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In this work we present an in-memory computing platform based on coupled VO2

oscillators fabricated in a crossbar configuration on silicon. Compared to existing
platforms, the crossbar configuration promises significant improvements in terms of area
density and oscillation frequency. Further, the crossbar devices exhibit low variability
and extended reliability, hence, enabling experiments on 4-coupled oscillator. We
demonstrate the neuromorphic computing capabilities using the phase relation of the
oscillators. As an application, we propose to replace digital filtering operation in a
convolutional neural network with oscillating circuits. The concept is tested with a
VGG13 architecture on the MNIST dataset, achieving performances of 95% in the
recognition task.

Keywords: oscillatory neural network, vanadium dioxide, phase-encoding, convolutional neural networks, pattern
recognition, relaxation oscillators, coupled oscillators

INTRODUCTION

Convolutional Neural Networks (CNNs) are the architecture of choice to compute image
recognition tasks. Widely used in commercial technology for their recognition accuracy, they are
hindered in speed and power efficiency by the frequent access to the memory they need to perform
to train a high number of parameters for each convolutional layer in deep networks (Sebastian
et al., 2020). The development of neuro-inspired hardware holds the promise of accelerating these
algorithms by exploiting in-memory computing concepts and limiting the number of accesses to
the memory. A system of coupled oscillator, or Oscillatory Neural Network (ONN) can be used to
store and recognize multiple patterns in compact networks. As described in Hoppensteadt and
Izhikevich (1999) and Izhikevich (2000), systems of coupled oscillators lock in frequency and
establish programmable phase relations that can be used for in-time computing applications. An
ONN comprises a system of oscillators, in the role of neurons, connected to each other with synaptic
weights, that represent the strength of the oscillators’ coupling and the memory of the network.
The ONN systems therefore rely on encoding and processing the information with time-delays in
the circuits, rather than the amplitude of a signal, therefore being resilient to voltage noise and to
scaled power supply.

Exploiting the associative memory capabilities of such networks, tasks as image recognition can
be performed. Numerous works have simulated through mathematical and circuit simulations the
digit pattern retrieval with different coupled oscillators technologies: (Jackson et al., 2015) shows
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20-pixel digit recognition using transition metal oxides and
resistive ram technology; (Nikonov et al., 2015; Liyanagedera
et al., 2016), perform similar simulations on Spin Torque
Oscillators (STOs); (Hölzel and Krischer, 2011) with Van der
Pool oscillators. These works are based on storing patterns with
n × m pixels into an ONN that comprises n × m oscillators.
To perform the recognition, a distorted pattern of the same
pixel size is fed to the ONN, and using the minimum phase
attractor of the circuit, the right stored pattern is retrieved. The
output is an n × m pixels image of the correct digit. Image
classifications tasks, however, work quite differently. Taking as an
example digit classification through a neural network, an image
of n × m pixels if fed into the network. The network output
is an 1 × 10 array containing the classification probabilities
of that image. This classification operation is most commonly
performed by convolutional neural networks, that process the
image with a series of trainable convolutional filters in the first
few layers and achieve recognition after some fully connected
layers (Figure 1).

The link between convolutional neural networks and the
associative memory capabilities of oscillatory neural networks
has so far been explored, to our knowledge, only in Liu
and Mukhopadhyay (2018), where an associative memory
bank (Hopfield network) replaces the fully connected layers
in CNNs. The associative memory is here used to perform
a classification with a combination of unsupervised learning
and transfer learning techniques. Even though the concept is
very interesting and promising, the Hopfield network that this
technique envisions comprises between 256 and 2,024 neurons.
However, the physical demonstrations of oscillatory neural
networks features maximum 100 oscillators as neurons with
standard Phase Locked Loop or equivalent CMOS technology
(Jackson et al., 2018). The technological challenge in the physical
realization of large oscillatory neural networks resides in the
complex dynamics of the oscillators’ frequency and phase
synchronization when the electrical components are affected by
variability. This is even more true when the ONNs are built
with novel oscillator technology, such as STOs or vanadium-
dioxide (VO2) oscillators (Romera et al., 2018; Raychowdhury
et al., 2019), for which a maximum of 6 oscillators have been
connected into a network.

Alternatively, it is suggested that the computing capabilities
of small oscillator networks, with up to 10 nodes, can be
efficiently exploited to do various image processing tasks, like
graph coloring or image saliency processing (Cotter et al., 2014;
Tsai et al., 2016). These previous works propose an ONN
scheme in which the computation is based on the distance
between the input image and the feature to be recognized. For
example in Tsai et al. (2016) this distance is encoded in the
difference in gate voltages between two transistors which bias a
phase transition device. Another popular configuration encodes
the distance between the input pattern and the feature to be
recognized in a frequency shift between oscillators, which are
connected by a fixed coupling. The distance between the two
patterns is then calculated on the time the oscillators need to
converge to the same frequency (Cotter et al., 2014; Nikonov
et al., 2015; Zhang et al., 2019). The implementation of these

concepts does not use the associative memory capabilities of the
ONNs to store multiple patterns. Instead, to perform the distance
measure, the circuit needs to be reconfigured each time a different
feature needs to be recognized. In our work, we propose an
implementation of small, fully connected networks, which exploit
the associative memory capabilities of an Hopfield network. This
allows to store the different features to be recognized in the
same network, and enables the recognition of up to 5 different
features within one computation performed by the same filter.
In addition, in our work we provide the missing the link to
show how the feature extraction performed by ONNs can be
used for image classification tasks. We show the potentiality
of the ONN technology for the realization of reconfigurable
CNN in hardware, therefore bridging the gap between previous
demonstration of ONN pattern retrieval and the industry-
standard algorithms.

Among the new oscillator technologies, we concentrate our
analysis on VO2 oscillators, as they offer the advantage of
realization of very compact oscillators, which can be easily
coupled with standard electrical components, allowing for easy
reconfigurability of the system (Parihar et al., 2015; Corti
et al., 2018). VO2 based oscillators also offer good scalability
perspective and demonstrate operating voltage of less than
1 V and low power consumption (∼20 µW per oscillator)
(Shukla et al., 2016).

We exploit the feature extraction capabilities of small
networks of VO2 coupled oscillator to replace digital filters in
CNNs (Figure 1B). We fabricate VO2 oscillators on a Si platform,
adopting a crossbar (CB) configuration with scaled device
dimensions down to 70 nm. The CB devices exhibit improved
variability and reliability compared to co-planar structures and
enable the coupling of 4 oscillators. We demonstrate that such
a 4-node ONN can memorize and perform 5 different filtering
actions of a CNN in a single circuit. Simulations with a 3 × 3
ONN further show how the concept can be applied to replace
digital filters in the first layer of a CNN with a VGG-13 inspired
architecture and through the adoption of a transfer learning
technique. The hybrid CNN-ONN platform has been tested
on the MNIST algorithm reaching recognition performances
up to 95%. As an outlook, we discuss the benchmark of this
technology when extended to all the layers of a CNN, up to
the fully connected layers, in comparison with existing hardware
and conclude that ONNs might be used as fast and low-power
inference machines.

MATERIALS AND METHODS

Device Fabrication
VO2 is a phase change material that presents a volatile,
temperature driven insulator to metal transition (IMT). The
transition can be triggered by joule heating when a voltage is
applied to a VO2 device (Kim et al., 2010), and it is reversed
when the voltage across the device is removed. Given its
volatile phase-change characteristics, VO2 cannot be used as
memory element like chalcogenide-based phase change materials
(PCM). However, the VO2 phase transition can be instead
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FIGURE 1 | (A) image inference process in an oscillatory neural network; (B) image classification through a convolutional neural network.

exploited to build very compact oscillators. Other materials
have shown similar properties, for example tantalum oxide
(Jackson et al., 2015; Sharma et al., 2015) or niobium oxide
(Li et al., 2015), however, the near-room temperature phase
transition of VO2 and its proven high endurance up to 109 cycles
(Shukla et al., 2015) make this material a most favorable choice
of oscillators-based technology. VO2 can be grown crystalline on
TiO2 substrates; however, when deposited on Si, the film forms
grains of the average dimension of ∼50 nm (Premkumar et al.,
2012). In the interest of future integration with electronics we
have chosen to focus on integration on silicon in our work.

Figure 2 shows VO2 devices fabricated in a CB geometry on
a 4” Si wafer with a 1 µm thermal SiO2 layer. Trenches are
etched into the SiO2 substrate and filled with Pt to provide the
bottom electrode. Subsequently, an 80 nm thick VO2 film is
grown via atomic layer deposition and post-annealed, resulting in
a policrystalline, granular film (Bai et al., 2020; Niang et al., 2020).
Finally, top electrodes are formed using e-beam lithography and
Pt evaporation. The smallest device area is 70 nm × 70 nm
allowing a very compact design. The resistivity vs. temperature
curve (RT) of a 250 nm × 250 nm device is shown in Figure 3A
and exhibits an insulator-to-metal phase-transition with roughly
a two-order of magnitude in resistance change. The step-like
RT implies multi-grain transitions, as already shown in previous
work (Ruzmetov et al., 2009; Takami et al., 2014; Corti et al.,
2019). Figure 3B shows the insulator-to-metal and metal-to-
insulator transition of an electrically activated device. A current
source is used to control the current flowing in the device; a
voltmeter is used to measure the voltage at each point. The
IV characteristic of this device shows three different operating
regions: a first region, in which the device is in its high
resistance state, a negative differential resistance regime upon the

phase change, and finally the low resistance region. A crossbar-
geometry of VO2 based-oscillators applications has previously
been fabricated with point-probe contacts on TiN on Si, yielding
record-speed oscillations performances of 9 MHz, almost an
order of magnitude more than what demonstrated with planar
structures (Mian et al., 2015). In another more recent work, the
oscillating and coupling dynamics of such a vertical structure
have been measured and modeled (Tobe et al., 2020). In this
work, we further report that the cross-bar geometry yields a better
reliability of the devices. In fact, in a previous work we discussed
how coplanar devices needed a burn-in cycle to initialize the
devices, which sometimes resulted in fatal irreversible changes
in morphology (Corti et al., 2019). The crossbar devices do not
need a burn-in cycle, improving reliability as virtually all the
devices fabricated were able to produce oscillations. Compared
to the planar VO2 structure, the crossbar structure provides
improved threshold voltage stability (device-to-device variability
lowered from 20% to 10%) and resistance variability (from 10%
to ∼5%). Compared to other demonstrations on silicon, the
improved variability allows for coupling of more oscillator nodes,
up to 4. However, to go to larger networks, careful material
and device development is necessary to bring this figure down.
The devices are tested in temperature-controlled chamber at 320
K and connected in the circuit configurations through external
electrical components.

Oscillatory Neural Network
A single oscillator unit is realized biasing the VO2 device in
the negative differential resistance regime with a series transistor
as described in Parihar et al. (2014). When the device is
in its insulating state the bias voltage drops mainly across
the VO2, until the Joule heating brings its local temperature
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FIGURE 2 | Left: scanning electron microscopy (SEM) image of 12 VO2 devices. Top right: schematic of a VO2 device deposited on a Si/SiO2 substrate. The device
area is defined by the width of the Pt contact lines. On the bottom, a SEM image of a 350 nm device. Minimum device dimension demonstrated: 70 nm.

FIGURE 3 | (A) Resistivity measure of a 300 nm × 300 nm crossbar VO2

device. The insulator to metal phase transition happens at around 340 K and
registers 2 orders of magnitude phase change. (B) IV curve of a VO2 device.
Three different areas can be identified: the insulating region (I), the negative
differential resistance region (II), and the metallic region (III).

above the phase transition, and the device switches to its
metallic state. When the device is in the metallic state, the
voltage drops mainly across the series transistor. When the
bias is chosen such that the voltage drop does not exceed the
upper threshold of the negative-differential resistance regime,
Joule heating is reduced. The VO2 device therefore cools and
eventually switches back to its insulating state. The switching
between the insulating and metallic state is therefore continuous
and self-sustained, originating relaxation oscillations at the
drain voltage of the transistor. The oscillators are coupled
via resistive and capacitive elements, as shown in Figure 4,
which ensure frequency and phase-locking of the drain voltage

signals. The strength of the coupling element Cij that connects
oscillator i with oscillator j can be calculated starting from the
patterns to be memorized, via the Hebbian Learning Rule (HLR)
(Hoppensteadt and Izhikevich, 1999):

Cij =
1
n

m∑
k = 0

ϑk
i ϑ

k
j

where n is the total number of pixels per each image, or
equivalently the number of oscillators in the network, ϑi

k is the
value associated to the pixel i of pattern k, and m is the total
number of patterns to be memorized in the ONN (Figure 5).
These values Cij are then translated in different values of the
coupling resistance Rc between the oscillators. The memorized
patterns appear in the operating ONN as stable phase relations
between each oscillator i and j. An oscillator in phase with the
reference oscillator is translated into a white pixel; an oscillator
with 180◦ phase difference with the reference corresponds to
a black pixel. Given m patterns memorized in the oscillatory
neural network, the oscillators can stabilize their phase only
according to one of the m memorized patterns. When the
oscillators are initialized to an unstable phase relation, they will
relax to the nearest stable ensemble of phase relations, i.e., to
the nearest memorized pattern. In this way, from a distorted
pattern a memorized pattern is retrieved. In our system in
Figure 4, the oscillators are initialized to have different phase
relations via a delay of the bias voltages to each oscillator.
For instance, an oscillator representing a white pixel input is
switched on at a time td = 0 compared to a reference signal;
an oscillator representing a black pixel input is switched on
at a time td = T/2 compared to the reference signal, with
T indicating the period of one oscillation. Gray-scale values
correspond to proportional delays. The output is represented by
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FIGURE 4 | The coupled oscillator network serves as an image filter. The image input is converted into a delay of the oscillators’ input signal. A single oscillator unit
comprises a VO2 phase-change element in series with a transistor. The coupling is realized with an externally connected resistance and a capacitance. The
capacitance value is fixed, while the resistance value can be changed to store different patterns in the network and can be later substituted with a memristor.

FIGURE 5 | Flow chart of the learning. Weights are assigned to the pixel of each training image; the Hebbian Learning Rule is used to compute the coupling weights,
which are translated into circuit values of the coupling resistance Rc.
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the phase of the oscillating transistor drain voltage, compared
to a reference. When the network is initialized in this fashion
to a phase relation between the oscillators that is different from
the stored, stable phase relations, the system relaxes to the
nearest stable phase relation, therefore achieving recognition of
a pattern. The success of the input time-delay technique for
image recognition is explained in detail in Corti et al. (2020).
The settling time to the desired output typically varies between
4 and 5 oscillation cycles, nevertheless, after 5 oscillation cycles
the phase information becomes stable and can be read-out. The
information about the recognized feature is contained solely in
the relative phase of the oscillators. In the experiments presented
in this paper, the input delay signal is generated through a
signal generator unit (National Instruments), the output of the
oscillators is acquired by a signal acquisition set-up and the phase
calculated with post-processing. The circuit coupling elements
are realized with external electrical resistances. As an outlook,
the input time-delay can be implemented in hardware via ring
oscillators, and the phase-to-digital conversion can be tackled as
described in Staszewski et al. (2006). Also, the coupling resistance
can be implemented with reconfigurable phase change memories
(Boybat et al., 2018).

The simulations for the circuit implementation of the ONNs
have been done using a Spice simulator. The VO2 device was
simulated with a behavioral model as described in Maffezzoni
et al. (2015). TensorFlowTM was used for the CNN and the
hybrid ONN-CNN algorithms. The TensorFlowTM code is used
to calculate the input delay of the driving voltage of the
oscillators, as described above, from an input image, taken from
the MNIST dataset. The code then launches the circuit simulation
of the ONN, which are conducted in SPICE. The output of the
simulation, corresponding to the pattern retrieval computed by
the simulated ONN circuit, is then fed back to the TensorFlowTM

algorithm as an output image. The image is then processed in the
subsequent CNN layers with the TensorFlowTM code.

The choice of the MNIST dataset to perform this computation
is justified by the reduced dimensions of the dataset itself. To
obtain precise results with the simulation, a high time resolution
is required, with very small time-steps for each computation. The
simulations of the ONN are therefore rather slow and require
an extended simulation time and many computational resources.
This problem is not present in the circuit implementation, as the
hardware realization is able to perform at frequencies in the order
of MHz. We are, however, positive that a similar approach on a
more complex dataset will yield the same results here discussed
with the MNIST dataset.

RESULTS

Four-Coupled Oscillators
In this section we present a demonstration of four coupled VO2
oscillators on Si, in which multiple patterns can be memorized.
To form relaxation oscillator circuits, the VO2 resistors on a
silicon wafer are coupled through externally connected resistors
and capacitances. An example of the measured waveforms of
four coupled oscillators is shown in Figure 6. The oscillators

FIGURE 6 | Coupling of four VO2 on Si oscillators. For reliable coupling, a
hybrid R-C scheme was used, and the relative phase is calculated when the
falling edge of the oscillations cross a 1 V threshold. In this experiment, an
external capacitance of 150 nF was used on purpose to slow the oscillations,
to enable a more precise sampling of the output signal.

appear to be locked in frequency and the phase relation is
calculated taking the distance between the crossing of the 1 V
line in the falling edge of the oscillator curves. The coupling
network has been programmed to recognize features as in
a first layer of a convolutional neural networks. Looking at
available analysis of feature extraction in convolutional neural
networks (Zeiler and Fergus, 2014), the filters in the first
layer commonly select edge features, like borders, diagonal,
horizontal and vertical edges. Therefore, for the experimental
demonstration, the ONN was trained to store vertical, horizontal
and diagonal patterns. The weights of the circuit elements
were identified through the Hebbian learning rule. To the
best of our knowledge, this is the first demonstration of
4 coupled VO2 oscillators with memory capabilities realized
on a silicon platform. The circuit parameters used for the
experiments are: R12, R13, R24, R34 = 82 k�, R23, R14 = 130
k�, Cc = 5,6 nF, Vgx = 1.4–1.6 V, Vin = 1.8–2.2 V. The
different values of gate voltages Vg and of the input signal
Vin are used to achieve similar frequency for the oscillators,
and to compensate from intrinsic differences in the devices,
which present around 10% of device-to-device variability. The
horizontal, vertical and diagonal patterns are identified over
multiple experiments, as depicted in Figure 7. In addition, a
fourth pattern in which all the oscillators result equally spaced
was identified. The measurements are performed assuming
Oscillator 1 as the reference oscillator; the phase of the other
oscillators is calculated in respect to the crossing of the 1 V
threshold of oscillator 1. Therefore, Oscillator 1 has always
a phase equal to 0, with a minimal data scattering that is
calculated taking into account the variability of the value
of the first experimental point that crosses the 1 V line.
The other oscillators present a larger scatter, which doesn’t
impair the clear identification of the various patterns. However,
random fluctuation of the oscillations and cross-talk noise
hindered the experimental pattern recognition using the input-
delay to output phase inference process. This is expected to
improve with further process and design optimization of the
crossbar devices.

To demonstrate the filtering capabilities of the circuit on
an entire image, without suffering from the non-idealities of
the experimental demonstration, circuit simulations calibrated
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FIGURE 7 | Experimental phase data that demonstrate that 4 features (e.g., vertical, horizontal and 2 diagonals) can be stored simultaneously in one 4-oscillators
network. The pattern can be controlled by the time-delay of the oscillator drive. Phase-noise due to device variability impedes practical application. Circuit
parameters: R12, R13, R24, R34 = 82 k�, R23, R14 = 130 k�, Cc = 5,6 nF, Vgx = 1.4 –1.6 V, Vin = 1.8–2.2 V.

on the experiments were conducted using Spice, reducing the
variability of the VO2 devices from 10% to 5% and therefore
increasing the recognition accuracy. In these simulations
all the 4 patterns identified in the experiments were also
observed; in addition, when the input delays of the circuit
were chosen to be all the same, the oscillators in simulations
were all oscillating in the in-phase configuration. This is
an example of identification of a spurious pattern that was
not encoded with the HRL. Spurious patterns arise when
the memory capacity of the oscillatory neural network, that
is studied to be 0.15n patterns for a n-oscillator network,
is violated (Nishikawa et al., 2004; Follmann et al., 2015).
Nevertheless, in such small oscillator networks the spurious
patterns can be harvested as additional information. As
shown in Figure 8, when using the 2 × 2 ONN filter on
an image of the MNIST dataset, vertical, horizontal and
diagonal edges can be identified. In addition, the background
as well as the images parts that have little contrast, can
be identified through the in-phase oscillating condition.
This demonstrates that a single ONN filter can operate as
convolutional feature edge extraction identifying 5 different
features. Compared to previous work, the identification of
the features does not need to proceed sequentially feature
by feature, but it is done in parallel by the same filter.
Moreover, the dimensionality of the filter should match
the dimensionality of the input, i.e., 2D input arrays such
as images are preferably processed using 2D filters. The
4 coupled oscillators system here discussed represents the
minimum hardware realization to use ONNs as filters for image
feature extraction.

ONN-CNN
Having shown that our simulations can reproduce experimental
behavior, we extend the simulations to explore the use of ONNs
in combination with CNNs. The ONN circuit described in
section “Oscillatory Neural Network” is simulated with Spice
simulations using for the VO2 device a behavioral model as
described in Maffezzoni et al. (2015). The simulations are
done with 3 × 3 oscillators ONNs based on parameters

extracted from experimental devices. A convolutional neural
network with a structure similar to a VGG-13 is trained on
the MNIST dataset with a standard back-propagation algorithm
(Table 1). The trained weights are used to identify which
features are recognized in the first layer of the CNN, that
comprises 64 filters with a dimension of 3 × 3. In our
network, as in Zeiler and Fergus (2014), it was also possible
to identify multiple filters that selected horizontal, vertical and
diagonal edges. We use the Hebbian Learning rule to store
the same patterns in a 3 × 3 ONN matrix. The matrix
dimension was chosen according to the dimension of the
first layer convolution matrixes in the CNN. Ten thousand
images from the MNIST dataset have been processed by the
ONN matrix with a stride of 2, recognizing in each image
vertical, diagonal, horizontal edges and uniform background.
As already mentioned, storing of more than 0.15 n patterns,
where n is the number of the oscillators (Follmann et al.,
2015), results in the appearance of spurious patterns that can in
principle hinder the feature edge extraction process. However,
as already discussed for the 4-coupled oscillators experiments,
the arising of spurious patterns is not detrimental for feature
extraction operations. In the 3 × 3 filter case, we derived
the pattern information from 3 key oscillators that oscillate
in-phase for each memorized edge. For example, referring to
what is depicted in Figure 9, each time oscillators 2, 5, and 8
oscillate in-phase a vertical edge is recognized, and similarly for
the other edges.

With this technique, a dataset of 10,000 images filtered by
the single ONN was calculated, with dimensions 13 × 13 × 5,
where 5 represent the number of features recognized by the single
ONN filter. The dataset was split in 6,000 training images and
4,000 test images.

Subsequently, five filters in the pre-trained CNN that provide
the same filtered images were identified and replaced by the ONN
with a simple transfer learning process:

1. The 64 CNN filters were convolved with the same
images from the MNIST dataset and activated with
a Relu function.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 628254

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-628254 February 8, 2021 Time: 15:47 # 8

Corti et al. Coupled VO2 Oscillators as CNN Filters

TABLE 1 | Schematic of the convolutional neural network architecture used in this work for performing the MNIST classification task.

MNIST dataset 27 × 27 × 1,000

ONN-CNN 5 ONN filters + 59 CNN filters 3 × 3 × 64, stride = 2, padding = same

CNN1 3 × 3 × 64, stride = 1, padding = same

Max pool 1 2 × 2, stride = 2, padding = same

CNN 2(×2) 3 × 3 × 128, stride = 1, padding = same

Max pool 2 2 × 2, stride = 2, padding = same

CNN 3(×2) 3 × 3 × 256, stride = 1, padding = same

Max pool 3 2 × 2, stride = 2, padding = same

Fully connected 1 4,096

Fully connected 2 1,000

Fully connected 3 10

The network architecture is inspired by the VGG-13 architecture.

2. The CNN-filtered images were compared to the ONN-
filtered images calculating the mean square error; the
minimum of the mean square error was used to identify the
filters from the CNN that can be substituted with the ONN.

3. A new dataset is created after the first layer, substituting the
images filtered by 5 CNN filters with the 5 filtered images
from the ONN.

The remaining neural network layers are trained on the
new dataset, achieving a recognition accuracy on the training
set of 100% and on the test set of 95%. The original CNN,
in comparison, reported better accuracy on the test set, of
97%. The reason for the worsening of the neural network
performances is attributed to the cases in which the ONN
fails the feature edge extraction. In fact, insufficient training
of the ONN (just using HLR) also leads to recognition
errors. The implementation of a backpropagation algorithm
to the ONN layer would allow to increase the recognition
performance in the network. We therefore implemented and
tested a backpropagation scheme in our simulations. In Figure 10
we show an input image feature that should be recognized
as a vertical edge. However, when the ONN is trained with
the HLR the recognition fails. A cost function C = (ϕtrain–
ϕout)2/2 is calculated from on the phases of the desired
output ϕtrain and the obtained output ϕout . Assuming an
exponential dependence of the rising and falling edge of
the relaxation oscillator waveforms, the derivative in time
can be derived and an improved coupling matrix calculated.
During subsequent epochs of this training the phase error is
reduced. In the example shown in Figure 10, the feature is
recognized after 8 epochs of training. While blurred features
(allowing 40% gray scale) were only recognized with 30%
probability using the untrained ONN, 100% of the features
were recognized with the trained ONN. The extension of the
backpropagation algorithm to the entire ONN-CNN is yet
to be implemented, but is expected to boost the recognition
performance. In addition, the direct implementation of the
backpropagation algorithm would allow for direct training of
a CNN algorithm on an ONN platform and should ultimately
result in an increase of the training speed. Despite the reduction
in recognition performances, the proposed ONN implementation

FIGURE 8 | Simulation of convolution operation on MNIST images with a 2 ×
2 VO2 oscillator filter, which corresponds to 5 digital filters of the first layer of a
CNN. The simulations are calibrated with the experimental results in Figure 7.

allows for a reduction of the number of parameters that
need to be trained by the network. In fact, 45 parameters
undergo training for 5 CNN filters of 3 × 3 pixels size,
however, only 36 parameters need to be trained for a single
ONN that performs all filtering actions. The number of
parameters to be trained is therefore reduced of 20%: this
can represent an important advantage in terms of speed and
power consumption when training larger networks. In addition,
a further acceleration of the network speed and a further
reduction of the number of memory accesses is achieved by
the parallel processing of 5 filters from a single ONN unit,
whilst in the standard CNN these five convolution actions are
performed sequentially.

Benchmark
In this section we benchmark the convolution operations
conducted with the ONN compared to a conventional CPU
or GPU. We assume that the first layer of the convolutional
neural network presented in this paper is integrally realized via
ONN filters operating in parallel. The first layer of the CNN
consists of 64 filters of 3 × 3 dimension passing through a
27 × 27 pixel image with a stride of 2, accounting to total of
13 × 13 operations per filter. Assuming that each ONN can
perform 5 filtering actions inherently, a total amount of 13
× 13 × 64/5 ≈ 2,200 ONNs is required, which corresponds
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FIGURE 9 | Extension of the convolution filtering operation to a 3 × 3 oscillator matrix with stride of 2. (A) example of handwritten digit images from the MNIST
dataset. (B) Five digital filters are replaced with 1 ONN filter that performs equivalent edge extraction actions. The 9-bit information output is compressed in a 5-bit
fashion for better representation of the edge direction in (C). In (D), the image in (C) is post-processed and expanded to a 27 × 27 pixel image to show the
effectiveness of the ONN filter in recognizing the image features.

FIGURE 10 | Example of backpropagation algorithm applied to a vertical edge recognition problem of the VO2 ONN filter. Left: a distorted edge is given as an input
to the ONN filter. The difference between the expected output phase and the output phase of the filter is depicted as pixel coloring from green (no phase error) to red
(phase error). At the beginning the ONN filter fails the recognition, but after 8 learning epochs the filter is able to recognize the edge as a vertical edge. Right: the
backpropagation algorithm allows the recognition of the image for increasingly distorted input features. This backpropagation algorithm is suitable for implementing
filter training in an ONN-CNN.
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TABLE 2 | Benchmark of the ONN technology against currently available platforms for convolutional neural network applications.

ONN (current) ONN (projected) CPU Intel’s Core I9 GPU Tesla V100

Frames/s 0.6 × 106 20 × 106 5 × 106 600 × 106

Energy/frame 3.4 µJ 3 nJ 20 µJ 500 nJ

TFLOP/s 0.12 4 1 120

TFLOP/s W−1 0.06 67 0.01 0.4

roughly to 20,000 oscillator units and 80‘000 memristors for
implementing the coupling. Assuming a minimum feature
size of 100 nm for both the VO2 oscillators as well as
the memristor, the total estimated area would be around
0.001 mm2.

For calculating the power consumption of the circuit, we refer
to Shukla et al. (2016), Corti et al. (2020), that demonstrate
operations of the oscillators at the power P = 20 µW with a scaled
supply voltage <1 V and f = 3 MHz frequency operation. The
total energy for the ONN to process one image with 64 filters at
3 MHz, including the waiting time of 5 oscillating period for the
output stabilization, is calculated as

P × f × 5 = 0.6 µJ/frame

Similarly, assuming the mean value of the coupling resistance
to be around 100 k�, and the voltage drop across it 0.7 V, the
total energy consumption of the memristors is calculated to be
3.4 µ J/frame.

Scaling of the device dimensions, it is envisioned that
the VO2 oscillator could be driven with 1 µW @ 0.3
V at a moderately increased oscillation frequency of
20 MHz. Moreover, through improved processing and
resulting device uniformity, the coupling strength could be
weakened allowing 1 M� coupling resistance (Shukla et al.,
2015). The figure of merit for such a scaled system would
improve by 3 orders of magnitude resulting in an energy
consumption of 3 nJ/frame.

For conducting the same operation, a standard GPU
needs to perform (13 × 13) convolutions × 64 filters × (3
× 3) pixels/filter = 97,344 multiply-accumulation operation,
that correspond to around 200,000 flops. In Intel’s CPU
Core I9, which runs 1 TFLOP/s at 95 W, the total energy
accounts for 20 µJ/frame; in the NVIDIA Tesla V100 GPU,
that operates 120 TFLOP/s @ 300 W, the total energy is
500 nJ/frame (Table 2). We can conclude that the ONN
system, when built with the current VO2 technology, is
operating now at less power consumption of a conventional
CPU, and given the scaling capabilities presented in other
works, has the possibility of outperforming the top GPU
available on the market. This analysis has been conducted
not considering the peripheral circuitry that the ONN
system will require, and therefore should be taken just as
a projection of the potentiality of this technology and as
an indication on the reduction in power consumption that
this architecture can bring. Further benchmark should,
however, be conducted at a stage when the technology is
more advanced, to compare the performances to other

specialized hardware that serve as accelerators for neural
networks applications.

CONCLUSION

A concept for exploiting oscillatory neural networks as hardware
accelerators in convolutional neural networks is presented in
this paper. A 4-nodes oscillatory neural network was built
with scaled VO2 oscillators’ technology on a Si platform. We
show that the time-encoded output signal can store up to 5
trained filters and performs the equivalent function of multiple
digital convolutional filters in a neural network. We expand
the concept to a 3 × 3 VO2-ONN trained with Hebbian
learning rule and simulate back-propagation for performance
optimization. With the 3 × 3 filter and a transfer learning
approach, we show that multiple digital filters of a CNN can
be trained on a single ONN platform, achieving competitive
recognition performances.
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