergaard et al.,
2020). Isoproterenol induced UCP1 mRNA expression is
attenuated by 62.5%, whereas isoproterenol induced UCP1
mRNA levels were unaffected by siRNA silencing the β3-
adrenoceptor (Riis-Vestergaard et al., 2020). Together these
results suggest that adrenergic stimulation of UCP1 may mainly
be mediated through β1-adrenoreceptors (Riis-Vestergaard et al.,
2020), however, the role of β2-adrenoceptor was not assessed and
requires clarification.

Formoterol is a highly subtype selective β2-adrenoceptor
agonist with 646 times higher affinity for human β2 over β3,
and 331 times higher affinity for β2 over β1-adrenoceptor
(Baker, 2010). Brown adipocyte oxygen consumption was
increased significantly by formoterol and knock down of the
β2-adrenergic receptor impaired thermogenesis (Blondin et al.,
2020). Formoterol promoted BAT thermogenesis in vitro, that
could not be achieved using therapeutic doses of the β3
agonist mirabegron (50 mg), but was at 200 mg (Blondin
et al., 2020). Increases in energy expenditure, fatty acid
oxidation stimulation and thermogenesis in response to oral
administration of formoterol (160 µg) (Lee et al., 2013a),
are similar to what is observed with mirabegron (200 mg)
(Blondin et al., 2020). However, the source of thermogenesis
was not determined following administration of formoterol.
Although, oral administration of formoterol increases energy
expenditure by 13% and fat utilization by 23%, without inducing
tachycardia, six out of eight participants reported palpitation,
tremor, two lost appetite, and one experienced insomnia
(Lee et al., 2013a).

While the findings from Blondin et al. (2020) provide evidence
for β2-adrenergic stimulation of brown adipocytes in vitro, there
is still a role for the other adrenoceptors. Chronic mirabegron
[100 mg being the dose for maximal efficacy (Chapple et al.,
2013)], treatment for 4 weeks increased BAT activity in healthy
non-obese females (O’Mara et al., 2020). The initial dose of
mirabegron on day 1 increased participants resting energy

expenditure by 10.7%; interestingly the baseline resting energy
expenditure on day 28 was 5.8% higher than the baseline resting
energy expenditure prior to drug exposure (O’Mara et al., 2020).
However, participants in this study served as their own control
and showed acute increases in heart rate (6 beats per minute) and
systolic blood pressure (8 mmHg) (O’Mara et al., 2020). Though,
it should be clearly stated that these acute cardiovascular effects
are not apparent following chronic (28 day) treatment of the
drug (O’Mara et al., 2020). Similarly increases in systolic blood
pressure of 10 mmHg and heart rate of 11 beats per minute,
were observed following acute administration of mirabegron
(200 mg) (Blondin et al., 2020). Although these increases in
systolic blood pressure and heart rate are not seemingly large, a
10 mmHg increase in systolic blood pressure to a hypertensive
patient may in fact be substantial and will likely reduce the
use of mirabegron (100 mg) clinically in obese patients. As
such, perhaps a future experiment administering mirabegron to
patients on β1- and β2-adrenoceptor antagonists may ameliorate
the previously reported cardiovascular effects. There is also
potential for a more selective β3-agonist to improve these
apparent adverse cardiovascular effects as mirabegron exerts a
cardio-stimulant and cardio-depressant effect which is unrelated
to β3-adrenoceptor activation (Mo et al., 2017). Additionally,
a combination therapy of a β3-agonist with stimulatory, but
non-anxiogenic doses of caffeine remains a possibility.

Nonetheless, it is possible human BAT express all three
β-adrenoceptors subtypes or there is a bias in how a β-
adrenoceptor behaves that influences its response. Surprisingly,
there has been little work undertaken investigating the primary β-
adrenoreceptor in human BAT. This is potentially due to a limited
access of BAT biopsy material for both primary cell cultures
and explant cultures (Lee et al., 2016). Further investigations
using different β-adrenoceptor agonists in vivo or a combination
of agonists and antagonists are needed to understand receptor
composition of β-adrenoceptors in human BAT. There is much to
be learned regarding pharmacological BAT activating agents that
mimic the effects of cold exposure in humans, as whole body and
BAT thermogenesis can both increase in response to cold stimuli,
while heart rate decreases significantly (Cypess et al., 2012). In
addition, increases in BAT glucose uptake and whole-body energy
expenditure can occur independently of direct stimulation of
BAT thermogenesis (Blondin et al., 2017).

SYMPATHETIC CONTROL OF BAT

The regulation of sympathetic activity provides a complex
homeostatic mechanism that precisely regulates the functional
crosstalk of organs involved in balancing energy expenditure
and caloric intake (Villarroya and Vidal-Puig, 2013).
In hamsters, sympathetic nerve activity to WAT drives
lipolysis, this provides free fatty acids for sympathetically
mediated increases in BAT thermogenesis (Brito et al., 2008),
suggesting that increasing BAT activity will have direct
lipolytic consequences.

The neural mechanisms involved in the thermoregulatory
control of BAT are well understood in rodents (Morrison, 2016).
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There is circumstantial evidence that human BAT is under
sympathetic control, as human brown adipocytes express
adrenoreceptors (Virtanen et al., 2009; Cypess et al., 2015;
Blondin et al., 2020), certain adrenergic agonists have led to BAT
thermogenesis (Kim et al., 2011; Cypess et al., 2015) and recent
evidence of a nerve supply to BAT-like tissue in humans (Sievers
et al., 2020). However, there is a lack of understanding of the
physiological signals that drive sympathetic nerve activity to BAT
in humans. Evidence suggests that mild environmental cooling
(14–19◦C) (Cypess et al., 2012; Chen et al., 2013) is adequate to
activate BAT thermogenesis.

Based on the limited data available from neuroimaging studies
the neural circuit underlying thermoregulation in humans, seems
to involve the cerebral cortex and hypothalamus (Egan et al.,
2005). Additionally, human rostral medullary raphé neurons
are selectively activated in response to a thermoregulatory
challenge and point to the location of thermoregulatory
neurons similar to those of the raphé pallidus nucleus in
rodents (McAllen et al., 2006). A human cadaveric study has
also identified a nerve branch to supraclavicular tissue with
a similar morphology to BAT, histological analysis of the
tissue shows tyrosine hydroxylase immunoreactive structures,
which likely represent sympathetic axons (Sievers et al.,
2020). These points, taken together, suggest that certain
structures that are involved in rodent neural circuitry underlying
thermoregulation are also involved in the human circuitry.
However, additional research is needed to draw comparisons
between the two.

Orexins (hypocretins) are neuropeptides that are synthesized
in specific neurons located in the lateral hypothalamus, and
perifornical lateral hypothalamus. Activation of the lateral
hypothalamic neurons significantly increases BAT sympathetic
nerve activity in rodents (Cerri and Morrison, 2005). Orexinergic
neurons in the perifornical lateral hypothalamus project to
the rostral raphe’ pallidus. This increases the excitability
of BAT sympathetic premotor neurons. Orexins have a
recognized role in the management of body temperature
and controlling heart rate, energy expenditure and BAT
thermogenesis (Cao and Morrison, 2003; Sellayah et al.,
2011; Girault et al., 2012; Messina et al., 2014). Additionally,
direct injection of orexin into the rostral raphe’ pallidus
increases BAT sympathetic nerve activity in rats (Madden
et al., 2012). In rat studies, low (but stimulatory) doses
of caffeine have previously activated orexinergic neurons in

the dorsomedial hypothalamus and the perifornical areas
of the lateral hypothalamus (Murphy et al., 2003; Sakurai,
2007), suggesting a possible central mechanism for caffeine
evoked thermogenesis.

Recently the model for sympathetic control of BAT in
rodents proposed by Morrison (2016) has been challenged
(Saper and Machado, 2020). A series of studies in mice have
demonstrated that pre-optic neurons that trigger cooling when
activated, express a number of genetic markers, involving
several that encode a protein fragment named pyroglutamylated
RF-amide peptide (Wang et al., 2019; Hrvatin et al., 2020;
Takahashi et al., 2020). Pyroglutamylated RF-amide peptide is
a hypothalamic neuropeptide also expressed in median pre-
optic neurons (Takahashi et al., 2020). The suggestion is that
key neurons involved in causing hypothermia are not located
in the medial pre-optic area, but are potentially found in the
median pre-optic area and project directly to the dorsomedial
hypothalamus. However, the data from the Morrison model is
primarily from rat studies (Morrison et al., 2014). It is entirely
possible that the neural organization in mice is different to
that in rats. For example, in rats cutaneous vasoconstriction is
not dependent on the dorsomedial hypothalamus in response
to cold stimuli or activation of the febrile response (Rathner
et al., 2008). A finding that is ignored by the proposed new
model and has not been replicated in mice. A recent study
demonstrates that inhibition of the median pre-optic area
prevents cold evoked BAT thermogenesis in rats suggesting
that a population of neurons within the median pre-optic
area are required to be activated to drive BAT thermogenesis
(da Conceição et al., 2020). This identifies the median pre-
optic area as a primary source of glutamatergic excitation
of BAT sympatho-excitatory neurons within the dorsomedial
hypothalamus (da Conceição et al., 2020). It is yet to be
determined whether these hypothalamic projecting neurons
within the median pre-optic area excite thermogenesis promoting
dorsomedial hypothalamic neurons during prostaglandin E2 or
caffeine evoked BAT thermogenesis. Caffeine may act on neurons
within the median pre-optic area, as this nuclei involves both
sleep-wake neurons (Vanini et al., 2020) and energy metabolism
neurons (da Conceição et al., 2020).

The protein fragment pyroglutamylated RF-amide is known
to activate the G protein-coupled receptor, GPR103, which
mediates orexigenic effects in rodents (Chartrel et al., 2003),
and has previously been implicated in food intake, sympathetic

TABLE 3 | Weight loss agents via non-selective activation of the sympathetic nervous system.

Agents Mechanism of action Side effects

Fenfluramine/Phenteramine
(FenPhen)

Inhibit serotonin reuptake Promote serotonin release
Sympathomimetic agonist

Valvular disease (Connolly et al., 1997; Teramae et al., 2000).
Primary pulmonary hypertension (Abenhaim et al., 1996).

Sibutramine Norepinephrine and serotonin reuptake inhibitor Mania/panic attacks/psychosis (Perrio et al., 2007). Myocardial
infarction (James et al., 2010).

Ma Huang/Ephedra Sympathomimetic agonist Myocardial infarction (Wiener et al., 1990). Cardiac arrhythmias;
sudden death (Haller and Benowitz, 2000; Samenuk et al., 2002).
Cerebrovascular accident (Bruno et al., 1993).

Phenylpropanolamine Sympathomimetic agonist Haemorrhagic/ischemic strokes (Kernan et al., 2000). Myocardial
infarction (Leo et al., 1996). Hypertensive crisis (Lake et al., 1990).
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regulation and anxiety (Takayasu et al., 2006; Okamoto et al.,
2016). Central administration of pyroglutamylated RF-amide
stimulates high fat food intake in rodents (Primeaux et al.,
2008). In addition to stimulating food intake, pyroglutamylated
RF-amide reduces thermogenesis, and increases body weight,
fat mass and adipogenesis (Moriya et al., 2006; Mulumba
et al., 2010). Given the role of pyroglutamylated RF- amide
in orexin signaling and anxiety, there remains a possibility
that caffeine may influence the effect of this protein. The
proposed new model of thermoregulation, involving a
population of excitatory neurons in the median pre-optic
area expressing pyroglutamylated RF-amide, that connect
directly to the dorsomedial hypothalamus (Hrvatin et al.,
2020; Takahashi et al., 2020), is largely based on genetic
molecular observations in knockout mouse models. Although
knockout models can create odd effects as systems balance
to cope with a lack of gene product (Teng et al., 2013), these
observations are further validated using pharmacological and
electrophysiological procedures on rats (da Conceição et al.,
2020). Together, these findings provide new insights into the
complexity of sympathetic thermoregulatory circuit. Gaining
a better understanding of this central circuit is particularly
important in developing new therapeutic approaches for
augmenting BAT thermogenic energy expenditure, to improve
energy homeostasis.

Interestingly, control of BAT in rats appears to follow a neural
pathway which is exclusive and distinct from that which controls
the cardiovascular system (Morrison, 1999). Additionally, there
is evidence that indicates the premotor neurons in the central
nervous system that regulate BAT are in fact specific and are
separate from those regulating cutaneous vasomotor activity
(Rathner et al., 2008). Studies that have observed increased
interscapular BAT activity in rodents through increased nerve
activity have demonstrated that this increase is accompanied
by increases in heart rate and mean arterial pressure (Cerri
and Morrison, 2005; Tupone et al., 2011). However, central,
and systemic administration of stimulatory, but non-anxiogenic
doses of caffeine increases interscapular BAT temperature in
rats, without increasing core temperature, or increasing heart
rate and mean arterial pressure (Van Schaik et al., 2021). These
findings are further strengthened by increased neuronal activity,
as measured by c-Fos-immunoreactivity within subregions of
the hypothalamic area, previously implicated in regulating BAT
thermogenesis. These include the perifornical area of the lateral
hypothalamus, the lateral hypothalamus, and the dorsomedial
hypothalamus following doses of caffeine administered either
systemically or centrally (Van Schaik et al., 2021). These are
areas known to that contain orexinergic neurons (Murphy
et al., 2003; Berthoud et al., 2005; Cerri and Morrison, 2005;
Tupone et al., 2011). The direct effects of caffeine in each
of these brain regions remain unclear, and whether doses of
caffeine comparable to the doses used in this study can activate
BAT thermogenesis, without a cardio-dynamic effect in humans
is unclear. However, it is clear that caffeine, at stimulatory
doses act via the central nervous system to increase BAT
thermogenesis in rodents.

This suggests that non-selective sympathetic activators
may be beneficial as weight control agents. However, there
remains a certain amount of risk with global sympathetic
activation. Historically, therapeutic drugs that have been
successful in creating negative energy balance weight loss in
humans via non-selective activation of the sympathetic nervous
system have been associated with cardiovascular side effects
(Table 3). These adverse effects have prevented their use
clinically (Yen and Ewald, 2012). For future sympathetic based
strategies to increase energy expenditure through activation
of BAT to be clinically successful, they will need to firstly
enhance the sensitivity of BAT to the sympathetic nervous
system or selectively stimulate BAT sympathetic nerve activity.
These strategies may ameliorate the negative cardiovascular
effects of non-selective sympathetic activation, while offering
new ways for specifically promoting energy expenditure and
decreasing the metabolic compensatory responses to chronic
caloric restriction.

CONCLUSION

This review identifies significant differences in the development
and function of WAT, BAT, and beige adipocytes. While BAT
activation increases energy expenditure and improved energy
homeostasis may assist in controlling obesity, the negative
implications of non-selective activation of the sympathetic
nervous system on the cardiovascular system are also clear.
The neuro-circuitry of thermoregulation and knowledge of the
neurochemical and functional properties of BAT activation are
quite well understood in rodents. However, more research is
needed into what primary β-adrenoreceptor is involved in human
BAT activation, as this remains a contentious topic. This will
assist in better understanding the function of BAT in humans
and aid in translating findings from animal studies into human
models. Whether caffeine evoked BAT thermogenesis in humans
is a result of systemic or central activation remains unclear,
however it is clear that caffeine evoked BAT thermogenesis in
rodents is a result of central activation. Caffeine potentially
exerts its effects on human BAT via acting on the neural
pathway underlying metabolism. In particular, through activating
orexinergic neurons in the perifornical lateral hypothalamus
and lateral hypothalamus, and the antagonism of adenosine
receptors more broadly.
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