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Background: Structural network alterations in Alzheimer’s disease (AD) are related to
worse cognitive impairment. The aim of this study was to quantify the alterations in
gray matter associated with impaired cognition and their pathological biomarkers in
AD-spectrum patients.

Methods: We extracted gray matter networks from 3D-T1 magnetic resonance imaging
scans, and a graph theory analysis was used to explore alterations in the network
metrics in 34 healthy controls, 70 mild cognitive impairment (MCI) patients, and 40 AD
patients. Spearman correlation analysis was computed to investigate the relationships
among network properties, neuropsychological performance, and cerebrospinal fluid
pathological biomarkers (i.e., Aβ, t-tau, and p-tau) in these subjects.

Results: AD-spectrum individuals demonstrated higher nodal properties and edge
properties associated with impaired memory function, and lower amyloid-β or higher
tau levels than the controls. Furthermore, these compensations at the brain regional
level in AD-spectrum patients were mainly in the medial temporal lobe; however, the
compensation at the whole-brain network level gradually extended from the frontal lobe
to become widely distributed throughout the cortex with the progression of AD.

Conclusion: The findings provide insight into the alterations in the gray matter network
related to impaired cognition and pathological biomarkers in the progression of AD. The
possibility of compensation was detected in the structural networks in AD-spectrum
patients; the compensatory patterns at regional and whole-brain levels were different
and the clinical significance was highlighted.

Keywords: cognitive impairment, pathological biomarkers, Alzheimer’s disease, structural compensation ability,
gray matter (GM) atrophy

INTRODUCTION

Alzheimer’s disease (AD), the most prevalent cause of dementia, is characterized by progressive loss
in the activities of daily living and cognitive impairment, which causes a very large socioeconomic
burden (van der Lee et al., 2018). The number of individuals with AD is increasing significantly
every year, and 10–20% of people aged 65 or older suffer from mild cognitive impairment (MCI)
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which is known as a prodromal clinical stage of AD (Kim et al.,
2020). However, the effective period of symptomatic treatment is
limited (Patnode et al., 2020). Therefore, the early diagnosis and
prognosis of clinical AD-spectrum patients is of great importance
as it increases the time window to implement interventions that
attenuate or reverse deterioration (Luo et al., 2019).

Structural magnetic resonance imaging (MRI) is a promising
approach used to identify the progression of disease (Lane
et al., 2019). Evidence has been accumulating that changes
leading to cognitive impairment and dementia are not limited
to specific regions but rather exhibit widespread changes in
connectivity and topological properties that have emerged as
potential intermediate biomarkers for AD (Verfaillie et al., 2018).
The pattern of gray matter morphology can be defined as a
network that consists of multiple regions (i.e., nodes) that are
interconnected when structural similarity is exhibited within the
cortex across subjects (Beheshti et al., 2017). The advantage of
examining the morphology of gray matter networks is that it
provides the possibility to accurately quantify individual brains
using tools from graph theory (Batalle et al., 2013; Beheshti
et al., 2017). For example, the small world coefficient provides
an indication of whether the organization of connections in the
network is different from a randomly organized network (Zhao
et al., 2017). Although the biological significance of structural
similarities is not fully understood, the similarity within gray
matter has been shown to be related to synchronized maturation
between brain regions, which may reflect a higher degree of
clustering (Wang et al., 2018). Previous studies have shown
that changes in structural properties in gray matter are related
to the degree of cognitive impairment and disease severity in
individuals with AD (Vipin et al., 2018). In the early and
preclinical stages of dementia, the gray matter network might
commence reorganization and show high resilience to network
integrity damages (Lin et al., 2020). Previous studies have further
demonstrated that lower cerebrospinal fluid (CSF) Aβ42 levels
in individuals with cognitive impairment were closely associated
with the perceived decline in memory performance (Zhang
et al., 2018). In a series of structural neuroimaging studies,
it was reported that individuals with cognitive impairment
exhibited, from the perspective of topological properties, higher
nodal degree centrality and lower nodal betweenness in the
bilateral hippocampus, compared to the healthy controls (Chen
et al., 2020). Recently, structural similarity within the gray
matter network in individuals with cognitive impairment was
mainly related to the thalamus, insula, and occipital cortex
and was associated with poor memory performance (Ahmed
et al., 2019). However, there has been no research exploring
the altered structural network measures related to pathological
biomarkers in combination with the structural similarity and
topological properties in patients with cognitive impairment.
If individuals with cognitive impairment at the early stage
of AD could be identified, they may benefit from early
targeted intervention. With developments in neuroimaging,
an increasing number of studies have focused on identifying
brain functional and structural alterations related to the AD
continuum, which may potentially be considered a biomarker
of AD pathology.

To this end, we compared the structural networks and
the structural similarity within gray matter in AD-spectrum
patients using a graph theoretical approach (Rubinov and Sporns,
2010). In the present study, the aim was to explore whether
gray matter network parameters were linked to declines in
cognitive impairment and abnormal CSF pathology in AD-
spectrum patients.

MATERIALS AND METHODS

Data used in the preparation of our study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The protocol was authorized by the ADNI and informed consent
was obtained according to the Declaration of Helsinki. The
ADNI was launched in 2003 as a non-profit organization, led
by Principal Investigator Michael W. Weiner, MD. The aim of
the ADNI is to test whether neuroimaging, neuropsychological
assessment, and biological markers could track the progression
of AD and conduct early diagnosis. For up-to-date information,
see adni-info.org.

Study Population
This study included 34 healthy controls (HC), 70 early or late
MCI patients, and 40 AD patients, and used a subset of T1-
weighted MRI images for these 144 subjects. Subjects were
originally recruited for ADNI-GO or ADNI-2. Group inclusion
criteria were as follows. HC subjects had no memory complaints,
a CDR score of 0 and Mini-Mental State Examination (MMSE)
scores between 26 and 30. MCI subjects had a CDR score
of 0.5, MMSE scores between 21 and 30, as well as memory
complaints and abnormal memory function according to the
Logical Memory II subscale (Delayed Paragraph Recall) from the
Weschler Memory Scaled—Revised (=8 for 16 years and more of
education; =4 for 8–15 years of education; and =2 for 0–7 years
of education), but an absence of dementia. To be included in
the AD group, participants had memory complaints, CDR scores
between 0.5 and 2.0, MMSE scores less than 26, and presented
the criteria for probable AD diagnosis according to National
Institute of Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Association
(NINCDS/ADRDA) (Lu et al., 2019). In addition, we also
excluded participants with a history of significant psychiatric
and neurological illness (e.g., depression, stroke, traumatic brain
injury, and others). All participants were required to provide
informed consent compatible with the local sites (Institutional
Review Board regulations). Table 1 shows the detailed clinical
and demographic information for these subjects.

Clinical and Neuropsychological
Measurement
All participants received a series of cognitive evaluations in
the primary analyses, including the MMSE, Montreal Cognitive
Assessment (MoCA); Functional Activities Questionnaire (FAQ);
Clinical Dementia Rating Sum of Boxes (CDRSB); Alzheimer’s

1adni.loni.usc.edu
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TABLE 1 | Demographic and neuropsychological data.

Items HC (n = 34) MCI (n = 70) AD (n = 40) F/χ 2 P

Demographics

Age (years) 72.38 ± 0.87 73.78 ± 0.84 74.85 ± 1.37 1.082 0.342b

Education (years) 16.21 ± 0.48 15.73 ± 0.34 15.15 ± 0.45 1.273 0.283b

Gender (male/female) 13/21 42/28 23/17 4.614 0.100a

General cognition

MMSE 28.76 ± 0.26 27.61 ± 0.21 23.25 ± 0.30 9.653 <0.001b*

MoCA 25.85 ± 0.40 22.44 ± 0.34 17.28 ± 0.68 61.959 <0.001b*

FAQ 0.41 ± 0.24 2.77 ± 0.37 15.1 ± 1.06 143.618 <0.001b*

CDRSB 0.15 ± 0.07 1.66 ± 0.10 5.03 ± 0.22 268.077 <0.001b*

ADAS13 8.09 ± 0.68 17.3 ± 0.83 30.68 ± 1.35 102.456 <0.001b*

EcogSPMem 1.47 ± 0.11 2.21 ± 0.09 3.25 ± 0.10 63.732 <0.001b*

EcogSPLang 1.33 ± 0.09 1.56 ± 0.07 2.47 ± 0.13 36.699 <0.001b*

EcogSPVisspat 1.14 ± 0.05 1.42 ± 0.06 2.60 ± 0.15 61.820 <0.001b*

EcogSPPlan 1.30 ± 0.09 1.49 ± 0.07 2.76 ± 0.13 63.467 <0.001b*

EcogSPOrgan 1.38 ± 0.11 1.64 ± 0.08 3.03 ± 0.12 71.906 <0.001b*

EcogSPDivatt 1.44 ± 0.11 1.85 ± 0.09 3.09 ± 0.13 54.816 <0.001b*

EcogSPTotal 1.35 ± 0.08 1.70 ± 0.06 2.83 ± 0.10 78.533 <0.001b*

Cerebrospinal fluid

Aβ (pg/mL) 1293.73 ± 84.83 901.05 ± 57.21 647.98 ± 41.89 23.100 <0.001b*

t-tau (pg/mL) 210.03 ± 13.12 290.83 ± 22.36 358.16 ± 26.69 7.873 0.001b*

p-tau (pg/mL) 19.32 ± 1.24 28.25 ± 2.45 35.43 ± 2.81 7.913 0.001b*

Values are presented as the mean ± standard error (SE).
aThe p-value was obtained by χ2 test, bthe p-value was obtained by one-way ANOVA.
*Indicates a statistical difference between groups, p < 0.05.
MMSE, mini mental state examination; MoCA, Montreal Cognitive Assessment; FAQ, Functional Activities Questionnaire; CDRSB, Clinical Dementia Rating Sum of Boxes;
ADAS13, Alzheimer’s Disease Assessment Scale; EcogSP, Everyday Cognition by the patient’s study; Mem, Memory; Lang, Language; Visspat, Visuospatial; Plan,
Planning; Organ, Organization; Divatt, Divided Attention; Aβ, amyloid-β; t-tau, total tau; p-tau, phosphorylated tau.

Disease Assessment Scale (ADAS13), and Everyday Cognition
by the patient’s study partner (EcogSP), that provided memory,
language, visuospatial abilities, planning, organization, divided
attention, and total scores (Table 1).

Cerebrospinal Fluid Biomarkers
Lumbar puncture and the preparation of the CSF sample were
described in the ADNI manual2. CSF Aβ, t-tau, and p-tau were
measured based on the reagents (Innotest, Fujirebio, Ghent,
Belgium) from INNOBIA AlzBio3 immunoassay kit. Not all
subjects had CSF sample data because lumbar puncture is an
invasive procedure. In this study, 23 out of 34 HC subjects, 46
out of 70 MCI subjects, and 34 out of 40 AD subjects had a CSF
sample available (Table 1).

MRI Acquisition
The standardized T1-weighted image protocol used volumetric
3-dimensional sagittal MPRAGE3. Briefly, the ADNI protocol
includes T1-weighted acquisition based on a sagittal volumetric
magnetization-prepared rapid gradient-echo sequence collected
from a variety of 3.0 Tesla MRI systems with protocols
optimized for each type of scanner. Representative of each scan,
parameters were as follows: repetition time = 2300 ms;

2http://adni.loni.usc.edu/research/protocols/bios-pecimens-protocols/
3http://adni.loni.usc.edu/

flip angle = 8◦; inversion time = 1000 ms; field of
view = 240 mm × 240 mm; and a 256 × 256 matrix yielding,
a voxel size of 0.94 mm × 0.94 mm × 1.2 mm. The workflow
graphic about the processing of the gray matter structural
network is presented in Figure 1.

Image Pre-processing
We used the Computational Anatomy Toolbox (CAT124) as
implemented in the Statistical Parametric Mapping analysis
package (SPM125) to pre-process the structural images. First,
the raw MRI data were checked manually to ensure no obvious
artifacts. Second, individual 3D-T1 images were segmented into
white matter (WM), gray matter (GM), and cerebrospinal fluid
(CSF) using an adaptive Maximum A Posterior technique (Wang
et al., 2016). The intracranial volume was obtained by summing
the volumes of the GM, WM, and CSF. Last, the resultant GM
images were normalized to the Montreal Neurological Institute
(MNI) space and the GM volume maps were smoothed spatially
(Gaussian kernel of 8 mm full width at half maximum). To define
the network nodes, an automated anatomical labeling (AAL)
atlas was used to divide the brain into 90 regions of interest
(ROIs) (abbreviations provided in Supplementary Table 1). We
calculated the gray matter network density considered as the
total number of edges in the network, divided by the possible

4http://www.neuro.uni-jena.de/cat/
5http://www.fil.ion.ucl.ac.uk/spm/soft-ware/spm12/
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FIGURE 1 | Workflow graphic of gray matter structural networks. The processing of gray matter structural network roughly includes preprocessing (A: spatial
smoothing), brain parcelation (B), network type (C), graphical models (D), and network reconstruction (E).

number of edges, and average network strength considered as
the sum of all weighted edges for every node, using the Graph
Theoretical Network Analysis Toolbox (GRETNA6) based on
Brain Connectivity Toolbox (Wang et al., 2015).

Network Parameters and Network Reconstruction
Every subject’s gray matter network from gray matter
segmentations was extracted, using a fully automated method to
implement in MATLAB7. Briefly, we defined nodes as 3 × 3 × 3
voxel regions in gray matter through an atlas free approach
(Rimkus et al., 2019). We then defined connectivity using
statistical similarity in gray matter structures by Spearman’s
correlations across intensity values of corresponding voxels
between one node and neighbor nodes in the gray matter (Tijms
et al., 2016). All similarity values were collected in a matrix.
Nodes connected were ensured that all subjects had a threshold
that they had a similar chance including at most 5% spurious
connections through a random permutation method (Toppi
et al., 2012). To reduce the number of local tests, the nodal
network characteristics for nodes were averaged in 90 regions of
interest as defined by the automatic anatomical labeling (AAL)
brain atlas (Tzourio-Mazoyer et al., 2002; Jin et al., 2020). The
network metrics were classified as “basic” or “higher-order”
parameters (Liu et al., 2020). The basic parameters included the
local and global degree and the small-worldness. Higher-order
network parameters consisted of the clustering coefficient,
characteristic path length, degree centrality, and betweenness
centrality (Rubinov and Sporns, 2010). To further explore
the topological structure of the network, we calculated the
small-worldness, global efficiency, and local efficiency. To obtain
the network edge, we calculated the connectivity referred to
the statistical similarity between each pair of 90 ROIs, which
is computed by the Spearman’s correlation of the grey matter
intensity values of the corresponding voxels in the ROIs. All
similarity values are arranged in a similarity matrix. ROIs

6http://www.nitrc.org/projects/gretna/
7https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks

are connected when the similarity value of ROIs exceeds the
statistical threshold (P < 0.05, False Discovery Rate, FDR
corrected) determined by the random arrangement method
(Toppi et al., 2012). A brief description of specific definitions,
calculating formula, and topological property descriptions for
the network G with N nodes and V edges follows below (Xu et al.,
2016; Yang et al., 2020).

Global Topological Properties
The inverse of the harmonic mean of the shortest path length
between every two nodes in the network is considered as Global
efficiency. It efficiently measures the information communication
capacity of the whole network. It is calculated as:

Eglobal (G) =
1

N (N − 1)

∑
i6=j∈G

1
dij

dij is the shortest path length between node i and j of the network.
Local efficiency of the network measures how efficiently the

communication information is among the neighbors of a specific
node when that node is removed, which shows how fault tolerant
the network is and is calculated as:

Elocal(G) =
1
N

∑
i∈G

Eglobal(Gi)

Gi is the subgraph consisting of the nearest neighbors of node i.

Nodal Topological Properties
Nodal global efficiency quantifies how efficiently the parallel
information transfers from one node in the network and is
calculated as:

Enodal_global (i) =
1

N − 1

∑
i6=j∈G

1
dij

dij indicates the shortest path length between node i and
j of the network.

Nodal local efficiency indicates the efficiency of the
communication among the first neighbors of one node when it is
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removed. It is calculated as:

Enodal_local(i) =
1

Ni(Ni − 1)

∑
m6=n∈Gi

1
dmn

Gi is the sub-graph which consists of node i and its
local neighbors.

Nodal strength is defined as the sum of the edge weights in a
subnetwork Gi, which is the graph that includes the nodes that
are direct neighbors of node i. It can be defined as:

Snodai(i) =
∑
j∈Gi

wij

where wij is the edge weight linking node i and j in the
subnetwork Gi.

Statistical Analysis
Statistical analyses were performed with the Statistical Package
for the Social Sciences (SPSS, IBM v22). A one-way analysis
of variance (ANOVA) was performed in the analyses of age,
education, and data volume, with significance at P < 0.05 among
the control group, the MCI group, and the AD group. The Chi-
squared (χ2) test was applied in the analysis of gender, among
the three groups. Because the neuropsychological data was of
non-normal distribution, the Kruskal–Wallis test was applied in
the analyses of the neuropsychological data with significance at
P < 0.05 among the three groups (Zhu et al., 2016).

At the level of the edge properties of the brain network,
we used the two-sample t test to investigate group differences
between any two groups, adjusting for age, sex, and education
years with a false discovery rate (FDR) correction for
multiple comparisons.

One-way analysis of covariance (ANCOVA) was used to
explore the group differences in the structural networks (degree
centrality, betweenness centrality, global efficiency, and local
efficiency) while adjusting based on age, sex, and education years.
Correction of multiple testing used the FDR. Subsequently, we
conducted a post hoc analysis to investigate the group differences
between any pair of all groups.

Additionally, a multiple linear regression analysis was
conducted to investigate the relationships among CSF pathology
indicators, gray matter network graph theoretical properties, and
cognitive function adjusting for age, gender, and education years
at P < 0.05, uncorrected (Lu et al., 2017; Wang et al., 2020).

RESULTS

Demographic, Neuropsychological, and
CSF Data
The characteristic demographic, neuropsychological and CSF
data of the participants are presented in Table 1. No significant
differences among the three groups were observed in age, gender,
or education years (P > 0.05). Multiple cognitive functions were
more impaired in MCI and AD patients than in the controls,
and the largest differences were between AD patients and the

controls (all P < 0.05), including scores on the MMSE, MoCA,
FAQ, CDRSB, ADAS13, and EcogSP.

We observed a significant reduction in CSF Aβ levels
(P < 0.001) and increased CSF t-tau (P = 0.001) and p-tau
(P = 0.001) levels with the progression of AD.

Global Topology of Gray Matter
Structural Networks
The properties of the global network analysis are shown in
Figure 2. No significant differences were calculated among
the three groups in global efficiency or the small-worldness
(P > 0.05, FDR corrected).

Node-Based Analysis of Gray Matter
Structural Networks
The nodal analysis is shown in Figure 3. Abnormal nodal levels
(betweenness centrality, degree centrality, and nodal efficiency)
were observed in AD-spectrum patients (P < 0.05, FDR
corrected). In general, gradually increasing nodal properties in
the medial temporal lobe (right parahippocampal gyrus and right
amygdala) were associated with the progression of AD across the
three groups (from HC to MCI to AD), with the exception of
decreased betweenness centrality of the right parahippocampal
gyrus in the MCI group.

In the present study, significant relationships between
altered nodal (i.e., right parahippocampal gyrus and right
amygdala) properties and multidomain cognitive impairments
were observed in AD-spectrum patients (Table 2; for more
details, see Supplementary Table 2). In addition, no significant
correlation was calculated between altered nodal properties
and CSF biomarkers in HC and MCI patients, and the
betweenness centrality in the right parahippocampal gyrus was
negatively correlated with CSF t-tau (r =-0.373, P = 0.03)
(Figure 4A) and p-tau (r = -0.386, P = 0.024) (Figure 4B)
concentration in AD patients.

Connectivity-Based Analysis
By using correcting for multiple comparisons with FDR
correction, the AD-spectrum patients had significant differences
in the structural similarity within the gray matter network
when compared to the controls. In addition to a few edges
showing decreased structural similarity, most of the others
showed increases with the development of AD. In detail, the
abnormal connections were mainly related to the frontal lobe in
the MCI group (Figure 5A), but were more widely distributed in
the frontal lobe, thalamus, and subcortical structures in the AD
group (Figures 5B,C) (P < 0.05, FDR corrected).

Significant associations between altered edge properties and
cognitive impairments were detected in AD-spectrum patients.
Interestingly, most of these connections between edges were
associated with the frontal lobe in both the MCI and AD groups
(Table 3, for more details, see Supplementary Tables 3, 4).
In addition, the connection between the right medial superior
frontal gyrus and left precentral gyrus (t-tau: r = -0.293,
P = 0.049) (Figure 6A) was negatively correlated with the CSF tau
concentrations in MCI patients. In the AD group, the connection
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FIGURE 2 | Global topology of gray matter structural networks in AD-spectrum patients. No significant differences were calculated among the three groups (all
P > 0.05, FDR corrected).

FIGURE 3 | Between-groups comparisons showed the altered betweenness centrality (A: right parahippocampal gyrus), degree centrality (B: right parahippocampal
gyrus; C: right amygdala) and nodal efficiency (D: right parahippocampal gyrus) in AD-spectrum patients. PHG.R, right parahippocampal gyrus; AMYG.R, right
amygdala; *P < 0.05, **P < 0.01, ***P < 0.001 indicates a statistical difference between groups by FDR corrected.
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TABLE 2 | Significant correlations between altered graph theoretical properties and neuropsychological performance in AD-spectrum patients.

Neuropsychological scale Group Network properties Spearman’s correlation
coefficient

P-values

FAQ HC DC of PHG.R 0.352 0.041*

DC of AMYG.R 0.36 0.037*

NE of PHG.R 0.362 0.035*

MCI BC of PHG.R 0.301 0.011*

AD DC of PHG.R 0.334 0.035*

DC of AMYG.R 0.335 0.034*

NE of PHG.R 0.342 0.031*

CDRSB HC BC of PHG.R 0.37 0.031*

DC of PHG.R 0.424 0.012*

DC of AMYG.R 0.388 0.023*

NE of PHG.R 0.433 0.011*

MCI BC of PHG.R 0.295 0.013*

DC of PHG.R 0.343 0.004**

NE of PHG.R 0.286 0.016*

AD DC of PHG.R 0.339 0.032*

NE of PHG.R 0.362 0.022*

ADAS13 AD DC of PHG.R 0.395 0.012*

NE of PHG.R 0.364 0.021*

EcogSP Mem MCI DC of AMYG.R − 0.236 0.049*

EcogSP Lang HC BC of PHG.R 0.392 0.022*

MCI NE of PHG.R 0.248 0.038*

EcogSP Visspat HC BC of PHG.R 0.355 0.039*

DC of PHG.R 0.492 0.003**

NE of PHG.R 0.477 0.004**

MCI DC of AMYG.R − 0.244 0.041*

AD BC of PHG.R 0.334 0.035*

DC of PHG.R 0.462 0.003**

DC of AMYG.R 0.384 0.014*

NE of PHG.R 0.511 0.001**

EcogSP Plan HC BC of PHG.R 0.386 0.024*

DC of PHG.R 0.436 0.01**

NE of PHG.R 0.454 0.007**

MCI BC of PHG.R 0.326 0.006**

AD DC of AMYG.R 0.395 0.012*

NE of PHG.R 0.336 0.034*

EcogSP Organ HC BC of PHG.R 0.464 0.006**

DC of PHG.R 0.484 0.004**

NE of PHG.R 0.494 0.003**

EcogSP Divatt HC BC of PHG.R 0.348 0.044*

DC of PHG.R 0.491 0.003**

NE of PHG.R 0.498 0.003**

AD NE of PHG.R 0.328 0.039*

EcogSP Total HC BC of PHG.R 0.394 0.021*

DC of PHG.R 0.4 0.019*

NE of PHG.R 0.413 0.015*

AD DC of PHG.R 0.407 0.009**

DC of AMYG.R 0.389 0.013*

NE of PHG.R 0.446 0.004**

*P < 0.05, **P < 0.01 indicates an uncorrected relevant analysis.
HC, healthy controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; BC, Betweenness Centrality; DC, Degree Centrality; NE, Nodal Efficiency; PHG.R,
right parahippocampal gyrus; AMYG.R, right amygdala; MMSE, mini mental state examination; MoCA, Montreal Cognitive Assessment; FAQ, Functional Activities
Questionnaire; CDRSB, Clinical Dementia Rating Sum of Boxes; ADAS13, Alzheimer’s Disease Assessment Scale; EcogSP, Everyday Cognition by the patient’s study;
Mem, Memory; Lang, Language; Visspat, Visuospatial; Plan, Planning; Organ, Organization; Divatt, Divided Attention.
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FIGURE 4 | Relationships between altered nodal properties and CSF biomarkers in AD group. The betweenness centrality in the right parahippocampal gyrus was
negatively correlated with CSF t-tau (A: r = -0.373, P = 0.03) and CSF p-tau (B: r = -0.386, P = 0.024) in AD patients. PHG.R, right parahippocampal gyrus.

between the right medial superior frontal gyrus and left cuneus
was positively correlated with CSF t-tau (r = 0.399, P = 0.019)
(Figure 6B) and CSF p-tau (r = 0.420, P = 0.013) (Figure 6C).

DISCUSSION

In the present study, we investigated topological alterations
in the structural network within gray matter, the relationships
to pathological biomarkers, and their behavioral significance
in AD-spectrum patients. The three main findings are as
follows: (i) The local regional rearrangements in AD-spectrum
patients are mainly in the medial temporal lobe. (ii) The
rearrangements in the whole-brain networks gradually extended
from the frontal lobe to become widely distributed in the
cortex with the progression of AD. (iii) These rearrangements
in gray matter might be associated with compensation, which
was influenced following multidomain cognitive impairments
and AD-related CSF.

Research interest is transforming to increasingly earlier
diagnoses, since the origin of AD and the key to treatment
probably lie in preventing progression to a fully-fledged disease
(Hem et al., 2016; Slot et al., 2018). It should be noted that
compensation in the structural network has been shown to be
manifested earlier in AD-spectrum patients (Liu et al., 2020),
and there is increasing interest in the study of structural network
alterations to assess the progression in subjects who have a
higher risk of AD (Sanchez-Benavides et al., 2018). Therefore,
it is essential to evaluate alterations in structural networks
related to cognition and pathology (Dicks et al., 2020). In
the present study, we deduced that there was the possibility
of compensation in the structural networks in AD-spectrum
patients, as expected from previous AD-spectrum studies which
also provided additional evidence for our research results (Wook
Yoo et al., 2015; Caso et al., 2016). Our findings demonstrate
that brain regional compensation may start from the medial
temporal lobe, and the level of compensation within the whole
gray matter network moved from the frontal lobe to the more
extensive cortex as the disease progressed. We confirmed that the
gray matter network might commence reorganization and show
high resilience to network integrity damages in the early and

preclinical stages of dementia, which is similar to previous studies
(De Vogelaere et al., 2012). Thus, structural network properties
can be a sensitive and reliable index to detect changes in the
evolution of AD.

These findings are in line with previous studies reporting
altered graph theoretical properties in these regions in AD-
spectrum patients (Shah et al., 2018; Liu et al., 2020). Most of
the network graph theoretical properties referring to the frontal
lobe, medial temporal lobe, and subcortical structures–areas that
play a role in perception, executive control, episodic memory, and
understanding–have consistently been found to be affected across
the development of AD (Geib et al., 2017; Danti et al., 2018; Luo
et al., 2018). Furthermore, our study may reflect reorganization
and high resilience to network integrity damage. Previous
studies evaluating graph theoretical properties have described
compensation at the level of hippocampal/parahippocampal
regions and the frontal and occipital lobes (van Duinkerken
et al., 2016; Li et al., 2018). In line with prior studies,
in our analysis, network integrity was widely increased due
to the compensation in specific nodes related to cognition.
Despite differences in methodologies, compensation has been
described in other neurological and psychiatric disorders, such
as schizophrenia (Sapara et al., 2014) and early stages of
Parkinson’s disease (Nonnekes et al., 2019). Increased global
connectivity in the frontal lobe, hippocampus, and occipital
areas has been previously reported for mild AD patients (Bai
et al., 2011; De Vogelaere et al., 2012). Similarly, our study
shows that the compensation appears in the medial temporal
lobe at the brain regional level, while it gradually spread
from the frontal lobe to the widely distributed throughout the
cortex at the whole-brain network level with AD degenerative
processes. However, there is no specific report about the
potential mechanism revealing the patterns of this compensation
within structural networks of AD-spectrum patients. In that
sense, our findings present novel evidence of pathophysiological
mechanisms in alterations within the gray matter network of
AD-spectrum patients.

In addition, little is known about the pathological basis
of structural network compensation (Jackson et al., 2019).
The findings of impaired graph theoretical properties with
reference to the frontal lobe, medial temporal lobe, and
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FIGURE 5 | The altered edge based on the node analysis in AD-spectrum patients. Edges with significant (P < 0.05, FDR correction) increase (in red) or decrease (in
blue) in MCI (A) and AD (B) in patients compared with HC, and MCI group compared with AD (C). Results are shown in anatomical view (left panels) and in
connectograms (right panels).

subcortical structures involved alterations affecting gray
matter structures in the present AD spectrum patients,
which is in line with previous studies reporting increased
Aβ deposition and pathological tau accumulation in these
regions in AD (Buckley et al., 2017). This study demonstrates
the compensation related to cognitive impairments, which

exists with a potential AD pathological basis behind them.
Taken together, our findings and those from structural network
studies suggest structural brain compensation in response
to brain damage (Wook Yoo et al., 2015; Liu et al., 2020).
However, the relationship between structural changes and
disease progression remains controversial. Modifications in
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TABLE 3 | Significant correlations between the altered edge properties and neuropsychological performance in MCI and AD patients.

Neuropsychological scale Group Edge Spearman’s correlation
coefficient

P-values

MMSE MCI SFGmed.R – MFG.R 0.356 0.002**

SFGmed.R – ORBsupmed.L − 0.277 0.02*

AD SFGmed.R – PreCG.R − 0.396 0.011*

MoCA AD SFGmed.R – PreCG.R − 0.35 0.027*

SFGmed.R – PoCG.R − 0.395 0.012*

ACG.L – THA.R − 0.349 0.027*

FAQ AD SFGmed.R – PreCG.R 0.385 0.014*

CDRSB AD SFGmed.R – PoCG.R 0.315 0.048*

ADAS13 AD ACG.L – THA.R 0.354 0.025*

EcogSP Lang AD SFGmed.R – ORBsupmed.R 0.319 0.045*

EcogSP Plan MCI SFGmed.R – FFG.R 0.308 0.009**

*P<0.05, **P<0.01 indicates an uncorrected relevant analysis.
MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE, mini mental state examination; MoCA, Montreal Cognitive Assessment; FAQ, Functional Activities
Questionnaire; CDRSB, Clinical Dementia Rating Sum of Boxes; ADAS13, Alzheimer’s Disease Assessment Scale; EcogSP, Everyday Cognition by the patient’s study;
Lang, Language; Plan, Planning; PreCG.R, right precentral gyrus; MFG.R, right middle frontal gyrus; SFGmed.R, right superior frontal gyrus-medial part; ORBsupmed.L,
left superior frontal gyrus-medial orbital part; ORBsupmed.R, right superior frontal gyrus-medial orbital part; THA.R, right thalamus; PoCG.R, right postcentral gyrus;
ACG.L, left anterior cingulate and paracingulate gyri; FFG.R, right fusiform gyrus.

FIGURE 6 | Relationships between altered edges and CSF biomarkers in MCI and AD group. In MCI group, (A) the connection between right medial superior frontal
gyrus and left precentral gyrus (t-tau: r = -0.293, P = 0.049) was correlated with CSF tau concentration in MCI patients. In the AD group, the connection between
right medial superior frontal gyrus and left cuneus was positively correlated with CSF t-tau (B: r = 0.399, P = 0.019) and CSF p-tau (C: r = 0.420, P = 0.013).
SFGmed.R, right medial superior frontal gyrus; PreCG.L, left precentral gyrus; CUN.L, left cuneus.

the cerebral structure could be integral mechanisms that
reflect maladaptive changes promoting clinical dysfunction
or maintaining optimal network functioning (Llufriu et al.,
2017). Therefore, longitudinal studies are required to
understand the positive or negative consequences of these
compensatory brain changes.

Although our study attempted to provide a new perspective
for understanding the aberrant structural network architecture
and early identification in AD-spectrum patients, a few
limitations still require future study. First, to explore the
relationships among CSF pathology indicators, gray matter
network graph theoretical properties, and cognitive function,
we did not perform a correction for multiple comparisons.
The present study was a preliminary exploration and this
study, at least in part, revealed these interactions. Second,
this study was cross-sectional, and no directionality or causal
inferences were made. We still require large sample and
longitudinal studies to further confirm these findings and
to formulate a personalized evaluation system for disease
progression in patients with cognitive impairment in the

future. Third, the structural network parameters were
calculated according to the binary adjacency matrix rather
than the weighted network analysis. The latter analysis may
provide additional findings in future studies. Fourth, the
whole brain was divided coarsely into 90 regions based on
the AAL template for structural network construction. The
parcelation of the brain regions might influence the network
properties and may result in various outcomes in the graph
theoretical metrics. Different parcelation strategies are required
to validate our findings.

CONCLUSION

In summary, this study explored the differences in gray
matter network properties by graph theory and revealed a
reorganization mechanism of structural networks related to
cognitive impairments and CSF pathological biomarkers in
AD-spectrum patients. Our findings present novel evidence
of compensatory mechanisms in gray matter networks of AD
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spectrum patients and highlight the potential for applying
structural network metrics to monitor disease progression.
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