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Connective Field (CF) modeling estimates the local spatial integration between signals
in distinct cortical visual field areas. As we have shown previously using 7T data, CF can
reveal the visuotopic organization of visual cortical areas even when applied to BOLD
activity recorded in the absence of external stimulation. This indicates that CF modeling
can be used to evaluate cortical processing in participants in which the visual input
may be compromised. Furthermore, by using Bayesian CF modeling it is possible to
estimate the co-variability of the parameter estimates and therefore, apply CF modeling
to single cases. However, no previous studies evaluated the (Bayesian) CF model using
3T resting-state fMRI data. This is important since 3T scanners are much more abundant
and more often used in clinical research compared to 7T scanners. Therefore in this
study, we investigate whether it is possible to obtain meaningful CF estimates from
3T resting state (RS) fMRI data. To do so, we applied the standard and Bayesian CF
modeling approaches on two RS scans, which were separated by the acquisition of
visual field mapping data in 12 healthy participants. Our results show good agreement
between RS- and visual field (VF)- based maps using either the standard or Bayesian
CF approach. In addition to quantify the uncertainty associated with each estimate in
both RS and VF data, we applied our Bayesian CF framework to provide the underlying
marginal distribution of the CF parameters. Finally, we show how an additional CF
parameter, beta, can be used as a data-driven threshold on the RS data to further
improve CF estimates. We conclude that Bayesian CF modeling can characterize local
functional connectivity between visual cortical areas from RS data at 3T. Moreover,
observations obtained using 3T scanners were qualitatively similar to those reported
for 7T. In particular, we expect the ability to assess parameter uncertainty in individual
participants will be important for future clinical studies.

Keywords: resting-state fMRI, uncertainty, connective field modeling, bayesian modeling, visual field mapping,
visual cortex
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HIGHLIGHTS

- Local functional connectivity between visual cortical areas can
be estimated from RS-fMRI data at 3T using both standard CF
and Bayesian CF modeling.

- 3T observations were qualitatively similar to those
previously reported at 7T.

- Bayesian CF modeling quantifies the model uncertainty
associated with each CF parameter on RS and VF data,
important in particular for future studies on clinical
populations.

INTRODUCTION

Spontaneous blood-oxygen level dependent (BOLD) fluctuations
have been used to study the intrinsic functional connectivity of
the human brain. Biswal et al. (1995) observed, for the first time,
the presence of bilateral spatial integration, coherent activity and
functional connectivity between distant homotopic brain areas,
even in the absence of a task. Ever since, resting-state fMRI
(RS-fMRI or RS) has played a key role in understanding the
temporal and spatial interactions of interconnected brain regions.
In parallel, various fMRI data-analysis tools have been developed
with the aim to describe the functional and neuroanatomical
organization of the brain. One of these methods is connective
field (CF) modeling (Haak et al., 2013b). CF, also known as
the cortico-cortical population receptive field (cc-pRF), modeling
allows to describe the response of a population of neurons in
the cortex in terms of the activity in another region of the
cortex. It translates the concept of the receptive field into the
domain of connectivity by assessing the spatial dependency
between signals in distinct cortical visual field regions (Haak
et al., 2013b). Even though the approach is agnostic to different
stimulus configurations, it has thus far been primarily developed
and applied in vision research. A previous study by Gravel
et al. (2014) showed that CFs, estimated from RS-fMRI data
recorded at a high magnetic field (7T), reflect the visuotopic
organization of early visual cortical maps. This indicates that even
in the absence of any visual stimulation, CF modeling is able
to describe the activity of voxels in a target region (e.g., V2 or
V3) as a function of the aggregate activity in a source cortical
visual area (e.g., V1).

While these previous results were obtained at 7T and in
healthy participants, 3T scanners are much more common, and
generally preferred for whole-brain analyses in patient studies
(van der Kolk et al., 2013; Polimeni and Uludağ, 2018). Therefore,
if RS data recorded at 3T can provide sufficient sensitivity
to estimate the spatial integration and connectivity of BOLD
signals in distinct regions of the early visual cortex (Gravel
et al., 2020), this would open up the CF modeling approach
to clinical studies performed at 3T and in individual cases.
Amongst others, this would provide the important advantage
that plasticity of visual cortical areas could be studied without
a dependence on actual visual stimulation. This is important, as
in ophthalmic and neurological patients visual input can already
be disrupted, potentially resulting in spurious plasticity estimates

(Baseler et al., 1999; Azzopardi and Cowey, 2001; Haak et al.,
2013b; Carvalho et al., 2020).

In order to assess the suitability of the CF approach for
studying unique patient cases at 3T, we will look beyond
the classical variance explained as an indicator of modeling
performance. To do so, we will assess the uncertainty of
model parameter estimates using a Bayesian approach. These
parameters are available to us by applying our recently developed
Bayesian framework for the CF model (Bayesian CF, Invernizzi
et al., 2020). In particular, this approach allows to estimate the
variability for each CF parameter estimate such as CF size and
beta. Moreover, when using our new Bayesian CF framework,
we can obtain a data-driven threshold in order to select relevant
voxels for both RS-fMRI and visual field mapping (VFM) data.

We applied both the standard CF estimation and the
novel Bayesian approach to RS and VFM data acquired at
3T. Subsequently, we compared the CF maps and parameters
obtained using the two CF approaches. Additionally, we assessed
test-retest reliability between the two runs of RS data.

Finally, we will qualitatively compare our results to those
obtained previously in Gravel et al. (2014).

To preview our results, we found a good agreement between
RS- and visual field (VF) – based maps obtained with both
the standard and Bayesian CF approach at 3T. Moreover,
most observations were qualitatively similar to those previously
observed for 7T data. This implies that local functional
connectivity between visual cortical areas during RS can be
estimated at 3T. No significant differences were found between
the two runs of RS data on V1 > V2 areas. Furthermore, we
showed how the parameter uncertainty can be used to assess
the variability of parameters in RS-fMRI BOLD fluctuations.
Therefore, the Bayesian CF approach presented here extends on
previous approaches to provide an interpretable and independent
measure of uncertainty in RS-based data. Finally, we show that
the novel retained CF parameter, beta, can serve as a sensitive
threshold for the selection of voxels and improve the reliability
of estimates. Taken together, our results demonstrate the utility
of applying a Bayesian CF approach to study inter areal cortical
integration in the human visual cortex in health and disease.

MATERIALS AND METHODS

Participants
Twelve healthy female participants (mean age 22 years,
s.d. = 1.8 years) with normal or corrected-to-normal vision
and without a history of neurological disease were included.
These data had been collected and used in previous projects
(Halbertsma et al., 2019; Invernizzi et al., 2020). For each of
the previous studies, the ethics board of the University Medical
Center Groningen (UMCG) approved the study protocol. All
participants provided written informed consent. The study
followed the tenets of the Declaration of Helsinki.

Stimuli Presentation and Description
The visual stimuli were displayed on a MR compatible screen
located at the head-end of the MRI scanner with a viewing
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distance of 118 cm. The participant viewed the complete
screen through a mirror placed at 11 cm from the eyes
supported by the 32-channel SENSE head coil. Screen size
was 36 × 23◦ of visual angle and the distance from the
participant’s eyes to the screen was approximately 75 cm.
Stimuli were generated and displayed using the Psychtoolbox1

and VISTADISP toolbox (VISTA Lab, Stanford University),
both Matlab based (Brainard, 1997; Pelli, 1997). The stimulus
consisted of drifting bar apertures (of 10.2◦ radius) with a
high contrast checkerboard texture on a gray (mean luminance)
background. A sequence of eight different bar apertures
with four different bar orientations (horizontal, vertical, and
diagonal orientations), two opposite motion directions and
four periods of mean-luminance presentations completed the
stimulus presentation that lasted 192 s. To maintain stable
fixation, participants were instructed to focus on a small colored
dot present in the center of the screen and press a button as
soon as the dot changed color. The complete visual field mapping
paradigm was presented to the participant six times, during six
separate scans.

Resting State
During the RS-fMRI scans, the stimuli were replaced by a black
monitor and the lights in the scanning room were turned off.
All participants were instructed to keep their eyes closed, remain
as still as possible, not to fall asleep, and try not to think of
anything in particular.

Data Acquisition
Magnetic resonance imaging (MRI) and fMRI data were
obtained using a 3T Philips Intera MRI scanner (Philips,
Netherlands), with a 32-channel head coil. For each subject, a
high-resolution T1-weighted three-dimensional structural scan
was acquired (TR = 9.00ms, TE = 3.5 ms, flip-angle = 8,
acquisition matrix = 251 mm × 251 mm × 170 mm, field of view
= 256 × 170 × 232, voxel size = 1 mm × 1 mm × 1 mm). Then,
six retinotopy (VFM) functional T2∗-weighted, 2D echo planar
images were obtained (TR = 1500 ms, field of view = 224 mm ×

72 mm × 193.5 mm, voxel resolution of 2.33 mm × 2.33 mm
× 3 mm). Finally two, full brain, resting-state (RS) functional
T2∗-weighted, 2D echo planar images were obtained using the
following parameters: TR = 2000 ms, field of view = 220 mm
× 121 mm × 220 mm, voxel size = 3.44 mm × 3.44 mm ×

3.29 mm. The functional scans were acquired in the following
order: (1) a RS-fMRI scan (RS1) lasted 708 s with a total of 350
volumes; (2) six VFM functional scans were collected, where each
scan lasted for 204 s with a total of 136 volumes; (3) finally, a
second RS-fMRI scan (RS2) with the same characteristic of RS1
(duration of 708 s with 350 volumes) was collected. MRI protocol
differences between VFM and RS scans are due to the fact that RS
was collected at whole-brain while VFM scans were geared to the
visual areas in the occipital brain areas.

Prior to the first VFM scan, a short T1-weighted anatomical
scan with the same field of view chosen for the functional scans

1https://github.com/Psychtoolbox-3/Psychtoolbox-3/

were acquired and used for obtaining a better co-registration
between functional and anatomical volume.

Data Analysis
Preprocessing and standard CF analysis of fMRI data were done
using ITKGray2, FreeSurfer (Fischl, 2012) and mrVista toolbox
for Matlab environment (VISTASOFT)3. The Bayesian pRF and
CF approaches were developed and implemented in Matlab
2016b (The MathWorks Inc., Natick, MA, United States). The
code for the Bayesian pRF and CF frameworks will be made
available via www.visualneuroscience.nl.

For each participant, the structural scan was aligned in a
common space defined using the anterior commissure-posterior
commissure line (AC-PC line) as reference. Next, gray and
white matter were automatically segmented using FreeSurfer
and manually adjusted using ITKGray4, in order to minimize
segmentation errors. Then, all functional data were pre-processed
using mrVista toolbox. For both RS and retinotopy data the
following steps are applied. First, head motion within and
between scans were corrected by using robust multiresolution
alignment of MRI brain volumes (Nestares and Heeger, 2000)
an alignment of functional data into anatomical space and an
interpolation of functional data with segmented anatomical gray
and white matter. For RS-fMRI data, a few additional denoised
steps were applied. These steps were possible since RS scans
were acquired at the whole brain. First, spatial smoothing of
6 mm FWHM was applied in order to perform the denoising
step based on ICA-AROMA that identified noise and motion
related components (Pruim et al., 2015). These components
were then removed from the unsmoothed RS-fMRI data that
are now further filtered by applying a band-pass filter with
high-pass discrete cosine transform with cut-off frequency of
0.01 Hz and a low-pass 4th order Butterworth filter with cut-off
frequency of 0.1 Hz.

Bayesian Population Receptive Field
Mapping Applied to VFM
Retinotopy scans were analyzed using a Bayesian population
receptive field (pRF) framework. For a detailed account see
Prabhakaran et al. (2020), which uses a Markov Chain Monte
Carlo (MCMC) approach to sample the parameter space for the
pRF mapping. Following the nomenclature of Dumoulin and
Wandell (2008), Zeidman et al. (2018), Carvalho et al. (2020),
Prabhakaran et al. (2020), we defined 2D symmetrical Gaussian
kernel centered at (x0, y0) with width defined as the standard
deviation σ, to define the pRF model. The best model fit was
projected onto a smoothed 3D mesh of the cortex. Based on the
obtained parameter-values, visual areas are outlined (V1, V2, V3,
hV4, LO1, and LO2) to act as source (V1) or target region (all
other) for subsequent RS analysis.

2http://www.itk.org
3http://vistalab.stanford.edu/
4http://itk.org
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Standard Connective Field Mapping of
RS Data
In the standard CF model, the optimal CF parameters (CF
position and CF size, which define the 2D symmetric Gaussian
kernel) were estimated based on a procedure that fitted the
time-series for each location in the target region (e.g., V2 or V3)
using a linear combination of the time-series in the source region
(e.g., V1; Haak et al., 2013b). The best fitting models are retained
and projected on a smoothed 3D mesh. The CF parameters
associated with the best fitting model are converted from cortical
units (cortical position) into visual field units (eccentricity and
polar angle). This is done by inferring the pRF properties –
obtained via the Bayesian pRF method Prabhakaran et al., 2020
of the center voxel in the source region for each target location
(Haak et al., 2013b).

Bayesian Connective Field Mapping
Similar to the Bayesian pRF, the Bayesian CF framework uses
a Markov Chain Monte Carlo (MCMC) approach to sample
the source region efficiently. Again we used a 2D symmetric
Gaussian kernel to predict the time series of the target regions.
As in the standard CF modeling, the eccentricity and polar
angle values associated with the CF centers are inferred from a
pRF mapping. For the sake of completeness, the entire fitting
procedure of the Bayesian CF model (option B) is described in
the Supplementary Material.

For each participant, standard and Bayesian-CF models were
estimated for both VFM and RS data. Target and source regions
definitions were based on the Bayesian pRF analysis. For both
Bayesian pRF and CF models, a total of 15000 iterations were
computed, where the first 10% of iterations were discarded
for the burn-in process (Chib, 2011; Liu et al., 2016) and
the posterior probability distributions were estimated on the
remaining samples.

Spatial Analysis
We used Pearson and circular correlations to compare and assess
the topographic organization of eccentricity and polar angle,
respectively, in both standard CF and Bayesian CF maps obtained
on RS and VFM data. The same type of correlations were used
to evaluate similarities in eccentricity and polar angle maps
between the two RS-fMRI scans obtained with standard CF and
Bayesian CF models. Furthermore, we computed the coefficient
of variation (Shoukri et al., 2008) to evaluate the within-subject
reproducibility of CF parameter estimates obtained by using
the standard CF and Bayesian CF. Correlation values higher
than 0.5 and p-values below 0.05 were considered statistically
significant. Moreover, to compare the relation between CF
size and eccentricity RS-based, we binned the eccentricity at
1◦ intervals and applied a linear fit over the mean per bin.
A confidence interval (CI) of the fit was defined by applying a
bootstrap technique 1000 times.

For the spatial analyses, only voxels for which the best-fitting
CF model explained more than 15% of the time-series variance
in the standard CF and eccentricity which is <1◦ and >7◦ were
included. This arbitrary threshold level was chosen based on

previous literature (Winawer et al., 2010; Baseler et al., 2011;
Haak et al., 2012, 2013b).

Finally, the intraclass correlation coefficient (ICC) (McGraw
and Wong, 1996; Perinetti, 2018) was computed to estimate the
test-retest reliability between the two RS-fMRI scans obtained
with standard CF and Bayesian CF models. A priori 5%
strongest activated voxels based on VE was used as threshold
to compute the ICC score. We also report the relation between
ICC and five different thresholds (1%, 5%, 10%, 25% and 50%,
Supplementary Figure 4).

Bayesian Analysis
Based on a quantile analysis of the posterior distribution
(Invernizzi et al., 2020), we computed a voxel-wise uncertainty
measure for each CF parameter by subtracting the upper (Q3) and
lower (Q1) quantile of the posterior distribution. The estimated
uncertainty was computed for both RS and VFM data for each
participant and then projected onto a smoothed 3D mesh of the
cortex. We repeated the same procedure for each CF parameter.

Beta Threshold
Following the procedure reported by Invernizzi et al. (2020)
we test if beta – the scaling amplitude of the predictor to the
amplitude of the measured signal – can serve as data-driven
threshold for RS-data. As a proxy distribution for the null
hypothesis (i.e., no correlation between source and target region),
one surrogate BOLD time series was calculated for each voxel
(Schreiber and Schmitz, 1996; Räth and Monetti, 2009; Lancaster
et al., 2018). A surrogate time series was generated using the
iterative amplitude adjusted Fourier transform method (IAAFT,
Schreiber and Schmitz, 1996; Räth and Monetti, 2009). Then, the
Bayesian CF model was fitted using this surrogate to real time
series of the target region which were unchanged. Based on the
best fit obtained in the MCMC iterations of the surrogate beta-
estimate, we calculated a familywise error (FWE) corrected beta-
threshold for all the voxels in the target region. Based on previous
literature, we selected the cut-off value of the 95th percentile
(Bornmann, 2013; Invernizzi et al., 2020) of the null distribution
as FWE-corrected beta threshold. Finally, we compared the voxel
selection at the single participant level using VE and the FWE
beta-threshold approaches.

RESULTS

The CF maps obtained from RS-based data for eccentricity, polar
angle and CF size were qualitatively comparable for the standard
and Bayesian CF models. In contrast to the VFM data, the relation
with CF size and eccentricity in RS data does not increase with
visual hierarchy. Again, the same behavior was observed using
both methods. No statistically significant difference was found
between the two RS scans for any CF parameter. We estimated the
uncertainty for the Bayesian CF parameters (CF size and beta).
An higher uncertainty from the CF parameters was observed
from both RS scans compared to VFM data and between RS2 and
RS1 scans. Finally, we showed how to use a new threshold based
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on the effect size of the model both in the presence and absence
of visual stimuli.

CF Models Based on RS-fMRI Data
We used V1 as source region while V2, V3, hV4, LO1, and LO2
as target to derive CF maps projected on a smoothed 3D mesh
on a single subject level (Figure 1). Such maps were created
using both standard CF and Bayesian CF models (Figures 1B–E).
Topographical maps for eccentricity, polar angle and CF size were
comparable for both CF models using RS data (Figure 1). We
used the VFM-based maps as reference (Figure 1A) as these maps
show a clear visuotopic organization for all the CF parameters

estimated. Then the same parameters are plotted for all RS scans
(Figures 1B,D: RS-based derived maps using standard CF model;
Figures 1C, E: RS-based derived maps using Bayesian CF model).
Furthermore, a good level of within-subject reproducibility was
observed for each CF parameter estimate for both CF models
using RS scans (Supplementary Table 2).

In line with the earlier work that introduced the standard CF
method (Haak et al., 2013a), we quantified possible differences
between the resulting RS-based CF and Bayesian-CF estimates
by correlating them against the pRF-derived eccentricity and
polar angle parameters that we used as reference (Table 1).
Eccentricity and polar angle parameters are estimated for each

FIGURE 1 | Visualization of CF maps of denoised data for a single participant. From left to right: eccentricity, polar angle, and CF size. (A) Corresponds to VFM
derived estimates. (B,C) Show parameter estimates for the first RS run (RS1) using standard CF and Bayesian CF models, respectively. (D,E) Show parameter
estimates for the second RS run (RS2) using standard CF and Bayesian CF models, respectively. The fact that (B,C) on the one hand, and (D,E) on the other, are
very comparable is important and indicates that the standard and Bayesian CF models produce highly similar results on RS data.
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TABLE 1 | Group level correlation between visual field and resting state maps derived using Bayesian pRF and CF modeling.

Eccentricity

ROIs Standard CF versus pRF

VFM RS1 RS2

r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value

V1 –> V2 0.86 [0.82, 0.91] p < 0.001 0.44 [0.38, 0.54] p < 0.001 0.57 [0.47, 0.62] p < 0.001

V1 –> V3 0.82 [0.76, 0.87] p < 0.001 0.22 [0.13, 0.34] p < 0.001 0.31 [0.17, 0.43] p < 0.001

V1 -> hV4 0.81 [0.73, 0.83] p < 0.001 0.02 [−0.09, 0.40] 0.0048 0.34 [0.04, 0.46] p < 0.001

V1 -> LO1 0.78 [0.72, 0.81] p < 0.001 0.07 [−0.13, 0.24] 0.0018 0.15 [0.04, 0.3] 0.0021

V1 -> LO2 0.63 [0.43, 0.75] p < 0.001 −0.06 [−0.27, 0.17] 0.0154 0.08 [−0.04, 0.27] 0.0567

ROIs Bayesian CF versus pRF

VFM RS1 RS2

r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value

V1 –> V2 0.86 [0.82, 0.91] p < 0.001 0.48 [0.34, 0.57] p < 0.001 0.58 [0.51, 0.63] p < 0.001

V1 –> V3 0.82 [0.77, 0.87] p < 0.001 0.25 [0.09, 0.43] p < 0.001 0.3 [0.16, 0.41] p < 0.001

V1 -> hV4 0.79 [0.73, 0.84] p < 0.001 0.08 [−0.16, 0.35] 0.0085 0.28 [0.06, 0.40] p < 0.001

V1 -> LO1 0.78 [0.72, 0.82] p < 0.001 0 [−0.17, 0.28] 0.0667 0.24 [0.10 0.43] p < 0.001

V1 -> LO2 0.65 [0.54, 0.76] p < 0.001 −0.03 [−0.25, 0.18] 0.0641 0.09 [−0.02, 0.38] 0.2264

Polar Angle

ROIs Standard CF versus pRF

VFM RS1 RS2

r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value

V1 –> V2 0.92 [0.85, 0.93] p < 0.001 0.64 [0.41, 0.82] p < 0.001 0.78 [0.178, 0.84] p < 0.001

V1 –> V3 0.84 [0.78, 0.89] p < 0.001 0.17 [−0.05, 0.82] 0.002 0.26 [−0.53, 0.49] p < 0.001

V1 -> hV4 0.79 [0.51, 0.92] p < 0.001 −0.29 [−0.62, 0.66] p < 0.001 0.54 [−0.31, 0.77] p < 0.001

V1 -> LO1 0.79 [0.55, 0.89] p < 0.001 0.68 [0.34, 0.76] p < 0.001 0.56 [−0.11, 0.72] p < 0.001

V1 -> LO2 0.72 [0.46, 0.76] p < 0.001 0.49 [−0.23, 0.68] 0.0046 0.62 [−0.46, 0.76] p < 0.001

ROIs Bayesian CF versus pRF

VFM RS1 RS2

r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value r IQR [Q1, Q3] p-value

V1 –> V2 0.92 [0.87, 0.93] p < 0.001 0.62 [0.40, 0.85] p < 0.001 0.83 [0.39, 0.87] p < 0.001

V1 –> V3 0.84 [0.70, 0.92] p < 0.001 0.17 [−0.03, 0.68] p < 0.001 0.17 [−0.36, 0.48] p < 0.001

V1 -> hV4 0.79 [0.51, 0.92] p < 0.001 −0.34 [−0.55, 0.17] p < 0.001 0.54 [−0.02, 0.71] p < 0.001

V1 -> LO1 0.82 [0.55, 0.90] p < 0.001 0.35 [0.10, 0.64] 0.0045 0.52 [−0.08, 0.79] p < 0.001

V1 -> LO2 0.67 [0.51, 0.82] p < 0.001 0.24 [−0.22, 0.76] 0.0021 0.3 [−0.35, 0.83] p < 0.001

Correlations coefficients were computed in order to assess the level of agreement between the eccentricity (Pearson’s correlation) and polar angle (circular correlation)
estimates obtained by using standard CF and Bayesian CF models and the ones derived by the pRF. We used the VFM-based pRF estimates as reference as stimuli
driven and they further show a clear visuotopic organization for all parameters. Correlation, p-values and interquartile range values were estimated at single subject level
and then concatenated across all participants.

single participant and then concatenated across participants to
calculate the Spearman’s correlation and circular correlation,
respectively. Overall a good agreement was found for V1 > V2
and V1 > V3 areas using both CF models. Negative or almost
zero correlation values can be observed for CF estimates between
distant visual areas (i.e., V1 > LO1, V1 > LO2).

To check the possible influence of the denoise procedure
applied to RS data, the same quantification analysis was
computed on non-denoised RS data. Similar results were
observed indicating that the ICA-AROMA denoise procedure
on RS-fMRI data did not influence the final CF outcomes.
A complete overview of these analyses is reported in
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TABLE 2 | Test-retest evaluation between RS scans.

Eccentricity

ROIs CF standard Bayesian CF

ICC (r) IQR [Q1, Q3] ICC (r) IQR [Q1, Q3]

V1 –> V2 0.9661 [0.943, 0.983] 0.9061 [0.844, 0.948]

V1 –> V3 0.2072 [0.073,0.462] 0.193 [0.074, 0.313]

V1 -> hV4 0.1045 [−0.012, 0.426] −0.006 [−0.065, 0.503]

V1 -> LO1 0.0909 [−0.109, 0.343] −0.0194 [−0.225, 0.235]

V1 -> LO2 0.1036 [−0.184, 0.604] 0.0413 [−0.244, 0.221]

Polar Angle

ROIs CF standard Bayesian CF

ICC (r) IQR [Q1, Q3] ICC (r) IQR [Q1, Q3]

V1 –> V2 0.9295 [0.874, 0.976] 0.8717 [0.720, 0.941]

V1 –> V3 0.3365 [0.179, 0.495] 0.2997 [0.075, 0.463]

V1 -> hV4 −0.027 [−0.081, 0.157] −0.0583 [−0.209, 0.067]

V1 -> LO1 0.0732 [−0.106, 0.536] 0.1944 [−0.053, 0.48]

V1 -> LO2 0.4057 [0.137, 0.734] 0.2635 [0.064, 0.6036]

CF size

ROIs CF standard Bayesian CF

ICC (r) IQR [Q1, Q3] ICC (r) IQR [Q1, Q3]

V1 –> V2 0.2939 [0.168, 0.396] 0.2192 [0.061, 0.344]

V1 –> V3 0.0214 [−0.029, 0.139] 0.0335 [−0.077, 0.201]

V1 -> hV4 −0.0533 [−0.131, 0.147] 0.0717 [−0.042, 0.156]

V1 -> LO1 −0.0308 [−0.153, 0.049] −0.0292 [−0.166, 0.076]

V1 -> LO2 −0.075 [−0.144, −0.017] −0.1147 [−0.141, −0.007]

For eccentricity, polar angle, and CF size estimates obtained by using the standard
CF and the Bayesian CF models. Intraclass correlation coefficients (ICC) were
computed across all participants and for each ROI separately. Median and
interquartile range are computed across the group.

Supplementary Material (Supplementary Figure 1 and
Supplementary Table 1).

Test-Retest Reliability
To estimate test-retest reliability between the two RS scans,
we selected the 5% most active voxels and computed the ICC
score for each parameter estimate obtained using both CF and
Bayesian CF model. For completeness, the relation between ICC
and chosen threshold is displayed in Supplementary Figure 4.
A positive ICC value is reported for V1 > V2 using both models.
For higher order visual areas this ICC value gradually drops
for all parameters Table 2.

Assessing Uncertainty in RS-fMRI Data
In order to estimate a voxel-wise uncertainty value associated
to each CF parameter, we computed a quantile analysis of the
posterior distribution for each participant. Then, for illustrative
purposes, we projected on a smoothed 3D mesh the uncertainty
estimates obtained for a single participant (Figure 2), where
V1 is the source region and V2, V3, hV4, LO1, and LO2

were the target regions; VFM-based CF maps were used as
reference (Figure 2A). An increased uncertainty in beta estimate
in RS1- and RS2-based CF maps was observed compared to
VFM-based CF maps but not for CF size. Interestingly, no clear
uncertainty-related visuotopic organization was found either
for VFM or RS data. Furthermore, we evaluated the possible
dependency between the Bayesian parameter estimates and the
corresponding (posterior) uncertainty by computing the cross-
correlation coefficient between these estimates (Table 3). In line
with the findings reported in Bornmann (2013), Invernizzi et al.
(2020) for VFM data, a weak correlation exists between beta,
sigma parameter estimates and their respective uncertainties
obtained on RS-data (Table 3). Again, this indicates that
uncertainty is an additional, independent parameter, but this time
obtained from resting-state data.

Bayesian CF Thresholding Application
To evaluate the goodness of the corrected beta-thresholding
method in the voxel selection on RS data, we compared the
model VE, each CF parameter and the uncertainty associated,
respectively (Figure 3, CF size and Supplementary Figure 2,
beta parameter). Both thresholds: VE is higher than 15% and
the FWE corrected effect size (>95% Figure 3A; for more
details, see Invernizzi et al. (2020) are indicated. Based on a
direct comparison of FWE beta-corrected threshold (CI) to the
standard VE of the model (Figures 3B,C), the 95% FWE CI-
based threshold proved to be more conservative. Note that it is
not straightforward to identify a point at which the two threshold
definitions will be equivalent.

This threshold was then used to compare the relation between
RS-based CF size and VFM-derived eccentricity. Figure 4 shows
that RS-based CF size does not increase with eccentricity within
the early visual areas. While it is possible to notice an increase
of CF size values with eccentricity only for the later visual
areas (LO1 and LO2), especially in RS2. However, no significant
differences were found between RS1 and RS2 scans in areas along
the visual hierarchy.

DISCUSSION

In this study, we show that 3T RS-fMRI data is suitable for
estimating local functional connectivity between visual cortical
areas. Furthermore, we observed a good level of agreement
between the standard and Bayesian (MCMC) CF models. This
indicates that also the latter tool is suitable for studying the
cortico-cortical properties of brains at rest. The obtained CF
estimates are qualitatively similar to those previously observed
for 7T RS-fMRI data. This further supports that sensitive
estimations and associated uncertainties can be derived from 3T
RS-fMRI data. Finally, we show that a FWE-corrected threshold
can be used as a complementary threshold to the standard
VE to increase the reliability of estimates. This indicates that
both stimulus-driven and RS-based CF modeling are suitable
approaches for use in patient- or single-case studies. Below, we
discuss our findings in more detail.
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FIGURE 2 | Visualization of uncertainty for CF parameter at single participant. From left to right: CF size, uncertainty of CF size, beta, and uncertainty of beta.
(A) Corresponds to VFM derived estimates. While, bottom (B,C) show the parameters and uncertainty estimates for each of the two RS scans.

TABLE 3 | Dependency between Bayesian CF parameters and uncertainties for both RS scan at group level.

V1 > V2 V1 > V3 V1 > hV4 V1 > LO1 V1 > LO2

RS1 CF size Beta CF size Beta CF size Beta CF size Beta CF size Beta

Unc. CF size 0.06 −0.01 0.11 0.04 0.1 0.07 0.15 0.1 0.1 0.09

Unc. Beta −0.03 0.01 −0.01 0.01 −0.04 0.01 −0.03 −0.12 −0.01 −0.01

RS2 CF size Beta CF size Beta CF size Beta CF size Beta CF size Beta

Unc. CF size 0.08 −0.08 0.06 −0.05 0.04 −0.02 0.03 0.02 −0.02 −0.06

Unc. Beta 0.01 −0.01 0.01 −0.02 0.01 −0.03 −0.03 −0.04 −0.02 0.04

Cross-correlations were computed between the estimated Bayesian CF parameters and the uncertainty derived from them. Only the CF parameters directly estimated
using the model (CF size and beta) are included in this analysis. CF size, beta, and their associated uncertainties were estimated at single participant level and then
concatenated across all participants.
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FIGURE 3 | Comparison of thresholding approaches at a single participant level for V1 > V2 connectivity based on RS1 data. In Panel (A) the FWE beta-corrected
thresholds obtained with both 95% CI and the standard VE of the model are shown. A direct comparison between the FWE threshold and the standard VE is
presented in Panels (B,C). Since we are interested in testing this FWE-corrected threshold in different conditions, CF size ∼0 which are discarded. In Panel (B) the
relation between VE and the Bayesian CF size is presented for all voxels (orange diamonds). Blue dots indicate the voxels surviving the 95% CI FWE beta-threshold.
The standard VE threshold is not applied but indicated by a black dotted line. In Panel (C), the relation between VE and the uncertainty associated with the CF size
is presented. Note that high uncertainty can be associated with voxels with a high VE.

FIGURE 4 | Connective field size as a function of VFM- based eccentricity for RS and VFM scans. For both RS and VFM scans, eccentricity was binned in intervals
of 1◦ and a linear fit was applied. The average CF size was calculated only for voxels that survived the FWE 95%CI threshold. Each dot indicates the mean of the CF
size in each bin. The dashed lines correspond to the 95% bootstrap confidence interval of the linear fit. For reference, the VFM data is included.

Comparable CF Estimates Based on
Resting-State and Visual Field Mapping
at 3T fMRI
The CF method was previously used to reveal relevant aspects
of resting-state brain activity using high-resolution 7T-fMRI.
Crucially, in this study, we have extended the CF approach and
assessed its performance at a lower-field strength (3T-fMRI).
Higher magnetic fields can increase the signal-to-noise ratio, the
tissue specificity and the spatial resolution of fMRI recordings.
However, 3T scanners are much more abundant and more often
used in clinical research than 7T ones. Our present findings
indicate that, despite the limited resolution of metabolism-
sensitive measurements such as fMRI for determining the
contribution of neuronal activity to hemodynamic signals, it
is still possible to study the aggregate neuronal population
properties at 3T using CF approaches. A good level of agreement
was found between the CF and Bayesian CF maps estimated from
RS and those estimated based on VFM for all CF parameters in
the early visual areas (Figure 1 and Table 1 – V1 > V2, V1 > V3).
Our quantitative and qualitative results are in agreement with
those presented previously (Haak et al., 2013b; Gravel et al., 2014;

Invernizzi et al., 2020). Qualitatively, we find that the CF maps
obtained at 3T are in fair agreement to those obtained at 7T
(Gravel et al., 2014, Figure 1). Moreover, while we observed
variability in the CF maps estimated for different RS scans, this
was also observed previously at 7T Gravel et al. (2014).

Thus, RS-derived CF maps at least partly reflect the functional
topographic organization revealed by pRF mapping — regardless
of the lower spatial resolution and signal-to-noise ratio afforded
by 3T-fMRI. While higher magnetic field strengths allow for
an enhanced spatiotemporal resolution, the temporal resolution
of fMRI is limited by the hemodynamic response to neuronal
activity, not by the magnetic field strength. This suggests that the
spatially weighted temporal correlations, as captured by the CF
method, suffice to reveal the underlying retinotopically organized
connectivity between areas.

Examining the relationship between CF size and pRF
eccentricity revealed that RS-derived CF size did not increase
with eccentricity, neither within individual areas nor throughout
the visual hierarchy (Figures 2, 4). In contrast, for VFM,
we did find increased CF sizes at higher pRF eccentricities
(Supplementary Figure 3). This was most pronounced for

Frontiers in Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 625309

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-625309 February 18, 2021 Time: 13:24 # 10

Invernizzi et al. Assessing Uncertainty in Resting State fMRI Data

higher-order visual area LO2. The same trend was observed in
previous results obtained at 7T (Gravel et al., 2014).

In addition, we investigated whether spatial structure could be
observed in the uncertainty information, which could potentially
be due to large-scale network interactions, physiological
processes or measurement noise. In order to do so, we compared
the uncertainties associated with CF size, effect size (beta) in the
different conditions (Figure 2 and Table 3). However, neither in
the VFM nor in the RS based uncertainty maps did we observe
a clear visuotopic organization (Figure 2). Moreover, for the RS
data, we find only weak correlations between the CF size and beta
and their corresponding uncertainties (correlation <0.25). This is
similar to what we observed previously for VFM data (Invernizzi
et al., 2020). Therefore, we conclude that, given these rather weak
(co)dependencies, the uncertainties can be treated as additional
and independent CF parameters describing the RS state data.

The Effect Size as a New Approach for
Voxel-Wise Thresholding of RS Data
The Bayesian variant of CF modeling, in addition to the
uncertainties for the CF parameters, provides also a parameter
beta describing effect size (β). This parameter can be used to
threshold data in a voxel-wise manner similar to the estimated
Variance Explained (VE). Since VE indicates the goodness of
fit for the model, the current standard approach is to threshold
voxels based on the VE of the model for both VFM and RS
data (Haak et al., 2013b; Gravel et al., 2014; Halbertsma et al.,
2019). However, a high VE does not always correspond to a low
uncertainty in the parameter estimates (Thielen et al., 2019). As
previously shown for VFM data, beta thresholding provides an
alternative thresholding approach (Invernizzi et al., 2020). Here,
we show that a FWE-corrected beta threshold based on the 95%
CI also provides a valid approach for RS data and compares
favorably to VE thresholding (Figure 3 and Supplementary
Figure 2). However, some thought should be given before
applying it to RS data. On the one hand, beta thresholding is
more sensitive in the selection of voxels compared to the standard
VE. Given that RS data is inherently more noisy than VFM data
and this might affect the applicability of beta-thresholding for this
type of scan. On the other, a marked advantage of the FWE beta-
thresholding approach is that it is participant-specific (Invernizzi
et al., 2020). Therefore, using it ensures minimizing the loss of
individual participant data and is expected to be especially useful
when the Bayesian CF framework is applied to RS data acquired
in clinical populations (e.g., with a lesioned visual pathway or
brain neurodegeneration). In general, we conclude that FWE
beta-thresholding is a useful complementary approach to the
standard VE thresholding for both VFM and RS data.

Relationship Between Resting State
Signals and Functional Architecture
Recent studies have shown that indirect measures of intrinsic
neuronal activity, such as spontaneous BOLD fluctuations
recorded during RS, can still reflect the organization of the
neuroanatomical connectivity that characterizes early visual
cortical areas. These studies have allowed the assessment of

both fine-grained within- and between- area interactions. This
observed spatial specificity in spontaneous BOLD fluctuations
can only emerge if these are anchored in the topographically
organized architecture of the visual system, as has been
shown on multiple occasions (Biswal et al., 1995; Baseler
et al., 1999; Azzopardi and Cowey, 2001; Haak et al., 2013b).
However, the neuronal and physiological basis of these BOLD
patterns is still unclear. Whether spontaneous fMRI activity
reflects the consequences of local population spiking activity,
sub-threshold neuronal activity (Logothetis et al., 2001; Shi
et al., 2017), or metabolic relationships between neurons and
astrocytes (e.g., neurovascular coupling) is still a matter of debate
(O’Herron et al., 2016; Pang et al., 2017). It is possible that
retinotopically organized inter-areal BOLD coupling patterns
reflect intrinsic activity in distant cortical areas, sharing similar
selectivity in visual field positions which is likely due to
“hard wired,” i.e., white matter bundle coupling. Alternatively,
these patterns may reflect the footprint of slow fluctuations
that traverse the brain like “waves” (Logothetis and Wandell,
2004; Carandini et al., 2015). Recent studies have unified these
contrasting views by showing that both global fluctuations, in
the form of propagating hemodynamic waves, and transient
local coactivations are necessary for setting the spatial structure
of hemodynamic functional connectivity (Pisauro et al., 2013;
Matsui et al., 2016). Taken together, these studies point to
the multiple roles that neuroanatomical, physiological and
vascular factors play in shaping spontaneous RS activity in a
way that gives rise to visuotopically organized fluctuations in
the BOLD signal. The similar visual field position selectivity
revealed by RS- and VFM-derived CF maps, suggest a shared
neuroanatomical origin.

Limitations and Future Directions
Here, we qualitatively compared local functional connectivity
at different magnetic field strengths obtained in different
participants. For a direct comparison, the 3T and 7T derived
results should ideally be obtained in the same participants.
However, in our view, the differences in the acquisition protocols
are minor and were no reason to burden a new cohort
of participants to obtain new scans. Nevertheless, while we
indeed report a good level of agreement between the CF
estimates obtained using the RS and VFM scans, future studies
should consider using identical MR parameters for the VFM
and RS scans. Moreover, such future studies could investigate
the correlations in the temporal and spatial domain in the
cortex extending the Bayesian CF model to capture distinct
dynamics in functional connectivity, and their relationship to
different cognitive and behavioral states, both in health and
disease. Furthermore, such studies could also consider the
influence of high frequency fluctuations (above 0.1 Hz) in the
spontaneous BOLD signal (Chen and Glover, 2015) on CF
parameter estimates. Finally, the stimulus-agnostic and eye-
movement independent character of the CF analysis invites
applying the present approach also to other cortical regions,
such as those involved in auditory, somatosensory, or motor
processing (Knapen, 2020).
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CONCLUSION

We have shown that CF modeling is a suitable tool to characterize
and quantify the local functional connectivity of visual cortical
areas during resting state at 3T. Moreover, the CF modeling at 3T
provides qualitatively similar results to those previously observed
at 7T, indicating that this lower, yet much more commonly
available, field strength would be sufficient for characterizing the
brains of patients and individual cases. Finally, we show that
our novel Bayesian CF modeling approach provides additional
and independent parameters such as uncertainty and effect size
that, in principle, can be used to compare the local functional
connectivity over different conditions, models and/or groups and
assess the statistical significance of the modeling.
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Supplementary Figure 1 | Visualization of CF maps of non-denoised and
denoised RS data for a single subject. From left to right: eccentricity, polar angle
and CF size. (A) corresponds to VFM derived estimates. It is reported to serve as
reference for estimates obtained using RS data. (B,D) show CF parameters for
each RS run before applying ICA-AROMA denoising procedure. While (C,E) show
CF estimates for RS1 and RS2 after applying the denoised procedure.

Supplementary Figure 2 | Comparison of thresholding approaches on a single
subject level in V1 > V2 area using RS1 data. In (A) the relation between VE and
the beta parameter is presented for all the voxels (orange diamonds) and only for
the ones surviving the 95% CI FWE beta-threshold (blue dots). The standard VE
threshold is not applied but indicated by a black dotted line. In (B) the relation
between VE and the uncertainty associated with beta is presented.

Supplementary Figure 3 | Connective field size as a function of pRF eccentricity
for RS scans. For standard and Bayesian CF models, eccentricity was binned in
intervals of 1◦ and a linear fit was applied. The CF size was initially weighted with
variance explained higher than 0.15. Each dot and triangle indicate the mean of
the CF size for each bin. While the dashed lines correspond to the 95% bootstrap
confidence interval of the linear fit. In (A) CF models were applied to RS1 scan
while, in (B) to RS2 scan.

Supplementary Figure 4 | Evaluation of different VE thresholds on ICC. In order
to evaluate a viable VE threshold applied on the test-retest analysis, we evaluate
the influence of using five different% of strongest activated voxels based on VE
(1%, 5%, 10%, 25%, and 50%) on the final ICC (r) across ROIs (A–E). Each
participant is represented by a colored lines.

Supplementary Table 1 | Correlation between non-denoised and denoised CF
maps obtained from RS data at group level. To estimate and compare the level of
agreement between not-denoised and denoised CF maps that were obtained
from RS1 and RS2 scans by using the standard CF model, we computed the
Pearson’s correlations for the eccentricity (rho) and the circular correlation for the
polar angle (theta) parameters. In order to compute the correlation scores,
eccentricity and polar angle parameters were estimated at single subject level and
then concatenated across all participants.

Supplementary Table 2 | Within-subject variability of CF parameter estimates.
For standard and Bayesian CF models, we estimated the coefficient of variation to
evaluate the within-subject reproducibility of eccentricity and polar angle estimates
for both RS scans. The coefficient of variation is reported for each visual area and
for each participant.
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Polimeni, J. R., and Uludağ, K. (2018). Neuroimaging with Ultra-High Field MRI:
Present and Future. NeuroImage 168, 1–6. doi: 10.1016/j.neuroimage.2018.
01.072

Prabhakaran, G. T., Carvalho, J., Invernizzi, A., Kanowski, M., Renken, R. J.,
Cornelissen, F. W., et al. (2020). Foveal pRF Properties in the Visual Cortex
Depend on the Extent of Stimulated Visual Field. NeuroImage 222:117250.

Pruim, R. H. R., Mennes, M., Buitelaar, J. K., and Beckmann, C. F. (2015).
Evaluation of ICA-AROMA and Alternative Strategies for Motion Artifact
Removal in Resting State fMRI. NeuroImage 112, 278–287.

Räth, C., and Monetti, R. (2009). Surrogates with Random Fourier Phases. Topics
Chaotic Syst. Preprint. doi: 10.1142/9789814271349_0031

Schreiber, T., and Schmitz, A. (1996). Improved Surrogate Data for Nonlinearity
Tests. Phys. Rev. Lett. 77, 635–638. doi: 10.1103/physrevlett.77.635

Shi, Z., Wu, R., Yang, P., Wang, F., Wu, T., Mishra, A., et al. (2017). High Spatial
Correspondence at a Columnar Level between Activation and Resting State
fMRI Signals and Local Field Potentials. Proc. Natl. Acad. Sci. U S A. 114,
5253–5258.

Shoukri, M. M., Colak, D., Kaya, N., and Donner, A. (2008). Comparison of
Two Dependent within Subject Coefficients of Variation to Evaluate the
Reproducibility of Measurement Devices. BMC Med. Res. Methodol. 8:24. doi:
10.1186/1471-2288-8-24

Thielen, J., Güçlü, U., Güçlütürk, Y., Ambrogioni, L., Bosch, S. E., and van Gerven,
M. A. J. (2019). DeepRF: Ultrafast Population Receptive Field Mapping with
Deep Learning. Cold Spring Harbor Lab. 2019:732990. doi: 10.1101/732990

van der Kolk, A. G., Hendrikse, J., Zwanenburg, J. J. M., Visser, F., and Luijten,
P. R. (2013). Clinical Applications of 7T MRI in the Brain. Eur. J. Radiol. 134:7.
doi: 10.1016/j.ejrad.2011.07.007

Winawer, J., Horiguchi, H., Sayres, R. A., Amano, K., and Wandell, B. A. (2010).
Mapping hV4 and Ventral Occipital Cortex: The Venous Eclipse. J. Vis. 10:1.
doi: 10.1167/10.5.1

Zeidman, P., Silson, E. H., Schwarzkopf, D. S., Baker, C. I., and Penny, W.
(2018). Bayesian Population Receptive Field Modelling. NeuroImage 180(Pt A),
173–187. doi: 10.1016/j.neuroimage.2017.09.008

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Invernizzi, Gravel, Haak, Renken and Cornelissen. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 February 2021 | Volume 15 | Article 625309

https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1002/asi.22792
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1523/jneurosci.0594-14.2015
https://doi.org/10.1016/j.neuroimage.2019.116423
https://doi.org/10.1016/j.neuroimage.2019.116423
https://doi.org/10.1016/j.neuroimage.2014.12.012
https://doi.org/10.1016/j.neuroimage.2014.12.012
https://doi.org/10.1093/oxfordhb/9780199559084.013.0006
https://doi.org/10.1093/oxfordhb/9780199559084.013.0006
https://doi.org/10.1016/j.neuroimage.2007.09.034
https://doi.org/10.1016/j.neuroimage.2007.09.034
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.3389/fnins.2014.00339
https://doi.org/10.1093/cercor/bhaa165
https://doi.org/10.1093/cercor/bhaa165
https://doi.org/10.1371/journal.pone.0037686
https://doi.org/10.1371/journal.pone.0037686
https://doi.org/10.1167/13.15.11
https://doi.org/10.1016/j.neuroimage.2012.10.037
https://doi.org/10.1155/2019/6067871
https://doi.org/10.1101/2020.09.03.281162
https://doi.org/10.1101/2020.09.03.281162
https://doi.org/10.1167/jov.20.11.984
https://doi.org/10.1016/j.physrep.2018.06.001
https://doi.org/10.1080/00031305.2016.1158738
https://doi.org/10.1080/00031305.2016.1158738
https://doi.org/10.1146/annurev.physiol.66.082602.092845
https://doi.org/10.1038/35084005
https://doi.org/10.1073/pnas.1521299113
https://doi.org/10.1073/pnas.1521299113
https://doi.org/10.1037/1082-989x.1.1.30
https://doi.org/10.1037/1082-989x.1.1.30
https://doi.org/10.1038/nature17965
https://doi.org/10.1016/j.neuroimage.2016.10.023
https://doi.org/10.1016/j.neuroimage.2016.10.023
https://doi.org/10.1163/156856897X00366
https://doi.org/10.1163/156856897X00366
https://doi.org/10.5937/sejodr5-17434
https://doi.org/10.1523/JNEUROSCI.2130-13.2013
https://doi.org/10.1016/j.neuroimage.2018.01.072
https://doi.org/10.1016/j.neuroimage.2018.01.072
https://doi.org/10.1142/9789814271349_0031
https://doi.org/10.1103/physrevlett.77.635
https://doi.org/10.1186/1471-2288-8-24
https://doi.org/10.1186/1471-2288-8-24
https://doi.org/10.1101/732990
https://doi.org/10.1016/j.ejrad.2011.07.007
https://doi.org/10.1167/10.5.1
https://doi.org/10.1016/j.neuroimage.2017.09.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Assessing Uncertainty and Reliability of Connective Field Estimations From Resting State fMRI Activity at 3T
	Highlights
	Introduction
	Materials and Methods
	Participants
	Stimuli Presentation and Description
	Resting State
	Data Acquisition
	Data Analysis
	Bayesian Population Receptive Field Mapping Applied to VFM
	Standard Connective Field Mapping of RS Data
	Bayesian Connective Field Mapping
	Spatial Analysis
	Bayesian Analysis
	Beta Threshold

	Results
	CF Models Based on RS-fMRI Data
	Test-Retest Reliability
	Assessing Uncertainty in RS-fMRI Data
	Bayesian CF Thresholding Application

	Discussion
	Comparable CF Estimates Based on Resting-State and Visual Field Mapping at 3T fMRI
	The Effect Size as a New Approach for Voxel-Wise Thresholding of RS Data
	Relationship Between Resting State Signals and Functional Architecture
	Limitations and Future Directions

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


