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Two-photon Ca?* imaging is a leading technique for recording neuronal activities in vivo
with cellular or subcellular resolution. However, during experiments, the images often
suffer from corruption due to complex noises. Therefore, the analysis of Ca®* imaging
data requires preprocessing steps, such as denoising, to extract biologically relevant
information. We present an approach that facilitates imaging data restoration through
image denoising performed by a neural network combining spatiotemporal filtering and
model blind learning. Tests with synthetic and real two-photon Ca?* imaging datasets
demonstrate that the proposed approach enables efficient restoration of imaging data.
In addition, we demonstrate that the proposed approach outperforms the current state-
of-the-art methods by evaluating the qualities of the denoising performance of the
models quantitatively. Therefore, our method provides an invaluable tool for denoising
two-photon Ca?* imaging data by model blind spatiotemporal processing.

Keywords: image restoration, model blind learning, spatio-temporal processing, residual convolutional network,
machine learning, two-photon Ca?* imaging

INTRODUCTION

Understanding how brain information processing is implemented during cognitive tasks requires
the interpretation of neuronal activities at multiple scales (Romo and De Lafuente, 2013; Guo et al,,
2014). Monitoring neuronal activities at high resolution is crucial for the investigation of brain
functions (Grewe et al., 2010; Huber et al., 2012; Tischbirek et al., 2019). Two-photon microscopy
(Denk et al., 1994; Helmchen and Denk, 2005; Grienberger and Konnerth, 2012) is a powerful
and versatile neuroimaging technique for recording neuronal dynamics using Ca?*-dependent
fluorescent indicators and can produce neuronal recordings as video data. The optical nature
of two-photon Ca?™ imaging allows precise observation of the spatial localization of cells, thus
facilitating the analysis of the underlying relationship between cell activity and its location (Wang
M. et al.,, 2020). This further helps to guide patch pipettes when performing electrophysiology
recordings (Ding et al., 2017) and in differentiating between cell types (Chen J. L. et al., 2013).
Moreover, two-photon microscopy enables us to monitor neuronal activities at different
scales, ranging from hundreds, or even thousands, of neurons (Stosick et al, 2003;
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Svoboda and Yasuda, 2006; Peron et al., 2015) to single dendrites
(Jia et al.,, 2010) and spines (Chen et al., 2011; Chen X. et al,
2013) of individual neurons. Recently, remarkable advances in
two-photon microscopy have led to the simultaneous recording
of several brain areas (Yang et al., 2019) and even the tracking
of neuronal activity over a period of weeks (Peters et al., 2014;
Lietal., 2018).

However, two-photon imaging systems are inherently noisy
because the number of photons reaching the microscopic
detector is relatively small (Morris et al, 2015). This
measurement noise is composed of complex components,
including Poisson noise for the photons reaching the
photodetector and added white Gaussian noise for thermal
fluctuations (Zhang et al., 2019). Although it is possible to obtain
cleaner data by increasing the imaging time, this is accompanied
by an increased risk of sample damage. To date, the physical
limits of two-photon microscopy (imaging depth, imaging
speed, spatial resolution, and image quality, etc.) are still difficult
to overcome by simply optimizing the microscopy hardware.
Therefore, developing computational tools to improve image
quality is becoming increasingly important for microscopy
data processing. Denoising, deblurring, and single-image
super-resolution algorithms are representative image restoration
approaches that enable the recovery of important biological
information that has been subject to complex corruptions,
thus pushing the limits of two-photon microscopy (Weigert
et al., 2018). Signal denoising, which aims to retrieve the true
signal from noisy images, aims to become a crucial module in
the analysis arsenal of two-photon imaging data (Guan et al,,
2018; Belthangady and Royer, 2019). Therefore, developing
a denoising algorithm for effectively restoring two-photon
Ca’* imaging data can significantly help data processing in
neuroscience research.

Reconstructing the true signals from noisy or incomplete
measurements is an important and enduring challenge in the
signal processing field. Many previous studies have suggested
solutions for restoring images. These algorithms are traditionally
based on statistical models, for example, Markov random fields
(Roth and Black, 2005), sparse representations (Elad and Aharon,
2006), and nonlocal means (Buades et al., 2005). Block matching
and 3D filtering (BM3D) is a popular state-of-the-art tool
for denoising images (Dabov et al,, 2007). Deep learning is
a recent fast-developing field; artificial neural networks with
multiple layers are trained using a large amount of labeled
data, thus learning a complex mapping process that translates
training data to produce the desired output (Lecun et al,
2015). In neuroscience, deep learning algorithms have been
applied successfully to various tasks, for example, the automatic
reconstruction of neurons from volume electron microscopy
data (Januszewski et al., 2018), cell segmentation (Falk et al,
2019), fluorescence label prediction from unlabeled images
(Christiansen et al., 2018), and accelerating super-resolution
localization microscopy (Ouyang et al., 2018). Recent advances
in using deep learning methods to restore microscopy images
have shown significant quality improvements by learning to
transform corrupted measurements to clean data (Weigert et al.,
2018); deep learning algorithms outperform traditional statistical

modeling methods, which require explicit knowledge of data
corruptions. To our knowledge, while many methods have
been used for denoising single images, few methods have been
developed for denoising video data, such as functional Ca’*
imaging data. For video denoising, it is important to note that
the consecutive frames in video data are, in general, highly
correlated but are susceptible to motion-induced artifacts. Block
matching and 4D filtering (BM4D) is an extension of the
BM3D single-image denoising method and is a state-of-the-
art video denoising tool (Maggioni et al., 2012). It searches
similar patches in both spatial and temporal dimensions, thereby
increasing the computational cost drastically. Therefore, a
spatiotemporal or 3D convolutional network architecture that
combines spatial and temporal filtering will be more robust
to artifacts caused by brightness changes and object motion
(Claus and Van Gemert, 2019; Wang C. et al,, 2020). The
spatiotemporal architecture can be superior to the network
models using only spatial information, and it has already
shown some promising results for the analyses of video
(Soltanian-Zadeh et al., 2019) and volumetric (Kamnitsas et al.,
2017) neural data.

In this work, we propose to use a model blind learning
approach that combines spatial and temporal information to
restore two-photon Ca?™ imaging data. Unlike traditional
methods, this method does not require ground truth imaging
data with a high signal-to-noise ratio (SNR). The complex
processing required to denoise raw imaging data is implemented
via end-to-end learning, based on observing noisy data only.
In addition, spatiotemporal information is used for the network
model to tackle temporal inconsistencies and recover true signals
in both the spatial and the temporal dimensions. Hence, the
mapping of the network model is represented as a model blind
spatiotemporal filtering, which is learned, with a high SNR,
by the output imaging data. The performance of the proposed
network was first validated by using synthetically generated
noisy two-photon imaging data and then using real raw two-
photon imaging data. Subsequent quantitative assessments of
the restored two-photon imaging data demonstrate that both
the spatial and temporal signal qualities exhibit significant
improvements in comparison with the methods reported
previously. Thus, the tests performed with the proposed network
show that it provides efficient denoising for two-photon Ca?™*
imaging data via a model blind spatiotemporal processing, and
thereby offers a solution to facilitate the restoration of massive
imaging datasets in neuroscience research.

MATERIALS AND METHODS

Data Acquisition
For the experiments, C57BL/6] mice (2-3 months old) were
provided by the Laboratory Animal Center at the Third
Military Medical University. All procedures were carried out
in accordance with protocols approved by the Third Military
Medical University Animal Care and Use Committee.

For the two-photon Ca?" imaging experiments, recoding
was performed in the primary auditory cortex of the mice
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(Lietal., 2017a,b; Wang et al., 2018). The mice were anesthetized
using isoflurane and their body temperature was maintained at
37.5°C. After a local lidocaine injection, the skin and muscles
over the targeted cortex region were removed. A prefabricated
plastic chamber was glued to the skull, and a small craniotomy
(~4 mm?) was used to expose the auditory cortex. The
craniotomy was filled with 1.5% low-melting-point agarose, and
the chamber was perfused with normal artificial cerebral spinal
fluid. The dye Cal-520 AM was injected into the auditory cortex
of the mice, and two-photon Ca?* imaging was performed 2 h
after dye injection.

In vivo two-photon Ca’?T imaging was performed using a
custom-built two-photon microscope system (LotosScan, Suzhou
Institute of Biomedical Engineering and Technology, China) (Jia
et al., 2010, 2014). In the mice cortices, two-photon excitation
light was delivered with a mode-locked Ti:Sa laser (Mai-Tai
DeepSee, Spectra Physics, Santa Clara, CA, United States). The
laser was focused by a 40%/0.8 NA water-immersion objective
lens (Nikon) onto the brain tissue. The excitation wavelength was
set to 920 nm for all Ca?* imaging experiments. For different
imaging depths, the average laser power was adjusted in the range
of 30 to 120 mW. The imaging data were acquired at a spatial
resolution of 500 x 500 pixels and a sampling rate of 40 Hz. The
imaging data were then analyzed offline.

Model Blind Spatiotemporal Filtering

Network

To denoise the acquired raw imaging data, an efficient approach
is to use a residual learning-based convolutional neural network,
e.g., denoising convolutional neural network (DnCNN) (Zhang
etal., 2017), which showed remarkable effectiveness when dealing
with several image denoising tasks using the same architecture.
However, the DnCNN does not use temporal information and
processes each image independently. To combine the spatial
and temporal information for residual learning and improving
denoising quality, we used the neural network architecture
implemented as the temporal denoising part of the video
denoising neural network (ViDeNN) (Claus and Van Gemert,
2019) to perform spatiotemporal filtering. The network for
spatiotemporal denoising was constructed based on a residual
structure (Figure 1), for which the network input was three
consecutively stacked frames, which has been shown to be
efficient in previous studies (Su et al, 2017; Claus and Van
Gemert, 2019). The network combined the spatiotemporal
information from these three imaging data frames and estimated
the residual noise for the central frame, and it utilized motion
information among these successive frames to capture temporal
inconsistencies. The network model comprises 20 layers, with
the first layer comprising 128 filters and the remaining layers
64 filters. The size of each filter was set to 3 x 3 x g
where ¢ is the number of image channels. Although the
input has multiple frames, the network does not need an
additional layer for processing the consecutive frames. The
least square error (i.e., L2-norm) between the desired residual
values and the estimated values was calculated as the loss
function. The leaky rectified linear unit (LReLU) activation

function was used in the network model. Therefore, by using
the temporal denoising model of ViDeNN as the backbone
for the spatiotemporal filtering network, the model architecture
enables the network to handle different types of noises in
the imaging data.

In some recent studies, for example, Lehtinen et al. (2018),
the authors have shown remarkable results indicating that a
denoising model can be trained directly from certain types
of noisy images being presented, which is called noise-to-
noise learning, with the hypothesis that the noisy images are
independent observations from the same clean data. For this type
of blind learning framework, clean data are not a necessity for
training the network model. This enables a denoising network
model to learn from noisy data only when clean data cannot be
obtained easily. Based on this noise-to-noise learning strategy
and also inspired by a recent study of denoising video data via
a frame-to-frame fine-tuning procedure (Ehret et al., 2019), we
adapted the spatiotemporal filtering network by incorporating
an extended noise-to-noise learning framework. We extended
the noise-to-noise learning strategy from a training network
with single images to a training network with consecutive
frames (image stack) in imaging data. To perform model
blind spatiotemporal filtering, we carried out the following
training procedures: (i) we initially trained the spatiotemporal
filtering network model with two-photon imaging data for
which noise had been added synthetically, and (ii) we applied
this extended noise-to-noise learning to real raw imaging data
frames to fine-tune the initially trained network. The fine-
tuning stage consisted of initializing the network with loaded
pretrained network weights and retraining the whole network by
updating the pretrained weights on real raw two-photon imaging
dataset only. Thus, we adapted the spatiotemporal denoising
model (temporal denoising part of ViDeNN) to a model blind
spatiotemporal filtering network by using our extended noise-
to-noise training strategy, and hence, the network model can be
optimized and enabled to handle unknown noise components in
real imaging data.

To train the neural network, we used the adaptive moment
estimation (Adam) (Su et al., 2017; Claus and Van Gemert, 2019)
optimizer to minimize the expected error between the model
output and the target data. The learning rate was set to a constant
value of 0.0001 over 50 epochs for initial training and 10 epochs
for fine-tuning.

Dataset for Training and Validation

For the initial training of the neural network, the training data
were synthesized with Poisson and Gaussian noise components,
as presented in previous studies (Foi et al., 2008; Makitalo and
Foi, 2012; Zhang et al., 2019). The Poisson noise and Gaussian
noise account for the signal-dependent and signal-independent
uncertainties, respectively. For the noise model, we let m;, where
i=1,2,...N,represent the two-photon microscopy data sample,

m; = ti + nsp () + nsg (1)

where ¢; is the ground truth; ns; is the Poisson noise, which is
a function of #; and nsg is the zero-mean Gaussian noise. The
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FIGURE 1 | Schematic illustration of the neural network for model blind spatiotemporal denoising. The neural network trained using the synthesized noisy imaging
dataset can be fine-tuned to analyze the real two-photon imaging dataset by noise-to-noise learning. Cony, 2D convolutional layer; LRelLU, leaky rectified linear unit.
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FIGURE 2 | Learning curves for training the network model. (A) Training loss as a function of epoch for initial training of the network, visualizing for the first 10
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parameters for generating synthetic images were determined by
comparing the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) metrics, so that the synthetic images are close
to the real raw two-photon images.

The training of the network model for restoring imaging data
requires pairs of corrupted inputs and clean targets. However,
obtaining ground truth clean data is difficult in experiments. As
suggested by Zhang et al. (2019), image averaging is equivalent to
sampling with a higher SNR; therefore, it is an effective approach
to obtain the approximated ground truth images. Hence, we used
image averaging to estimate the reference of the ground truth
for constructing denoising dataset, and we obtained the reference
by averaging 100 imaging data frames captured using the same

field of view (FOV). We added Poisson and Gaussian noises
to a reference image to construct the synthetic noisy imaging
dataset and prepared them as sequences of three image frames
with Poisson and Gaussian noises of the same magnitudes. For
each one of those sequences, we stacked three frames as the
network input and the reference image of the ground truth (three
replications) as the network target (n = 1,200 image pairs).

After the initial training of the network, we collected real
raw imaging data for the model blind learning. We treated
consecutive imaging frames as independent noisy observations of
the same clean data and divided the imaging data into sequences
of four consecutive frames. For each one of those sequences, we
used the first three consecutive frames as the network input and
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TABLE 1 | Comparison of denoising performances for the raw two-photon Ca?* imaging dataset in terms of PSNR and SSIM.

Method PSNR SSIM P value (model blind spatiotemporal filtering network
versus other methods)

Raw 20.78 £0.18 0.14 + 0.01 PSNR: 1.99e-104/SSIM: 2.42e-238

Model blind spatiotemporal filtering 36.46 + 1.60 0.95 + 0.01 N.A.

network

Spatiotemporal filtering network without 35.40 + 0.79 0.93 + 0.01 PSNR: 2.17e-15/SSIM: 9.71e-105

model blind learning

DnCNN 33.95 + 1.01 0.92 £ 0.01 PSNR: 8.70e-53/SSIM: 4.04e-109

BM3D 32.62 + 0.90 0.87 £ 0.01 PSNR: 7.56e-71/SSIM: 5.88e-106

BM4D 23.69 + 0.34 0.30 +£0.02 PSNR: 2.97e-99/SSIM: 1.80e-163

ViDeNN 34.12 + 0.68 0.94 £+ 0.01 PSNR: 5.19e-34/SSIM: 5.24e-51

FITVNet 35.94 +1.12 0.93 £ 0.01 PSNR: 0.01/SSIM: 1.56e-48

Our proposed method is highlighted in bold. Data are presented as mean + SD. Statistical tests were calculated using the paired t test. N.A., not applicable.

A Reference B Noise added

€ Spatio-temporal denoised

Example image 1

Example image 2

FIGURE 3 | Denoising performance of two representative synthetic two-photon imaging frames. (A) The ground truth references. (B) Poisson and Gaussian noises
were added to the two-photon images: example 1 PSNR 18.56/SSIM 0.07 and example 2 PSNR 17.27/SSIM 0.09. (C) Restored images after application of the
model blind spatiotemporal filtering method; example 1 PSNR 38.27/SSIM 0.95 and example 2 PSNR 35.94/SSIM 0.90.

the fourth frame (three replications) as the network target (n =
900 image pairs).

Evaluation

For the functional imaging dataset, for which imaging was
performed for the same FOV, we were able to obtain an estimated
reference of the ground truth. Therefore, we adopted two popular
image quality metrics, that is, the PSNR and the SSIM index, to
evaluate network performance. The quality relationship between

the reference and noisy images and the restored images were
calculated, respectively.

In the experiment of morphological imaging, that is, imaging
performed for different FOVs (i.e., z-stack), it is infeasible to
average many imaging frames from one FOV to estimate the
reference of ground truth data. In the case of testing the image
quality without reference image, PSNR, and SSIM metrics are not
applicable, and hence, a no-reference image quality evaluation
algorithm was adopted to assess this type of imaging data, namely,
the blind image quality index (BIQI) (Moorthy and Bovik, 2010).
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FIGURE 4 | Denoising performance of two representative raw two-photon imaging frames. (A) The ground truth references. (B) Raw single frames of two-photon
imaging data (the middle FOV of the three FOV stack): example 1 PSNR 20.54/SSIM 0.14 and example 2 PSNR 17.85/SSIM 0.11. (C) Restored images after
application of the model blind spatiotemporal filtering method: example 1 PSNR 32.35/SSIM 0.95 and example 2 PSNR 24.70/SSIM 0.87.

The BIQI ranges between 0 and 100, with a smaller BIQI score
indicating better image quality.

In addition to evaluating the denoising performance in the
spatial domain, we also quantified the SNR for the neuronal
signals in the time domain. For an imaging FOV, we identified
neurons manually and marked them as regions of interest (ROIs).
The fluorescence trace (f) of individual neurons over time was
calculated by averaging the corresponding pixel values within
each specified ROI. Changes in the Ca?™ signal (i.e., relative
fluorescence) were calculated as Af/f = (f - fo)/fo, where the
baseline level of fluorescence f was taken as the 25th percentile of
the fluorescence trace. The peak amplitude of the Ca?* transient
was calculated as the difference between the baseline level
(average Af/f of 2 s) and the peak level (peak-centered average
Af/f of 75 ms). The SNR for the Ca?T transient was defined as the
ratio of the peak amplitude of the Ca®* transient to the standard
deviation (SD) of the baseline fluctuation (Tada et al., 2014):

Peak — mean (Baseline)
SD (Baseline)

SNR = (2)

RESULTS

First, the proposed network was trained using synthesized
Poisson and Gaussian noise data, before being fine-tuned using
raw noisy imaging data. The training process was conducted

using the parameters described in the section “Materials and
Methods.” The learning curves for the initial training and fine-
tuning of the network are shown in Figures 2A,B, respectively.
The training loss was decreased dramatically for the initial
training stage, particularly at the second epoch, as the loss
could be greatly reduced by learning to map noisy observations
to clean signals. When switching the training data from
pairs of noisy images and a clean target to pairs of noisy
images, the loss changed to be much larger. In contrast, the
training loss was not decreased much and continued to be
large when performing noise-to-noise learning for the fine-
tuning stage, which is consistent with the training results in
a previous work (Lehtinen et al, 2018). In our tests, we
stacked three consecutive frames for denoising and obtained
a clean version of the middle frame. The calculation time
was 70 ms for each image of 500 x 500 pixels using an
Intel 19 7980XE 2.9 GHz CPU, with 128 GB RAM, and
NVIDIAs GTX 1080 Ti GPU. In the figures, the brightness
of the representative two-photon images was adjusted for
better visualization.

Experimental Validation Using Synthetic
and Raw Imaging Data

To first perform an experimental validation of the proposed
method, we evaluated the denoising results on the imaging data
with synthetically added noise. The synthetic noisy imaging data
were generated using a Poisson and Gaussian noise model as
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Spatio-temporal denoised
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1s

FIGURE 5 | Denoising performance evaluation for temporal inconsistency.

A stack of two-photon imaging data: (A) frame n-17, (B) frame n, and

(C) frame n+ 1. Restored images using (D) the proposed model blind
spatiotemporal filtering method: PSNR 31.27/SSIM 0.87. The red arrows
indicate the inconsistent areas due to motion changes. The yellow dashed
circles indicate the ROIs for the cells. (E) The raw Ca?* signals extracted from
the cells in (D). (F) The extracted Ca?* signals were processed by model
blind spatiotemporal filtering.

described in the section “Dataset for Training and Validation.”
Poisson noise with a magnitude of 1 and Gaussian noise with
standard deviation sampled randomly from (0, 0.05) were added
to the reference images to generate training and testing images.
The magnitudes for Poisson noise and Gaussian noise were
determined by comparing the PSNR/SSIM differences between
synthesized noisy two-photon imaging data and real raw two-
photon imaging data. For synthetic images, the image qualities
PSNR 20.54 £ 1.54 and SSIM 0.12 & 0.03 are close to the
real raw image qualities PSNR 20.78 £ 0.18 and SSIM 0.14 +
0.01 (Table 1).

Figure 3 shows two representative examples of two-photon
Ca’*t imaging frames at two different scales, each including

a reference image, noise added image, and spatiotemporal
denoised image. The quantitative comparisons with respect to
the PSNR and SSIM values are listed in the caption of Figure 3,
and we can see that the image qualities are degraded after
adding noise to the reference of clean data (Figures 3A,B,
example 1 PSNR 18.56/SSIM 0.07, example 2 PSNR 17.27/SSIM
0.09). However, the quality of the images was improved
considerably after the process of spatiotemporal denoising
(Figure 3C, example 1 PSNR 38.27/SSIM 0.95, example 2 PSNR
35.94/SSIM 0.90). The denoised images are well restored, and
the SSIM values increase from ~0.1 to ~0.9. Thus, the proposed
method achieved dramatic image quality improvements in the
validation tests.

To continue the performance validation of the proposed
method, real raw two-photon imaging data were processed
and a quantitative assessment was performed. Comparing the
experimental validation results in Figures 3, 4, which show the
results for the raw two-photon images, it is observed that the
impressive performance of the proposed method is replicated. In
Figure 4, we can see that the quality of the two representative
examples (Figure 4A) is improved; the raw noisy imaging
frames (Figure 4B, example 1 PSNR 20.54/SSIM 0.14, example
2 PSNR 17.85/SSIM 0.11) were clearly restored after processing
(Figure 4C, example 1 PSNR 32.35/SSIM 0.95, example 2 PSNR
24.70/SSIM 0.87), with the SSIM values increasing from ~0.1
to ~0.9. Although we did not define the precise noise model
for training with real raw imaging data, the neural network
learned the mapping directly from the noisy data, thus exhibiting
the ability to denoise acquired two-photon Ca?* imaging data
afflicted with complex noises.

To further evaluate the denoising performance for handling
temporal inconsistencies, we investigated the effectiveness of the
proposed method for the imaging data suffering from motion
artifacts. As the representative stack of three consecutive imaging
frames shown in Figures 5A-C, the temporal inconsistencies
were arising from motion-induced nonuniform deformations.
For instance, the cells marked by red arrows in Figure 5D were
hardly visible in the raw image frame (Figure 5B) due to motion
in the imaging data. The proposed spatiotemporal processing
method captured temporal information among successive frames
and modeled spatial noises and temporal deformations within
one network; thus, it successfully restored the imaging data
(Figure 5D, PSNR 31.27/SSIM 0.87), particularly for the temporal
inconsistent areas in the FOV. In addition, we analyzed the
temporal characteristics of the denoised data by extracting Ca®*
signals for the imaged cells. The results demonstrate that motion
led to spike-like changes in the time series, as indicated by the
black arrows in Figure 5E, and these spike-like changes were
successfully reduced without harming the real neuronal signals
by using our proposed method (Figure 5F).

The trained neural network was also used to test the
restoration of raw volumetric two-photon Ca?" imaging data.
This testing dataset was composed of 700 raw images for different
imaging depths in the mouse cortex. For these volumetric images,
as the imaging planes here were not fixed, we could not estimate
the ground truth reference by simply averaging many imaging
frames. Hence, we applied the BIQI to quantify the image
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A Raw stacks

FIGURE 6 | Reconstruction of volumetric imaging data (z-stacks). (A) The raw image stacks (BIQI score of 70.67 =+ 6.64). (B) The model blind spatiotemporal filtered

image stacks (BIQI score of 41.28 + 8.97). Data are presented as mean + SD.

B Spatio-temporal denoised

T e =

restoration effect for such imaging data. A 3D volumetric imaging
data example is shown in Figure 6A; the average BIQI score
is 70.67 + 6.64. After processing via the proposed denoising
approach, the average BIQI score decreased to 41.28 £ 8.97
(Figure 6B). We can see from the 3D reconstruction that the
imaging data quality was clearly improved (P = 9.03e-87, paired ¢
test) after applying the spatiotemporal filtering process.

Comparison of Different Methods for
Spatial Denoising

To assess the denoising performance for two-photon Ca’*
imaging data in greater detail, we compared the proposed method
with the current state-of-the-art denoising methods. We tested
a dataset composed of 600 imaging frame pairs to evaluate the
restoration performance of the networks. We compared our
approach with BM3D and DnCNN, which are used for denoising
single images, and with the popular video denoising algorithm
BM4D (Figure 7 and Table 1). We implemented these algorithms
using the default key parameter settings for DnCNN, with the
sigma level set to 50 for BM3D, and the noise estimation mode
activated for BM4D.

As evident from the testing results presented in Figure 7,
our approach provides a result that bears close resemblance to
the reference (Figures 7A-C). In addition, as demonstrated by
the results listed in Table 1, the model blind spatiotemporal
processing exhibits superior results compared with existing
denoising tools both in terms of PSNR (36.46 £ 1.60) and SSIM
(0.95 £ 0.01). Moreover, we performed the analysis for testing the
performance of the spatiotemporal filtering network using only
synthesized data, and we obtained good results (Figure 7D and
Table 1, spatiotemporal filtering network without model blind
learning). It indicates that the Poisson-Gaussian noise model
is suitable for simulating synthesized two-photon imaging data.
Of the alternative deep learning methods for performing spatial

denoising, DnCNN was close to matching the image quality
achieved by the proposed method (Figure 7E), ranking well
in our analysis. BM3D also achieved relatively strong results
but struggled to handle all the noise components in the two-
photon Ca?" imaging data (Figure 7F), with the result that
the processed image still appears slightly corrupted compared
with the reference image. Surprisingly, BM4D performed poorly,
with the denoised image retaining a high level of residual
noise (Figure 7G) despite the activation of the noise estimation
mode. The PSNR and SSIM results show that image quality
improvement is limited using the BM4D approach. Here, we
speculate that, when the noise is too complex to estimate in the
real raw image, BM4D might fail to denoise the images, and thus,
noises were still present after denoising.

In addition, we also compared our method with two other
spatiotemporal denoising methods: ViDeNN (Claus and Van
Gemert, 2019) and FITVNet (Wang C. et al, 2020). As the
results (Figures 7H,I and Table 1) demonstrate, both these
two spatiotemporal denoising methods performed well in our
denoising tests, and their denoising performances are higher
than the spatial filtering methods, i.e., DnCNN and BM3D, and
are at the same level as the performance of the spatiotemporal
filtering network without model blind learning. In comparison
with those methods, our proposed model blind spatiotemporal
filtering network provided the best denoising results.

Comparison of Different Methods for

Temporal Denoising

We further addressed the issue of neuronal activity denoising
via a time series of recorded fluorescence. Ca’T transients
were recorded and extracted in vivo for individual neurons
in the brain (Figure 8A) to quantify the amplitude of Ca?™
transients and their SNR values. For these tests, we compared
our method with the DnCNN method using a dataset of Ca?*
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A Raw frame B

Spatio-temporal denoised
D without model blind learning

G BM4D denoised H

FIGURE 7 | Comparison of denoising performance for seven methods. (A) A single raw frame of the two-photon imaging data. (B) The ground truth reference.
Restored images using (C) the proposed model blind spatiotemporal filtering method, (D) spatiotemporal filtering network without model blind learning, (E) DnCNN
method, (F) BM3D method, (G) BM4D method, (H) ViDeNN method, and (I) FITVNet method.

Reference

E DnCNN denoised F

ViDeNN denoised |

€ Spatio-temporal denoised

BM3D denoised

FITVNet denoised

transients (n = 20). The spatiotemporal filtered signals showed
significantly lower fluctuations and higher SNRs for all Ca?™
transients tested (Figures 8B-D), with the average SNR values
summarized in Table 2. As we can see in Figures 8B-D,
our method preserved the temporal dynamics of Ca®t activity
after the spatiotemporal filtering. Compared with raw signals,
the spatiotemporal filtered signals demonstrate that the peak
amplitudes of the Ca?™ transients (the signal part of SNR) were
unchanged and the temporal fluctuations (the noise part of
SNR) were clearly reduced, and thus, we obtained significantly
improved signal quality in temporal domains. Hence, the mean
SNR of individual Ca?* transients processed by spatiotemporal
filtering (34.87 + 14.77) was significantly larger than that
measured for the raw signals (P < 0.001, paired ¢ test), which
would facilitate the detection of neuronal Ca?* transients. As
our method approaches the spatial and temporal denoising
problems simultaneously, these results also indicate that model

blind spatiotemporal filtering can obtain higher SNR values than
the methods that only perform spatial filtering (e.g., DnCNN) of
the imaging data, and is therefore more suitable for two-photon
Ca’* imaging data restoration. In addition, it is worth to note
that using the DnCNN algorithm removed only spatial noise,
and it did not consider temporal consistencies in the imaging
data. Therefore, using spatial filtering might enlarge the temporal
fluctuation of the ROI-based fluorescence and resulted in lower
SNR of Ca?™ transients than the raw signals.

DISCUSSION

In this work, we used a simple noise-to-noise learning method
to conduct fine-tuning on a residual convolutional network,
which was trained initially with Poisson and Gaussian noises.
In addition, we combined spatial and temporal information
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A Imaging plane

B Raw signal

SNR = 14.35

€ DnCNN denoised
SNR = 18.93

D Spatio-temporal denoised

SNR =25.50

FIGURE 8 | Comparison of temporal denoising performances. (A) Two representative imaging planes generated by averaging; the yellow dashed circles indicate the
ROIs in the cells. (B) The raw Ca2+ signals extracted from the cells in (A). (C) The extracted Ca?™ signals with imaging data processed by the DNCNN. (D) The
extracted Ca?* signals with imaging data processed by model blind spatiotemporal filtering.
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TABLE 2 | Comparison of denoising algorithms for the SNR of Ca?* transients.

Method SNR P value (model blind spatiotemporal

filtering network versus other
methods)

Raw signal 23.16 £9.95 2.12e-8

DnCNN 19.70 £ 7.52 3.37e-4

Model blind 34.87 + 14.77 N.A.

spatiotemporal filtering

network

Our proposed method is highlighted in bold. Data are presented as mean + SD.
Statistical tests were calculated using the paired t test. N.A., not applicable.

to enhance the processing of two-photon imaging Ca* data
and restore the imaging data. The proposed method performed
impressively both when processing imaging data with artificial

noise and real raw two-photon imaging data. Moreover, we
show that our method achieves strong results both for functional
imaging data and for morphological imaging data. The testing
results demonstrate that both the spatial and temporal SNR
of the imaging data are improved significantly using our
approach. A comparative analysis of our method for imaging
data denoising against previously reported denoising methods
highlights the potential of our method as a powerful denoising
tool, with our method achieving superior PSNR and SSIM
values. This study represents the first step in utilizing model
blind spatiotemporal processing for Ca?t imaging data; it
can tackle complex noises without prior knowledge of the
input data. Therefore, adopting this image restoration process
into the neuroimaging data analysis arsenal will simplify
downstream analyses, such as motion correction, detection, and
segmentation of cells.
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We have demonstrated that the neural network can
perform spatiotemporal denoising of two-photon Ca?™ imaging
data directly, achieving remarkable restoration performance
(Tables 1, 2). Unlike single-image restoration methods, such as
BM3D (Dabov et al., 2007) and DnCNN (Zhang et al., 2017), our
proposed approach extracts relevant spatiotemporal information
from consecutive frames of imaging data. This data-driven
approach proves efficient and flexible for extracting arbitrary
features in spatial and time domains. Therefore, as we have
demonstrated in our results, it may provide a more robust
denoising performance when the imaging data are degraded
owing to temporal inconsistencies (e.g., Figure 5), such as object
motion and brightness changes. In our work, we trained the
network with pairs of image stacks using L2 loss; the network
was learning to generate the average of many plausible restored
images as prediction, and thus, it resulted in a blurring effect
for the output of denoising. Although the spatial blurriness
may cause issues in visualization of fine cell features, our
analysis results for image quality and neuronal activity show
that the spatiotemporal processed imaging data preserve the
cell morphology features and temporal dynamics of neuronal
activity (Figures 5, 8) well; hence, no important features were
lost due to blurring.

Furthermore, as recent studies (Lehtinen et al., 2018) have
shown that image restoration can be learned without clean
ground truth data, we developed a network learning approach
without requiring a precise noise model. Inspired by a recently
reported work (Ehret et al., 2019), we trained our network using
synthetic noisy imaging data and fine-tuned it using raw imaging
data, with the result that it does not require clean data, which
simplifies the preparation of the training data. Combining model
blind training with transfer learning methods, such as fine-
tuning, the network can potentially also achieve high restoration
performance and be generalized to process diverse experimental
recordings using only a small amount of data. This enables
the processing of degraded data acquired from various imaging
systems. In addition, it is also worth to note that modeling
measurement noise with temporal or spatial structure may be
more realistic and be better for the initial training of the network
and may facilitate the noise-to-noise learning during fine-tuning
stage, which we plan to test in our future work.

Finally, the calculation time for performing the imaging data
restoration is fast, which suggests that it is suitable to conduct
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