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The polyglutamine (polyQ) diseases are a group of inherited neurodegenerative diseases
caused by the abnormal expansion of a CAG trinucleotide repeat that are translated
into an expanded polyQ stretch in the disease-causative proteins. The expanded polyQ
stretch itself plays a critical disease-causative role in the pathomechanisms underlying
polyQ diseases. Notably, the expanded polyQ stretch undergoes a conformational
transition from the native monomer into the β-sheet-rich monomer, followed by the
formation of soluble oligomers and then insoluble aggregates with amyloid fibrillar
structures. The intermediate soluble species including the β-sheet-rich monomer and
oligomers exhibit substantial neurotoxicity. Therefore, protein conformation stabilization
and aggregation inhibition that target the upstream of the insoluble aggregate formation
would be a promising approach toward the development of disease-modifying therapies
for polyQ diseases. PolyQ aggregation inhibitors of different chemical categories,
such as intrabodies, peptides, and small chemical compounds, have been identified
through intensive screening methods. Among them, recent advances in the brain
delivery methods of several peptides and the screening of small chemical compounds
have brought them closer to clinical utility. Notably, the recent discovery of arginine
as a potent conformation stabilizer and aggregation inhibitor of polyQ proteins both
in vitro and in vivo have paved way to the clinical trial for the patients with polyQ
diseases. Meanwhile, expression reduction of expanded polyQ proteins per se would
be another promising approach toward disease modification of polyQ diseases. Gene
silencing, especially by antisense oligonucleotides (ASOs), have succeeded in reducing
the expression of polyQ proteins in the animal models of various polyQ diseases by
targeting the aberrant mRNA with expanded CAG repeats. Of note, some of these
ASOs have recently been translated into clinical trials. Here we overview and discuss
these recent advances toward the development of disease modifying therapies for
polyQ diseases. We envision that combination therapies using aggregation inhibitors
and gene silencing would meet the needs of the patients with polyQ diseases and their
caregivers in the near future to delay or prevent the onset and progression of these
currently intractable diseases.

Keywords: polyglutamine diseases, neurodegenerative diseases, aggregation inhibitor, protein misfolding,
disease-modifying therapy, arginine
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INTRODUCTION

The polyglutamine (polyQ) diseases are a group of inherited
neurodegenerative diseases that are caused by the abnormal
expansion of a CAG triplet repeat (above 35–40 repeats) in
the coding region within the causative gene of each disease.
This expanded CAG repeat is translated into an expanded
polyQ stretch in the resultant protein product (Orr and Zoghbi,
2007). At least nine diseases including spinocerebellar ataxia
(SCA) types 1, 2, 3, 6, 7, and 17, Huntington’s disease (HD),
spinal and bulbar muscular atrophy (SBMA), and dentatorubral
pallidoluysian atrophy (DRPLA) are known so far to belong to
this group of diseases (Table 1; Stoyas and La Spada, 2018).

The pathological hallmarks of polyQ diseases are the inclusion
bodies that mainly consist of proteins with an expanded polyQ
stretch and the progressive neuronal cell loss in the regions
within the brains or spinal cords that are specific to each disease
(Takeuchi and Nagai, 2017). Patients suffer from a variety of
motor, cognitive, and psychiatric impairments that depends on
the regions affected in the nervous system in each disease.
Disease-modifying treatments that delay or halt the onset or
progression of polyQ diseases remain an unmet clinical need
(Nagai and Minakawa, 2015).

The causative genes of the nine polyQ diseases have neither
sequence homology nor any functional similarities, except for the
expanded CAG repeat that encodes an expanded polyQ stretch
(Paulson, 2018). A wide variety of the cellular and molecular
pathogenic events that are induced by these proteins with
expanded polyQ stretch are largely shared by the nine different
polyQ diseases (Stoyas and La Spada, 2018). Various studies using
invertebrate and vertebrate animal models of polyQ diseases have
shown that expanded polyQ stretch itself is sufficient to induce
neuronal degeneration and leads to neurological impairment
in vivo (Burright et al., 1995; Ikeda et al., 1996; Warrick et al.,
1998; Faber et al., 1999). These findings indicate the critical
disease-causative role of the expanded polyQ stretch in the
pathogenesis of polyQ diseases.

Various in vitro structural studies including ours have shown
that the expanded polyQ stretch undergoes a conformational
transition from the native monomer into the β-sheet-rich
monomer, followed by the formation of soluble oligomers
and then insoluble aggregates with amyloid fibrillar structures
(Figure 1; Chen et al., 2001, 2002; Masino et al., 2002; Poirier
et al., 2002; Khare et al., 2005; Nagai et al., 2007; Nucifora
et al., 2012). The presence of these intermediate soluble species
preceding the formation of insoluble aggregates was confirmed
in vivo using cultured cells (Takahashi et al., 2007, 2008; Olshina
et al., 2010) and the brains of the HD (Legleiter et al., 2010;
Sathasivam et al., 2010) and SBMA (Li et al., 2007) mice models.
The presence of polyQ proteins with oligomer-like structure was
also confirmed in the brains of patients with HD (Legleiter et al.,
2010). Importantly, these intermediate soluble species exhibit
significant neuronal toxicity (Kayed et al., 2003; Miller et al.,
2011). Of note, we demonstrated that the monomeric conformer
of the expanded polyQ protein with β-sheet-rich structure, as
well as oligomers, exhibit cellular toxicity (Figure 1; Nagai et al.,
2007). In contrast, α-helical coiled-coil structure also has been

demonstrated to contribute, at least in part, to the toxicity of
polyQ proteins (Fiumara et al., 2010; Kwon et al., 2018). Of
note, Fiumara et al. (2010) demonstrated that polyQ peptides
themselves form α-helical coiled-coil structure and assemble
into oligomers, and those mutations that enhance coiled-coil
propensity of polyQ proteins lead to increased aggregation and
toxicity in cultured cells. The α-helical coiled-coil structure
of polyQ proteins were also prominently involved in protein-
protein interaction (Fiumara et al., 2010). In line with these
findings, quantitative proteome of the insoluble fraction in
HD mice model revealed that proteins sequestered with the
polyQ aggregates were enriched with those containing coiled-
coil structures (Hosp et al., 2017). In either case, formation
of polyQ-positive aggregates or inclusion bodies per se does
not correlate with neuronal cell death, and even decreases the
risk of neuronal cell death, and hence may be a protective
response of the cells against the intermediate soluble but toxic
polyQ protein species (Klement et al., 1998; Saudou et al.,
1998; Kuemmerle et al., 1999; Arrasate et al., 2004; Kim et al.,
2016). Taken altogether, these findings indicate the significance
of protein conformation stabilization and aggregation inhibition
of the intermediate soluble species of expanded polyQ proteins
toward the development of disease-modifying therapies for
polyQ diseases (Figure 1; Takeuchi and Nagai, 2017).

DISEASE-MODIFYING THERAPIES FOR
POLYGLUTAMINE DISEASES VIA
TARGETING CONFORMATION
TRANSITION AND AGGREGATION OF
EXPANDED POLYGLUTAMINE PROTEINS

To achieve disease modification for polyQ diseases via
conformation stabilization and aggregation inhibition of polyQ
proteins, molecules of various categories have been screened
using different approaches. Initial studies mainly searched for
molecules such as intrabodies or peptides that directly bind to
the expanded polyQ stretch. Such molecules are expected to
exhibit anti-aggregation effect through alternation of the protein
folding process because the protein folding kinetics are sensitive
to the residues surrounding the protein itself (Robertson et al.,
2011; Wetzel, 2012). In addition, such molecules may exhibit
therapeutic effects by affecting the turnover or subcellular
localization of the expanded polyQ proteins (Messer and Butler,
2020). On the other hand, various molecules including small
chemical compounds have been screened using in vitro assays
that directly test their anti-aggregation property. Molecules
that were identified through such screenings are expected to
exhibit therapeutic effect through direct or indirect molecular
interaction with expanded polyQ proteins as discussed below.

Intrabodies
Intrabody is an antibody fragment that is bioactive inside cells
and binds specifically to intracellular antigens (Messer and Butler,
2020). Since the identification of the first single-chain Fv (scFv)
antibody, scFvC4, that specifically binds to the N-terminal region
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TABLE 1 | The polyglutamine diseases.

Disease Gene CAG repeat length

Normal Disease

Spinal and bulbar
muscular atrophy (SBMA)

Androgen receptor
(AR)

9–36 38–65

Huntington’s disease (HD) Huntingtin (HTT) 6–35 36–180

Spinocerebeller ataxia
type 1 (SCA1)

Ataxin 1 (ATXN1) 6–39 39–83

Spinocerebeller ataxia
type 2 (SCA2)

Ataxin 2 (ATXN2) 14–32 32–200

Spinocerebeller ataxia
type 3 (SCA3)

Ataxin 3 (ATXN3) 12–41 55–84

Spinocerebeller ataxia
type 6 (SCA6)

Calcium voltage-gated
channel subunit
alpha1 A (CACNA1A)

4–19 20–33

Spinocerebeller ataxia
type 7 (SCA7)

Ataxin 7 (ATXN7) 4–35 37–306

Spinocerebeller ataxia
type 17 (SCA17)

TATA-box binding
protein (TBP)

25–44 46–63

Dentatorubral
pallidoluysian atrophy
(DRPLA)

Atrophin 1 (ATN1) 6–36 49–88

of HTT (Lecerf et al., 2001) and suppresses the formation of
mutant HTT (mHTT)-positive aggregates in vivo (Wolfgang
et al., 2005; Snyder-Keller et al., 2010), several intrabodies
that inhibits mHTT aggregation and ameliorates the behavioral
phenotypes of various HD animal models have been identified
(Wang et al., 2008; Southwell et al., 2009, 2011; Amaro and
Henderson, 2016).

The advantage of intrabodies for the treatment of HD is their
high binding affinity to HTT protein, which could alter the
misfolding process of mHTT protein as well as affect the turnover
or subcellular localization of mHTT protein. On the contrary,
when mHTT protein becomes fibrillar and insoluble, it can no
longer be corrected by the intrabodies that have been developed
so far (Messer and Butler, 2020). Another concern is that neither
of the currently available intrabodies for HD do not exhibit long-
term effect. In addition, the administration route of intrabodies
to the brain is currently limited to gene delivery via viral vectors
due to the large molecular size of intrabodies. Overcoming these
limitations would bring intrabodies closer to clinical utility.

Peptides and Small Chemical
Compounds
As discussed above, one of the critical issues to develop
disease-modifying treatments for polyQ diseases is to enable
repetitive and long-term delivery of the drugs to the brain.
To overcome this issue, extensive screenings for low molecular
weight compounds such as peptides and small chemical
compounds that inhibit the aggregation of expanded polyQ
proteins have been performed. So far, various peptides and
small chemical compounds have been proven to exhibit anti-
aggregation propensity against expanded polyQ proteins through
direct or indirect molecular interaction with expanded polyQ
proteins. Among them, a number of peptides or small chemical

FIGURE 1 | Aggregation-process-specific therapeutic targets of the polyQ
diseases. Expanded CAG repeats in the disease-causative genes of polyQ
diseases produce disease-causing proteins with an expanded polyQ stretch.
Such proteins undergo a conformation transition from an α-helix-rich structure
into the β-sheet-rich structure at a monomeric state, followed by the formation
of soluble oligomers and then insoluble aggregates with amyloid fibrillar
structures, eventually leading to neurodegeneration. Conformation stabilizers
and aggregation inhibitors are strong candidate molecules for the
disease-modifying therapies for polyQ diseases. These therapeutic molecules
can be used in combination with antisense oligonucleotides (ASOs) that
reduces the expression of polyQ proteins.

compounds have been demonstrated to exhibit neuroprotective
effect in various in vivo models of polyQ diseases, as will be
discussed in the following sections. As an alternative approach,
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various peptides and chemical compounds that exert therapeutic
effects for polyQ disease models by activating the cellular
protective mechanisms against expanded polyQ proteins, such
as molecular chaperones, ubiquitin-proteasome system, and
autophagy, have also been developed. In addition, several
peptides and chemical compounds have also been developed
that inhibit the downstream events such as aberrant calcium
signaling or apoptosis evoked by expanded polyQ proteins
and lead to cellular dysfunction or cell death. Peptides and
chemical compounds targeting molecular processes other than
the aggregation of polyQ proteins are beyond the scope of this
article and have been recently reviewed elsewhere (Takeuchi et al.,
2014; Takeuchi and Nagai, 2017).

Peptides
Peptides that specifically bind to expanded polyQ proteins but
not to polyQ proteins with non-pathogenic length of polyQ
stretch have been screened as aggregation inhibitor candidates
of expanded polyQ proteins. Peptides that recognize and bind
to this specific conformation of expanded polyQ proteins were
expected to alter the kinetics of the protein misfolding and slow
down or prevent the aggregation process, as was the case for
intrabodies. This strategy was in accord with the identification of
anti-polyQ monoclonal antibody1C2 that preferentially binds to
polyQ proteins with longer polyQ stretch (Trottier et al., 1995),
which implies the length-dependent difference in the tertiary
structure of polyQ proteins.

We previously screened for peptides that selectively bind
to the expanded polyQ stretch using a combinatorial peptide
phage display libraries, and successfully identified several polyQ-
binding peptides including QBP1 (polyQ binding peptide 1;
SNWKWWPGIFD) (Nagai et al., 2000). QBP1 exhibited a
preferential high affinity for the expanded polyQ stretch with a
dissociation constant (Kd) of 5.7 µM (Okamoto et al., 2009).
QBP1 inhibits the toxic β-sheet conformation transition of
the polyQ protein monomer and its subsequent aggregation
in vitro (Nagai et al., 2007). Further studies on its structure–
activity relationship identified that the tryptophan-rich sequence
is indispensable for the anti-aggregation property of QBP1 (Ren
et al., 2001; Hamuro et al., 2007; Tomita et al., 2009) and that
the original 11 amino acid sequence of QBP1 can be shortened
to eight amino acids (WKWWPGIF) without losing its anti-
aggregation property against polyQ proteins. QBP1 expression
in cultured cells (Nagai et al., 2000, 2007; Takahashi et al., 2007,
2008) or in Drosophila models of polyQ diseases (Nagai et al.,
2003) significantly suppressed the formation of polyQ inclusions
and polyQ-induced cell death. We also conjugated QBP1 with
protein transduction domains (PTD-QBP1) to increase its
membrane permeability, and showed that intracellular delivery
of PTD-QBP1 successfully suppressed polyQ-induced premature
death in Drosophila by oral administration of PTD-QBP1 (Popiel
et al., 2007). Although we further examined the effect of PTD-
QBP1 on polyQ disease model mice, repeated intraperitoneal
injection of PTD-QBP1 modestly improved only the body weight
loss but not the motor phenotypes nor the inclusion formation
in the brains (Popiel et al., 2009), probably due to insufficient
delivery across the blood-brain barrier.

Recently, brain delivery methods of QBP1 were investigated.
Intranasal administration of QBP1 using a thermosensitive
gel with chitosan, an absorption enhancer for nasal delivery
(Illum et al., 2001), was demonstrated to significantly elevate
the concentration of QBP1 in rodents’ brains for up to 10-
fold compared with intravenous administration or intranasal
administration of water-dissolved QBP1 (Yang et al., 2018).
In another recent study, biodegradable poly-D,L-lactide-co-
glycolide (PLGA) nanoparticles encapsulating QBP1 was shown
to inhibit polyQ protein aggregation in cultured neuronal
cells and to suppress the motor dysfunction of Drosophila
model of polyQ disease (Joshi et al., 2019). Considering that
QBP1 was recently found to bind and exert anti-aggregation
property not only to polyQ proteins but also to glutamine-
rich regions of the pathogenic amyloidogenic proteins such
as TDP-43 (Mompeán et al., 2019), an aggregation-prone
protein involved in the pathomechanisms of amyotrophic lateral
sclerosis (ALS)/frontotemporal dementia (FTD), further studies
are strongly awaited to increase the bioavailability of QBP1 itself
or its derivatives or analogs.

Chen et al. (2011) also screened for potential polyQ
aggregation inhibitors by a combinatorial screening for a
library consisting of peptoids, a class of peptidomimetics
comprised of N-substituted glycine oligomers. Peptoids are
resistant to degradation by protease and more permeable to
cellular membranes compared with peptides (Simon et al., 1992).
Through a screening of 60,000 diverse peptoids, they identified
HQP09 as a specific ligand of expanded polyQ proteins (Chen
et al., 2011). HQP09 suppressed polyQ aggregation in vitro,
reduced polyQ-induced cell death in primary neuronal cultures,
and decreased polyQ inclusion bodies in polyQ disease model
mice by intracerebroventricular administration (Chen et al.,
2011). Intriguingly, HQP09 and QBP1 did not compete with
each other in binding expanded polyQ proteins, suggesting that
HQP09 and QBP1 recognize the expanded polyQ stretch in non-
overlapping sites or structures (Chen et al., 2011). They further
identified critical residues for HQP09 activity and generated
HQP09_9, a minimal derivative of HQP09, that maintains the
specificity in polyQ-binding property and polyQ aggregation
inhibition property in vitro, and neuroprotective effects in
primary neuronal cultures derived from polyQ disease model
mice (Chen et al., 2011). Although subcutaneous administration
of HQP09_9 did not exhibit therapeutic effect on polyQ disease
model mice, HQP09_9 would serve as a lead compound
to generate a novel polyQ aggregation inhibitor with better
bioavailability.

Besides these screening approaches, recent studies have
succeeded in designing aggregation inhibitor peptides with
bipartite structures that consist of a domain with the ability to
interact with aggregation-prone proteins and a domain with the
ability to prevent their aggregation. He et al. (2020) designed
a bipartite peptide, 8R10Q that harbors a polyQ attached to a
positively charged polyarginine. The polyQ sequence of 8R10Q
was expected to exhibit a specific and high affinity to the
polyQ stretch in mHtt protein through its self-aggregating
property, while the polyarginine sequence was expected to enable
8R10Q to penetrate cell membrane, increase solubility and
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prevent self-aggregation of 8R10Q, and prevent the mHtt/8R10Q
hybrid from self-aggregation. As expected, 8R10Q suppressed the
oligomer and inclusion formation of mHTT proteins in cultured
cells. In addition, intranasal administration of iodine-124-labeled
8R10Q resulted in delivery of 8RQ10 to the brains, suppression
of motor deficit, prolonged survival, and amelioration of mHTT
aggregation and neuronal death in HD mouse model.

Small Chemical Compounds
Although various intrabodies, peptides, or peptoids that suppress
the toxic conformation transition and aggregation of expanded
polyQ proteins have been identified as discussed above, they are
still of limited clinical use mainly due to poor drug delivery into
mammalian brains. Screening for small chemical compounds
that possess anti-aggregation property against expanded polyQ
proteins both in vitro and in vivo, especially in mammalians, have
therefore been intensively performed.

Since the first report by Wanker and colleagues (Heiser
et al., 2002), various groups including ours have performed
high-throughput screenings for polyQ aggregate inhibitors from
large-scale chemical compound libraries using in vitro systems
(Heiser et al., 2002; Tanaka et al., 2004; Ehrnhoefer et al., 2006) or
cellular systems (Pollitt et al., 2003; Zhang et al., 2005; Fuentealba
et al., 2012), although most of them have limitations for clinical
application due to their toxicity, poor BBB permeability, or
metabolic instability (Hockly et al., 2006; Frid et al., 2007). Several
compounds among them have successfully exerted therapeutic
effects in various in vivo models of polyQ diseases. For example,
(-)-epigallo-catechin-3-gallate (EGCG), a green tea polyphenol,
ameliorates neurodegeneration in a Drosophila model of HD
(Ehrnhoefer et al., 2006) and a Caenorhabditis elegans model of
SCA3 (Bonanomi et al., 2014). Trehalose, a disaccharide, delays
the onset of neurological symptoms in a mouse model of HD
(Tanaka et al., 2004). Y-27632, a Rho-activated protein kinase
(ROCK) inhibitor, suppresses neurodegeneration in a Drosophila
(Pollitt et al., 2003) and mouse model of HD (Li et al., 2009).
HA-1077, a clinically approved ROCK inhibitor, also suppresses
the polyQ-induced retinal degeneration when administered
intravitreally in HD mouse model (Li et al., 2013). C2-8, a
sulfobenzoic acid derivative, ameliorates neurodegeneration in a
Drosophilamodel of HD (Zhang et al., 2005), although its effect in
mice remains controversial despite its BBB permeability (Chopra
et al., 2007; Wang et al., 2013).

Some of the small chemical compounds that exert anti-
aggregation property on other disease-causing proteins of
neurodegenerative diseases, e.g., amyloid-β (Aβ), tau, prion,
and α-synuclein (α-Syn), also inhibits aggregation of polyQ
proteins in vivo. For example, N′-benzylidenebenzohydrazide
derivatives, an aggregation inhibitor of prion protein, suppresses
polyQ protein aggregation in a zebrafish model of HD (Schiffer
et al., 2007). Methylene blue, an aggregation inhibitor of tau,
also suppresses polyQ protein aggregation and neurological
phenotypes of the Drosophila and mouse models of HD (Sontag
et al., 2012). Curcumin, an aggregation inhibitor of Aβ, α-Syn,
and prion protein, inhibits polyQ aggregation in yeast model
(Verma et al., 2012) and knock-in mouse model (Hickey et al.,
2012) of HD, although it did not ameliorate the motor deficit

in the knock-in mouse model (Hickey et al., 2012). Intriguingly,
a recent study showed that lipid membranes are a key modifier
of the ability of small chemical compounds to inhibit polyQ
aggregation (Beasley et al., 2019). While the polyQ aggregation
inhibition property of curcumin was diminished under the
presence of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine or
total brain lipid extract vesicles, that of EGCG was not affected
(Beasley et al., 2019). This study suggests the importance of taking
into account the molecules surrounding the polyQ proteins in a
crowded cellular environment in addition to the aggregation of
polyQ protein per se.

Recently, we and others independently identified arginine as a
potent aggregation inhibitor of polyQ proteins (Minakawa et al.,
2020). Arginine belongs to a group of low molecular weight
molecules named chemical chaperones. Chemical chaperones
facilitate proper protein folding and suppress protein aggregation
by stabilizing proteins in their native conformation and
influencing the rate or fidelity of the protein-folding reaction
(Welch and Brown, 1996; Cortez and Sim, 2014). Trehalose
(Tanaka et al., 2004), proline (Ignatova and Gierasch, 2006), and
cyclohexanol (McLaurin et al., 2006) are chemical chaperones
that were previously shown to inhibit the aggregation of disease-
causing proteins including the polyQ proteins. Meanwhile,
arginine has been well known to exhibit non-specific anti-
aggregation effect and is commonly used as an additive to
prevent aggregation of various recombinant proteins expressed
in Escherichia coli (Arakawa and Tsumoto, 2003). In addition,
arginine has a high BBB permeability (Pardridge, 1983) and
an established safety profile in humans since it is in clinical
use for other human diseases such as urea cycle deficits and
mitochondrial myopathy, encephalopathy, lactic acid, and stroke
(MELAS) syndrome (Koga et al., 2002; Boenzi et al., 2012; Koenig
et al., 2016). Although there are reports of diarrhea with varying
incidence following oral administration of arginine especially at
single high-dose administration possibly due to arginine-induced
water and electrolyte secretion (Grimble, 2007), long-term oral
administration of relatively high-dose arginine (0.3–0.5 g/kg/day
orally in three divided doses after each meal for 2 years) is
reported to be well tolerable with no severe adverse effect related
with arginine (Koga et al., 2018).

We identified arginine as a potent polyQ aggregation inhibitor
by screening a library of representative chemical chaperones
using an in vitro polyQ aggregation assay (Minakawa et al., 2020).
Importantly, arginine suppresses the most upstream process of
polyQ protein aggregation, which is the toxic conformational
transition of polyQ proteins from an α-helix-rich monomer to
a toxic β-sheet-rich monomer, and also the downstream process
such as the oligomer formation, aggregation formation, and seed-
induced aggregation of polyQ proteins (Minakawa et al., 2020).
Oral administration of arginine suppresses motor deficit, polyQ
aggregation pathology, and neurodegeneration of multiple in vivo
invertebrate and vertebrate models of polyQ diseases including
two different mice models of SCA1 and SBMA (Minakawa
et al., 2020). Of note, arginine exerted therapeutic effect on
the motor deficit of SCA1 model mice even when administered
after symptom onset (Minakawa et al., 2020). Based on these
results and the established safety of arginine in humans, we have
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scheduled a clinical trial to evaluate the efficacy and safety of
long-term arginine administration in polyQ patients in Japan.

In a recent independent study, Singh et al. (2019) showed
that arginine and arginine ethyl ester (AEE) suppresses the
aggregation of HTT exon 1 with an expanded polyQ stretch
(mHTTex1) and rescues the motor deficit of the Drosophila HD
model. Arginine consists of a guanidino group in the N-terminus
and a glycine group in the C-terminus. They identified that the
guanidino group of arginine is necessary for its anti-aggregation
propensity against mHTTex1. Meanwhile, AEE and arginine
methyl ester showed stronger anti-aggregation propensity than
arginine (Singh et al., 2019). Arginine does not directly bind
to mHTTex1, but instead alters the hydrogen bonding network
(Singh et al., 2019). In contrast, AEE directly binds to mHTTex1
at the N-terminal domain in addition to altering the hydrogen
bonding network (Singh et al., 2019). Consistently, AEE exhibited
a higher anti-aggregation effect on mHTTex1, and a better rescue
of the motor deficit of Drosophila HD model compared with
arginine (Singh et al., 2019).

These recent two studies suggest that arginine is a promising
candidate molecule for the disease-modifying therapy of polyQ
diseases, although it should be noted that a slight but significant
elevation of plasma arginine level is reported in an animal
model of HD (Skene et al., 2017) and that it is not still
conclusive whether this elevation is protective or pathogenic for
HD. Meanwhile, the non-specific anti-aggregation property of
arginine would enable the use of arginine for the treatment of
neurodegenerative disease in common, since protein misfolding
is the common pathomechanism underlying neurodegenerative
diseases such as Alzheimer’s disease (AD) or Parkinson’s disease
(PD). Indeed, arginine suppresses the aggregation of Aβ or α-Syn
in vitro (Das et al., 2007; Ghosh et al., 2018), both of which
aggregate, exhibit neurotoxicity, and accumulate in the brains
of patients with AD or PD. Alternatively, arginine derivatives
with modification in the glycine group but not the guanidino
group would help increase the specificity and efficacy of arginine
as a polyQ aggregation inhibitor. Meanwhile, as we previously
discussed, formation of polyQ-positive aggregates may be a
protective response of the cells against the intermediate soluble
but toxic protein species. From this point of view, it should
be noted that the aforementioned aggregation inhibitors, not
limited to arginine and its derivatives, might have exhibited
neuroprotective effects through their ability to modulate the
toxicity of these proteins, e.g., by altering protein interaction
(Kim et al., 2016), in addition to their in vitro ability to modulate
the aggregation process.

DISEASE-MODIFYING THERAPIES FOR
POLYGLUTAMINE DISEASES VIA
REDUCTION OF TOXIC POLYGLUTAMINE
PROTEIN EXPRESSION USING
ANTISENSE OLIGONUCLEOTIDES

Besides the aggregation inhibition of polyQ proteins by various
aforementioned methods, reducing the expression of expanded

polyQ proteins per se is an attractive approach toward the
development of disease-modification therapy for polyQ diseases.
Among the preclinical studies using RNA interference (RNAi)-
based methods or antisense oligonucleotides (ASOs), both of
which alter the polyQ protein expression by targeting the
aberrant mRNA with expanded CAG repeats, ASOs for the
treatment of HD have recently been translated into clinical
trials. In addition to the therapeutic effects of ASOs, the
safety, tolerability, and effective delivery of ASOs in humans
have been established in clinical studies for spinal muscular
atrophy or Duchenne muscular dystrophy, and lead to the
recent approval of the ASOs such as nusinersen or eteplirsen,
respectively, by the Food and Drug Administration in the
United States (Schoch and Miller, 2017). ASOs therefore are
promising candidates for the disease-modifying therapies for
polyQ diseases which could be used in combination with
aggregation inhibitors (Figure 1).

Antisense oligonucleotides are synthetic single-stranded
oligonucleotides that bind to RNA molecules. ASOs can be
designed in an allele-specific or non-allele-specific manner to
reduce the expression of target protein either by degrading the
mRNA via recruitment of RNase H, inducing exon skipping
by regulating the splicing machinery at specific exon-intron
junctions, or inhibiting protein translation by interfering with
the translational machinery (Bennett and Swayze, 2010). Initial
preclinical studies utilizing ASOs for the treatment of polyQ
diseases took allele-specific approaches and targeted either the
expanded CAG repeat in the mRNA (Hu et al., 2009) or
single nucleotide polymorphisms (SNPs) that are associated
with the disease (Carroll et al., 2011). Allele-specific ASOs
targeting the mutated gene would be favorable when the protein
product from wild-type mRNA is physiologically indispensable.
However, this approach might not be applicable to patients
homozygous for disease-causing mutations or disease-related
SNPs. In addition, especially in polyQ diseases, allele-specific
ASOs targeting CAG repeats in the mutant allele may result
in the reduced expression of physiologically indispensable
proteins because the wild-type allele of the disease-causing
genes and genes of various other proteins also contain CAG
repeats, although chemical modification of ASOs may help
overcome this limitation (Rué et al., 2016). Furthermore,
multiple allele-specific ASOs for a single disease need to
be developed when multiple SNPs are associated with the
disease, as is the case with polyQ diseases. Accordingly,
most preclinical studies have utilized non-allele specific ASOs
or allele-specific ASOs for disease-related SNPs associated
with polyQ diseases.

Non-allele specific ASO targeting ATXN1 significantly
reduced the expression of ATXN1, ameliorated the motor
deficit, and prolonged the survival of SCA1 knock-in mice by
intracerebroventricular (ICV) administration (Friedrich et al.,
2018). Similarly, ICV administration of non-allele specific
ASO targeting ATXN2 significantly reduced the expression
of ATXN2 and ameliorated the motor deficit in two different
mice models of SCA2 (Scoles et al., 2017). Of note, this
ASO restored the firing rate of Purkinje cells even when
administered after the motor phenotype onset of the SCA2
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knock-in mice (Scoles et al., 2017). ICV administration of
non-allele specific ASO targeting ATXN3 also significantly
reduced the expression of ATXN3, ameliorated the motor
deficit, and restored the firing rate of Purkinje cells (McLoughlin
et al., 2018). Importantly, this ASO successfully reduced the
high molecular weight ATXN3 aggregates and prevented
the nuclear localization of ATXN3 in two different mice
models of SCA3 (Moore et al., 2017; McLoughlin et al., 2018).
Non-allele specific ASOs for SCA7 (Niu et al., 2018), HD
(Kordasiewicz et al., 2012; Stanek et al., 2013), and SBMA
(Lieberman et al., 2014; Sahashi et al., 2015), and allele-specific
ASOs for HD (Sun et al., 2014; Rué et al., 2016; Datson
et al., 2017; Southwell et al., 2018) that are effective in the
mice or non-human-primate model of each disease have also
been identified.

Based on these studies, the first phase 1/2 clinical trial
was performed using a non-allele-specific ASO in patients
with HD (Tabrizi et al., 2019). This ASO showed good
tolerability without serious adverse effects, and induced a
dose-dependent reduction of mHTT in the cerebrospinal
fluid (Tabrizi et al., 2019). An open-labeled extension study
for patients with HD who completed the phase 1/2 trial
(NCT03342053) and a phase 3 trial (NCT03761849) using
the same ASO is ongoing. In addition, two other phase 1/2
trials (NCT03225833 and NCT03225846) are also ongoing,
which uses allele-specific ASOs that target mutant-allele-
associated SNPs.

The advantages of ASOs in the treatment of polyQ diseases
are their high specificity and established safety, which have
led to successful translation of preclinical to clinical studies in
HD as discussed above. Meanwhile, although ASOs apparently
distributes widely throughout the brain by intrathecal or ICV
administration in rodents and non-human primates, ASO
concentration may be lower in deeper brain regions such as
the striatum (Kordasiewicz et al., 2012). Although intrathecal
delivery of ASOs showed therapeutic effects in the clinical trials
for SMA, this might have been because SMA mainly affects the
spinal cord. In addition, currently available ASOs needs repeated
administration to maintain the therapeutic effect. Development
of better ASO administration methods that ensure prolonged
delivery to the target brain regions and are less invasive is
strongly awaited. In addition, the extremely high cost of the
FDA-approved ASOs remains a challenge in clinical settings
(Burgart et al., 2018).

CONCLUSION

Disease-modifying treatment for polyQ diseases have long
been an unmet clinical need. Although various chemical
compounds have been demonstrated to inhibit the aggregation
of polyQ proteins in vitro, most of them were of limited
use in the clinical settings due to their toxicity, poor BBB
permeability, or metabolic instability. Among the aggregation
inhibitors of polyQ proteins, recent studies have identified
promising candidate therapeutic molecules that is effective

in vivo and could achieve prompt clinical application. One of
such molecules is arginine, which already has an established
safety in humans and fits the recent concept of “drug
repositioning” (Corbett et al., 2012). Notably, arginine was
effective in polyQ disease model mice even after symptom
onset. Meanwhile, great efforts are under way to achieve
better drug delivery of potent aggregation inhibitor peptides,
peptoids or intrabodies. Together with the recent success of
ASOs in the clinical trials to reduce the expression of polyQ
proteins in patients with HD, combination therapies using
gene silencing and aggregation inhibitors for the remaining
polyQ proteins would enhance the possibility for delaying or
halting the onset and progression of polyQ diseases in the
near future.
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