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Voxel-wise group analysis is presented as a novel feature selection (FS) technique for
a deep learning (DL) approach to brain imaging data classification. The method, based
on a voxel-wise two-sample t-test and denoted as t-masking, is integrated into the
learning procedure as a data-driven FS strategy. t-Masking has been introduced in a
convolutional neural network (CNN) for the test bench of binary classification of very-
mild Alzheimer’s disease vs. normal control, using a structural magnetic resonance
imaging dataset of 180 subjects. To better characterize the t-masking impact on CNN
classification performance, six different experimental configurations were designed.
Moreover, the performances of the presented FS method were compared to those of
similar machine learning (ML) models that relied on different FS approaches. Overall,
our results show an enhancement of about 6% in performance when t-masking was
applied. Moreover, the reported performance enhancement was higher with respect
to similar FS-based ML models. In addition, evaluation of the impact of t-masking on
various selection rates has been provided, serving as a useful characterization for future
insights. The proposed approach is also highly generalizable to other DL architectures,
neuroimaging modalities, and brain pathologies.

Keywords: deep learning, feature selection, neuroimaging, statistical parametric mapping, t-masking,
Alzheimer’s disease, magnetic resonance imaging, brain disorders

INTRODUCTION

During the last decade, technological advancements and the availability of large amounts of labeled
data (Aiello et al., 2019) fostered neuroimaging research’s development (Traverso et al., 2020). In
this context, machine learning (ML) algorithms played a relevant role (Lundervold and Lundervold,
2019; Chatterjee et al., 2020; Salmanpour, 2020; Traverso et al., 2020). Indeed, ML approaches
aimed to automatically recognize meaningful patterns undetectable with human perception. ML
methods enabled the potential development of computer-aided diagnosis and decision support
systems for diagnosis and clinical management of a high number of diseases (Yassin et al.,
2018). Moreover, ML algorithms were successfully applied to perform different tasks, like image
classification, object detection, and image segmentation (Dora et al., 2017).

Concerning classification tasks, some ML studies focused on support vector machines
(SVMs) and random forests for binary classification of pathological versus healthy conditions
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(Davatzikos, 2019) by using features manually extracted from raw
data or features learned, in turn, by other simple ML models
(Lundervold and Lundervold, 2019; Singh et al., 2020).

In the context of ML algorithms, deep learning (DL) gained
considerable attention among the scientific community for
medical imaging applications, hence also in the neuroimaging
field (Ding et al., 2019; Jo et al., 2019; Spasov et al., 2019; Zhu
et al., 2019). Unlike the classical ML approaches, where prior
knowledge of the domain was fundamental, DL utilizes deep
neural networks to automatically discover and extract useful
features directly from the data (LeCun et al., 2015). Deep neural
networks, in particular convolutional neural networks (CNNs),
outperformed previous state-of-the-art ML approaches (Litjens
et al., 2017; Shen et al., 2017; Brinker et al., 2019). In the context
of neuroimaging, DL was applied to classify psychiatric and
neurological disorders, which tend to be associated with subtle
and diffuse neuroanatomical and neurofunctional abnormalities
(Vieira et al., 2017).

Typically, ML approaches widely used feature selection (FS)
techniques, i.e., the process of choosing a subset of relevant
features for use in model design. The FS goal is finding the
best feature subset that yields the minimum generalization error,
enhancing the model’s performance (Vergara and Estevez, 2014).
FS methods improve the generalization by avoiding the curse of
dimensionality and by reducing overfitting (Singh et al., 2016).
Furthermore, FS techniques are increasingly employed since they
allow a simplification of learning models, facilitating human
interpretability. They also have the advantage of diminishing
training times (Venkatesh and Anuradha, 2019). However,
these ML approaches share the requirement of high domain
technical knowledge, thus limiting their applicability to specific
classification tasks (LeCun et al., 2015). Data-driven approaches
provided fundamental improvements for the generalization of
ML algorithms to deal with this issue. For example, Ijaz et al.
(2020) utilized a data-driven prediction model with outlier
detection based on random forests and used a chi-squared FS
method. Instead, Ijaz et al. (2018) uses an Information Gain
technique to evaluate the features’ significance.

In general, DL algorithms did not require FS approaches since
DL automatically discovers the intricate structure of imaging
features in large datasets during the training step (LeCun
et al., 2015). However, FS techniques could improve the DL
performance for a classification task, mostly in the case of limited
data availability (Chen et al., 2020; Raj et al., 2020). Indeed, in
the domain of computational neuroscience, the available image
datasets are often characterized by the size of features much
larger than the number of examples (the curse of dimensionality)
(Abraham et al., 2014; Mwangi et al., 2014). In the context of
high-dimensional classification, in general, FS approaches have
been proven suitable in several biomedical applications, also in
DL employments (Fan and Fan, 2008; Suk et al., 2016; Raj et al.,
2020). However, in deep neural network models, FS methods are
still poorly investigated (Raj et al., 2020).

Voxel-wise two-sample t-tests were demonstrated to be
effective in revealing brain areas associated with statistically
significant differences between groups related to a multitude
of neurological pathologies, for example, Alzheimer’s disease

(AD) (Senjem et al., 2005), multiple sclerosis (Audoin et al.,
2010), amyotrophic lateral sclerosis (Sage et al., 2007), childhood
absence epilepsy (Pardoe et al., 2008), and schizophrenia
(Asami et al., 2014).

To date, limited attention has been paid to deriving statistical
significance maps of imaging patterns to establish if a voxel or a
deep feature constitutes a significant contributor to a DL model
(Davatzikos, 2019). In general, FS approaches based on statistical
saliency are introduced in association with simpler classifiers
than those in DL models. For example, in Tohka et al. (2016),
several data-driven FS and classification methods are proposed
for the whole-brain voxel-based classification of AD vs. normal
control (NC) subjects.

The inclusion of an FS criterion into a DL pipeline represents
an attractive and non-trivial challenge due to the non-linear
nature of DL models. Moreover, this criterion should be
automatic, generalizable, and data driven, to maintain the critical
aspect of DL: to have multiple layers of features not designed by
human engineers, but learned from data using a general-purpose
learning procedure (LeCun et al., 2015).

In this work, we introduced a novel FS technique for CNN
architectures. Our primary aim was to verify the effective
improvement of a binary classification task by including a data-
driven FS approach based on a voxel-wise test of statistical
significance. The choice of applying FS to a CNN algorithm was
motivated by the reduction of the sample dimensionality without
losing relevant information. Indeed, the image dimensionality
(e.g., the number of voxels) represents a bottleneck that affects
the CNN routines’ training for 3D medical imaging classification
procedures (Vieira et al., 2017). We aimed to demonstrate the
t-masking approach’s feasibility by assessing its impact on a 3D
CNN model’s performance. For this purpose, we choose, as a
test bench, the classification task of AD vs. NC subjects, widely
discussed in the literature. The main reasons for this choice were
as follows: (i) It is demonstrated that CNNs have a good baseline
level of accuracy performance for datasets of a few hundreds of
samples, also in the early stage of pathology (Vieira et al., 2017)
and (ii) it is demonstrated that there are subtle region-specific
anatomical alterations in AD brains, viewable via structural T1-
weighted (T1-w) magnetic resonance imaging (MRI) (Fox and
Freeborough, 1997; Ling et al., 2013) and, likely, detectable by a
voxel-wise t-test. In particular, the classification task consisted of
automatically recognizing subjects with very mild AD vs. NC, a
task more challenging compared to the AD-vs.-NC classification.
However, the task under consideration has a higher clinical
interest for early diagnosis development.

In the AD-vs.-NC classification task context, a massive
quantity of studies based on ML and DL methods was published.
Early studies on AD classification proposed a classification
pipeline that started with an FS and extraction steps to obtain
useful information to feed on a multivariate pattern classification
algorithm (Mateos-Pérez et al., 2018). One of the most employed
classifiers was SVM, requiring kernels that transform input
data and act as a similarity measure for the classification task.
Referring to the FS strategy, Chaves et al. (2009) used an FS
based on a t-test to select regions of interest, reducing the
dimensionality of input data; Asim et al. (2018) utilized a brain
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atlas; Moradi et al. (2015) used a simpler ML algorithm as
regularized logistic regression; Suk et al. (2016) proposed a
weighted sparse multi-task learning method, and Zhang et al.
(2014) adopted a principal component analysis (PCA) method.
Fan et al. (2007) performed a combination of group analysis
on adaptive regional elements with an SVM classifier. Ensemble
methods (like the random forest) are also employed for the
multimodal classification of AD (Gray et al., 2013).

DL methods have been applied to AD-vs.-NC classification
tasks, achieving the highest classification performance, especially
when using multimodality data or when combined with other
learning approaches (Jo et al., 2019). Spasov et al. (2019)
developed a parameter-efficient 3D CNN with a dual-learning
approach to predict the conversion from mild cognitive
impairment (MCI) to AD. Khagi et al. (2019) used transfer
learning to enhance the performance of their CNN. Afzal et al.
(2019) proposed an augmentation technique to balance the
dataset and improve classification performance, increasing the
training set’s sample size. Suk et al. (2016) presented a DL-based
latent feature representation with a stacked autoencoder, while
Choi et al. (2018) introduced PET images as input in a 3D CNN
to predict conversion from MCI to AD.

Considering the analyzed literature, to the best of our
knowledge, this is the first study in the neuroimaging field
developing a DL model with an FS based on voxel-wise statistical
analysis for image binary classification.

MATERIALS AND METHODS

Dataset
Data from the OASIS-3 release, which consisted of a longitudinal
neuroimaging, clinical, and cognitive study of normal aging
and AD (LaMontagne et al., 2019), were used. In particular,
we selected T1-w MRI data acquired with a 3-T magnetic
resonance (MR) scanner. LaMontagne et al. (2019) reported
detailed information on recruitment criteria, imaging acquisition
protocols, used scanners, and clinical/neurological assessment.
We used the Clinical Dementia Rating (CDR), as provided
by OASIS-3, to select AD subjects with very mild AD (i.e.,
CDR = 0.5). We selected structural T1-w MR images from 90
AD subjects with an MR session made at the time close to AD
diagnosis with CDR = 0.5. To obtain a balanced dataset of both
AD and NC groups, 90 NC participants, matched for age and sex
with the selected AD group, were randomly included by selecting
the T1-w images related to the first available sessions, resulting in
a dataset with 180 samples.

Preprocessing
The preprocessing procedures consisted of spatial and intensity
normalization of neuroimaging data.

Spatial normalization was performed by registering the T1-
w images to the Montreal National Institute (MNI)-152 (1 mm)
standard space template using the FSL routines (FMRIB-FSL
package v. 6.0.0). In particular, we used the FNIRT routine
to non-linearly register the T1-w images to the MNI-152
template, including a preliminary linear registration step (FLIRT

of FMRIB-FSL) of the brain-extracted T1-w images. The skull
stripped T1-w images were generated with a 3D CNN approach,
using the DeepBrain Extractor, a Python tool that runs a pre-
trained 3D U-net available at https://github/iitzco/deepbrain.
The spatial normalization results were visually checked to assess
the quality of the normalization procedure (i.e., anatomical
consistency among the registered images).

The intensity normalization procedure consisted of rescaling
the voxel values to zero mean and unit standard deviation,
making it easier to learn the weights to the optimization
algorithm (Raschka and Mirjalili, 2017).

We obtained two preprocessed datasets, detailed as follows,
by applying different combinations of spatial and intensity
normalization procedures:

• T1-w images processed for intensity normalization
(denoted as raw T1-w images) and
• T1-w image obtained by applying spatial and intensity

normalization routines (denoted as spatially normalized
T1-w images).

Subsequently, we randomly separated the dataset into three
subsets: a training set (108 subjects, 60% of the dataset), a
validation set (36 subjects, 20% of the dataset), and a test set
(36 subjects, 20% of the dataset). We paid particular attention to
obtaining the same number of samples per class (i.e., NC and AD)
in each subset to get a balanced training dataset.

t-Masking CNN Model
Let X be the training dataset of spatially normalized brain images
with 2N examples; for a given binary classification task, we define
X0 as the subset of 0-labeled images and X1 as the subset of 1-
labeled images. X was built as a balanced dataset; i.e., X0 and X1
have the same size N. Let X0j(υ) be the intensity value of the
jth image in X0 at the voxel υ. The voxel intensity sets {X0j(υ)
| ∀ j ∈ [1, N]} and {X1j(υ) | ∀ j ∈ [1, N]} are assumed to refer
to the same brain location for all elements since the images are
spatially normalized. Let µ0(υ) and µ1(υ) be the means for the
two precedent sets, respectively; hence, we recall the definition of
the Student t-statistic (Snedecor and Cochran, 1989), to define
the t-map in terms of the t-score:

t(v) =
|µ0(v) − µ1(v)|√

0.5 (σ2
0(v) + σ2

1(v))
(1)

where σ0 and σ1 are the standard deviations for X0j(υ)
and X1k(υ) for all j and k in [1, . . . N], respectively.
Considering the null hypothesis H0: µ0 = µ1, we reject H0
if t(v) > threshold. Repeating the computation for all v, we
obtain a multiple-hypothesis test-based map, namely, the t-mask,
corresponding to voxels belonging to brain areas with statistically
different values between µ0 and µ1, at a given threshold. As
a result, only the most salient voxels for the given binary
classification task will be considered as relevant features with the
t-masking application. Features with 0-value in the t-mask were
considered as redundant features, according to the definition of
Vergara and Estevez (2014).
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The t-masking approach was included in a CNN model.
Below, we briefly describe the CNN architecture.

Convolutional layers in a 3D CNN are composed of K different
filters. Each filter works by convolving an input tensor x with a 3D
kernel of weights W ∈ Rm × m × m with size M = m3 and adding
a bias term b. The result is passed to a non-linear activation
function f (·). Therefore, each filter k returns a feature map hk,
extracting a derivative of x, as follows:

hk = f (Wk ∗ x + bk) (2)

The set of K feature maps, extracted from the input x, defines
a single layer in a CNN architecture composed of L layers. The
kth feature map at layer , denoted as hl

k, is constructed using the
outputs of layer - 1 as inputs to layer :

hl
k = f (W l

k ∗ hl−1
+ bl

k) (3)

For simplicity, we neglect the description of the pooling
layers, which, although fundamental for the CNN model, are not
relevant for our purpose. Therefore, the last layer’s output θ is
inputted in a cross-entropy cost function J(θ), which depends on
a chain of the precedent layers’ output (Eq. 3). After a random
initialization of the weights, the network is trained in order to
update the vector of all weights W and b with gradient-based
optimization, using the well-known backpropagation algorithm.

t-Masking induces a simplification of the complex structure of
J(θ). To explain this, we consider the affine transformations of the
first layer as

W0
k ∗ x + b0

k (4)

Eq. (4) could be dominated by redundant voxel intensity
values. Indeed, Eq. (4) could be reformulated as

W0
k ∗ (xrel

+ xred) + b0
k (5)

where xrel and xred represent the matrix of relevant and redundant
voxel values, respectively, associable to wi with an appropriate
factorization. When ||xrel||1� ||xred||1, the affine transformations
are dominated by the redundant terms, principally characterized
by low-ranking t-scores. Therefore, it should produce a noise-
like effect in deeper layers due to relevant patterns hidden by
indistinguishable redundant terms. t-Masking imposes xred = 0
for all i, improving filters’ response when complex interactions in
deep layers between xrel and xred can be neglected. Furthermore,
it is well known that CNNs have sparse interactions between
input features in deep layers (Goodfellow et al., 2017), as evident
from Eq. (3). Therefore, considering that t-masking preserves
the spatial relationship of data, its application to a CNN allows
sparse interactions among all relevant voxels (xij

rel, thus serving
the requirements of a CNN. Consequently, the model can
extract meaningful information just from the relevant voxels’
spatial distribution. This could be an advantage over applying

t-masking to a classical ML model, which generally requires the
vectorization of the input features.

In conclusion, such formal description highlights how
t-masking can minimize the redundancy, reducing the features’
dimensionality, thus removing possible bias sources in the
classification task.

Feature Selection
Figure 1 shows a synthetic scheme of the learning procedure.
We performed a voxel-wise two-sample t-test between spatially
normalized T1-w images from NC and very mild AD, with
Gaussian smoothing with a full width at half maximum of 6 mm.
We applied the t-masking to all data (training, validation, and test
set) as a binary mask (with a fixed threshold).

We computed the t-map, t(v) only on the training set to
avoid leakage, i.e., the creation and usage of variables (like
labels in the case of classification tasks) that carry information
about the outcome of the classification task (Mateos-Pérez et al.,
2018). The choice of a suitable threshold for the previous step
was investigated, evaluating the classification performance at
variable t-masking threshold through validation curves. We
used the accuracy and the area under the curve (AUC) of
receiver operating characteristic (ROC) as metrics for the plots.
Train, validation, and test accuracy, along with validation and
test AUC curves, are plotted (Figure 4) to give a qualitative
assessment of the bias, variance, and the model’s stability as the
threshold changes.

CNN Architecture Overview
We utilized a 3D CNN inspired by the study of Spasov
et al. (2019) that already proposed an efficient CNN model
(about 5,105 parameters) with high accuracy for AD/MCI
conversion prediction. They implemented a dual-learning
approach combining several input streams such as structural
MRI measures, Jacobian determinant images, and clinical data.
We modified such architecture by simplifying and tailoring it
for our purposes. In particular, with a Siamese approach, input
data were kept only from MRI, eliminating clinical data input,
their associated subnetwork, and Jacobian determinant images.
Moreover, we removed the dual-learning method, preserving
a logistic regression as a binary classifier. The network was
designed to receive input masked MR images on two parallel
layers. After two layers, the outputs were concatenated, merging
the activation maps along the channel axis (the concatenate
layer). The add-block performed element-wise addition between
two sets of activation maps of the same size along all dimensions.
A residual connection in the add-block facilitated training in
analogy to ResNet behavior. The network decreased the image
inputs’ dimensionality using standard, separable, and grouped
convolutional blocks before two fully connected layers. Its output
was a four-dimensional feature vector, ready for the logistic
regression classifier. The following network settings remained
unchanged in all experiments: (i) the dropout rate, set at 0.1 for
all layers and blocks; (ii) the L2 regularization penalty coefficient,
set at 5 × 10−5 for all parameters in the convolutional and fully
connected layers. The convolutional kernel weight initialization
followed the procedure described by He et al. (2015). The
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FIGURE 1 | Overview of the learning procedure: (1) Spatial normalization of MR structural images and group analysis on training data. (2) t-Masking of input images.
(3) Training and classification of 3D CNN.

FIGURE 2 | The architecture of our 3D CNN with a Siamese approach. The notation of blocks is as follows: kernel size, (separable) convolutional block, and output
channels. If the strides are different from the default value of 1, the new stride value is shown in addition at the end. Each (separable) convolutional block sequentially
contains a 3D (separable) convolutional layer, batch normalization, ELU activation, 3D max-pooling (only the convolutional layer), and dropout. FC blocks contain a
fully connected layer, batch normalization, ELU activation, and dropout. For details, see Spasov et al. (2019).

objective function loss was minimized using the Adam optimizer
(Kingma and Ba, 2017), with an exponentially decaying learning
rate of 0.001 × 0.3 epoch/10. A training batch size of six
samples was randomly sampled from the dataset when training
the network until the dataset was exhausted.

A synthetic scheme showing the adopted CNN architecture is
presented in Figure 2.

Regularization and Hyperparameter Choice
We adopted several strategies to manage overfitting, some
of which were in common with the Spasov model (batch
normalization, dropout, and L2 regularization). Since the
previous work of Spasov already optimized the hyperparameters
like batch size, learning rate, dropout rate, and the L2
regularization parameter, we used the proposed configuration
for those parameters. To control the overfitting and reduce
computational time, a further implicit regularization, the early
stopping (Yao et al., 2007), was included. It consists of stopping
the training of the network before it ceases to improve
generalization performance. In particular, we imposed the

patience parameter at 10 epochs; i.e., we retrieved the model with
the minimum validation loss if the last 10 epochs did not obtain
a lower validation loss.

Experimental Models
To assess the classification performance of the proposed
CNN model, we implemented seven different experimental
configurations, as detailed in the following points:

1. 3D CNN model, without FS, on raw T1-w
images (raw_MRI).

2. The same model as point 1 to spatially normalized T1-w
images (norm_MRI).

3. 3D CNN model with t-masking FS (fs_CNN_MRI).
4. A linear classifier with an FS based on t-masking

(fs_linear_MRI).
5. 3D CNN model with t-masking FS corrupted by adding

Gaussian noise with 0 mean and 0.2 standard deviation
(fs_noise_CNN_MRI).
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6. 3D CNN model with t-masking FS biased by
randomly turning off voxels in the t-mask, following
a Bernoulli probability distribution with p = 0.05
(fs_bernoulli_CNN_MRI).

7. 3D CNN model with a random FS based on a “voxel-
wise” dropout that turns off the voxels with a constant
Bernoulli distribution probability p. A validation curve
was performed as a function of p ranging from 0.01 to
0.99 (fs_random_CNN_MRI).

We implemented fs_linear_MRI to verify the classification
performance of the voxel-wise two-sample t-test without the
CNN. In that experimental setup, we replaced the CNN with a
linear classifier that receives in input the mean of the masked
image voxel values. The application of t-masking to the linear
decision model (classification of average intensity voxels by
a perceptron) provided an estimate of the statistical mapping
contribution alone.

The fs_noise_CNN_MRI and fs_bernoulli_CNN_MRI
processes allowed us to assess the robustness of fs_CNN_MRI
to small variations of selected voxels by perturbing the t-mask.
fs_noise_CNN_MRI was thought to assess the t-masking’s
robustness to structural MRI misalignment and subjects’
misclassifications. fs_bernoulli_CNN_MRI was planned to
evaluate the robustness to type I and II error variations. We
implemented fs_random_CNN_MRI to compare t-masking
applied to the same CNN using another FS technique.

Each experimental point was obtained by averaging metrics
acquired from five random (i.e., with a random seed) sample
permutations. Raw_MRI and norm_MRI correspond to a single
experimental point. In all other cases, we evaluated a validation
curve from the applied experimental points to study the different
behaviors at different threshold values of the t-map. In detail,
for models from 3 to 6, we evaluated 21 experimental points,
corresponding to several threshold points related to the binary
mask obtained from the t-map. The threshold values were
selected in the equally spaced range [0, 8] with a zero-threshold
corresponding to the entire brain mask and an eight-threshold
representing no surviving voxels in the binary mask.

Performance Evaluation
We compared the computed models’ performance metrics (from
model 3. to 6. listed above) through validation curves as a
function of the t-mask threshold. Test accuracy and ROC analysis
were executed by computing the AUC. We adopted a dedicated
cross-validation method to determine the quantitative effect of
random sampling for splitting the dataset on the training process.
In particular, we tested whether the FS method outperformed
the baseline CNN by considering the average between each
permutation of test accuracy and test AUC, named the average
cross-validation. Instead, in the classical cross-validation, the
performance was evaluated by observing test accuracy/AUC
corresponding to the model with the highest value of the metrics
on the validation set. This method allowed us to identify what
thresholds outperform baseline models, and it enabled us to
compare the validation curves of all our models in a statistically
meaningful way. Moreover, to allow a further comparison with

other literature methods, we added the test accuracy and the
test AUC obtained by the classically fivefold cross-validation; i.e.,
we selected the model which achieves the best performance on
the validation set.

We evaluated the performance enhancement (PE) of
t-masking by comparing the peak accuracy of fs_CNN_MRI
with the accuracy of the raw_MRI model. In particular, PE is
computed as the difference of the test accuracy of two models,
estimated with average cross-validation; negative PE indicates
that the considered model underperforms the reference model.
We also compared the PE result with the PE of typical FS
approaches compared on a previous work (Tohka et al., 2016).
These models are trained on 200 subjects from ADNI MRI
T1-w to resolve an AD-vs.-NC classification task (with no CDR
subjects’ selection).

Furthermore, we included a visual explanation method as a
qualitative performance evaluation, based on the computation of
a saliency map (heat-map) that localizes relevant image regions
for the CNN model, resulting in a saliency map of features. In
particular, we implemented a class activation mapping (CAM)
method for 3D CNNs, by using the grad-CAM algorithm
developed by Selvaraju et al. (2020). The heat-map was derived
by computing the gradient between a convolutional layer output
and the loss output. We inspected the output of the first
“concatenate” layer (Figure 2), as a compromise between the
deepest layer possible for maintaining high-level semantics and
the highest map resolution (Selvaraju et al., 2020). We applied
grad-CAM to the models derived from each considered threshold
of fs_CNN_MRI and norm_MRI.

Algorithm Implementation
All experiments were conducted using Python 3.6.9. The neural
network was built with the Keras DL library using TensorFlow
2.0 as a backend. 3D convolutions were available as a Keras
module. The 3D separable and grouped convolutions modules
were available in previous works (Spasov et al., 2019). The code,
available to https://github.com/simeon-spasov/MCI, was adapted
for the v.2 of TensorFlow1 and v.3 of Python. To compute the
t-map, we employed the Python module nistats, included in
nilearn (“Nistats: Functional MRI in Python—functional MRI
for NeuroImaging,” n.d.). For the whole experimental procedure,
we utilized a cloud computing strategy: a free Jupiter notebook
environment working directly on a browser with a virtual
machine that requires no setup to use while providing free access
to computing resources, including GPU (up to 25.51-GB RAM,
a GPU T4 or P100). The code to replicate the experiments is
available at https://gitlab.com/sdndeep/voxel_wise_fs.

Employing the resources available for Colab users
(Colab offers only one core CPU), we run t-masking with
limited computational power. Therefore, currently available
workstations (or PCs) on the market could obtain better time
performances, considering a faster charge dataset on RAM and
the statistical test’s parallelizability.

It is important to underline that the addition of t-masking
provides an additional computational burden which may not

1https://www.tensorflow.org/api_docs?hl=en
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be negligible when large datasets are used. Indeed, it should
be considered that to perform the two-sample t-test, the entire
training set must be loaded in RAM memory to compute the
t-mask.

RESULTS

In Figure 3, we show an example of t-masks, obtained
within a fs_CNN_MRI training run, at different thresholds of
t-parameter, in the range [0.0, 6.0].

Table 1 shows the results of the tested experimental models, in
terms of both accuracy and AUC.

Overall, the fs_CNN_MRI model holds the highest
performance for both average and classical cross-validation
metrics. In particular, considering the average cross-validation
metric, the fs_CNN_MRI outperforms the raw_MRI and
norm_MRI models with PE values of (6 ± 2)% and (7 ± 2)%
(accuracy) and differences in AUC of 0.06± 0.02 and 0.05± 0.02,

FIGURE 3 | Feature selection maps (t-masking) overlaid on a spatially
normalized axial T1-w images, for each adopted threshold (t). This figure
represents an example resulting from a t-masking pipeline run applied to very
mild AD- vs. -NC classification. For each t-masking, the fraction of voxels
selected for a given threshold with respect to the whole-brain volume is also
reported (sel_rate).

respectively. The results were also confirmed for classical cross-
validation metrics, where fs_CNN_MRI outperforms both the
raw_MRI (PE: 3%; AUC difference: 0.06) and norm_MRI (PE:
3%; AUC difference: 0.05).

Figure 4 shows the t-mask threshold setting’s influence on the
performance of the CNN models in terms of validation curves
for all metrics (train–validation–test accuracy, validation, and test
AUC). We observe that the average performance increases until
reaching a peak in all models utilizing the FS method. For all
t-masking models, the curves show how the metrics reach a peak
value, improving the performance to the threshold increase until
a final breakdown due to the loss of relevant voxels. The peak is
in the same threshold range [3, 5] for all models, which means,
recalling Figure 3, the percentage of selected voxels is between
approximately 18% and 0.4%.

We evaluated the PE of t-masking using average cross-
validation results for test accuracy between fs_CNN_MRI and
raw_MRI. We obtained a PE of (6 ± 2)%, as shown in Table 1.
Table 2 shows a comparison of our experimental PE results
with a precedent work in the literature (Tohka et al., 2016). The
original article’s notation is maintained. In this paper, the authors
studied an AD-vs.-NC classification task, applying several FS
techniques to classical ML classifiers. They compared SVM, with
or without filter-based FS; several embedded FS methods; and
stability selection (with logistic regression, lasso, elastic net, and
graph net). Filter-based methods consisted of a t-test-based filter,
with or without a false discovery rate (FDR)-corrected threshold.
Their classification task is not directly comparable since they used
the ADNI dataset without a CDR selection.

Finally, to provide the reader with an idea of the operational
feasibility of the method, we evaluated the additional
computational time required by t-masking; it took about
5 min for the training dataset (108 subjects), considering the
experimental setup described above.

The heat-maps derived from the grad-CAM algorithm, at
varying t-thresholds for the fs_CNN_MRI experiment, are
reported in Supplementary Figure 1. It is clear, from the heat-
maps, that the greater the weight of the t-masking, the greater the
focus of the grad-CAM model on the salient regions of interest
for the classification task.

DISCUSSION

We proposed a t-masking FS method for deep neural networks
on a CNN architecture by evaluating its performance and
the behavior with respect to the adopted salience parameter
(t-threshold). We tested the proposed CNN model for a
very mild AD-vs.-NC classification task with an structural
MRI dataset of 180 subjects. It is the first time a feature
selection technique is investigated for DL applications to
neuroimaging, to the best of our knowledge. By comparing
raw_MRI and norm_MRI models with fs_CNN_MRI, we
can affirm that the adoption of the t-masking resulted
in an effective increase in performance. In particular, it
should be noted that raw_MRI and norm_MRI reached
similar performance. For this reason, we can deduce that
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TABLE 1 | Test accuracy and AUC evaluated for each tested method with average cross-validation (the average between permutations) and classical cross-validation
(the highest between permutations).

Experimental models Average cross-validation Classical cross-validation

Test accuracy Test AUC Test accuracy Test AUC

raw_MRI (69 ± 2)% 0.79 ± 0.01 78% 0.82

norm_MRI (68 ± 2)% 0.80 ± 0.01 78% 0.83

fs_CNN_MRI (t = 3.6) (75 ± 1)% 0.85 ± 0.01 81% 0.88

fs_linear_MRI (t = 4.4) (69 ± 2)% 0.78 ± 0.02 72% 0.81

fs_noise_CNN_MRI (t = 4.4) (76 ± 3)% 0.84 ± 0.03 72% 0.81

fs_bernoulli_CNN_MRI (t = 4.4) (74 ± 3)% 0.82 ± 0.03 69% 0.83

fs_random_CNN_MRI (p = 71%) (57 ± 8)% 0.62 ± 0.15 64% 0.69

Please refer to the text for the details of the tested methods.

the spatial normalization process did not degrade the
classification performance and, notably, that the enhancement
of fs_CNN_MRI can be reasonably attributed solely to the
t-masking.

Moreover, the similar performance between fs_linear_MRI
(which applies t-masking to a linear model) and both raw_MRI
and norm_MRI indicated that the classification based only on
statistical mapping achieved similar results compared with using
CNN alone, whereas it reached worse results compared with
fs_CNN_MRI. We showed that in fs_noise_CNN_MRI and
fs_bernoulli_CNN_MRI, the overfitting slightly increases. We
should also note that validation curves verified the increasing
linear dependence of the performance as a function of the selected
threshold (for models from 3. to 6.). It is interesting that the
PE peak was reached in the same threshold range [3, 5] for
all t-masking models. This observation can be interpreted as
t-masking results being robust to small attempts to mess up
the t-map, despite a slight increase in overfitting and inferior
generalization capability. Finally, fs_random_CNN_MRI model
results showed that the performance, in terms of both accuracy
and AUC, decreased if a random voxel-wise FS replaces the
t-mask. This comparison is a further confirmation of how
t-masking selected relevant features against the random FS
approach. As shown in Figures 3, 4, relevant features, i.e.,
features leading to better classification performance, represented
a small 10.1% fraction of the total brain, thus confirming the
working hypothesis explained in Section 2.3 (||xrel||1� ||xred||1).
Furthermore, grad-CAM results show that t-masking contributes
to the focalization of relevant image regions for the model
training with respect to norm_MRI (t = 0.0), which instead
shows a more dispersive feature distribution. As expected, as the
t-threshold grows, the heat-maps highlight more focused regions
for the classification task.

We analyzed early AD vs. NC, as a test bench, for a
demonstrated difference between AD brains and NC brains, due
to the presence of subtle region-specific anatomical alterations in
AD brains, viewable via structural MRI T1-w and detectable by
a voxel-wise t-test. The obtained results justify this choice and
allow us to deduce that the same method could be applied to
disorders with the same characteristics.

In the method here presented, we have chosen a voxel-wise
two-sample t-test, considering that it is a standard method

for mass univariate analysis and represents a well-established
statistical tool for group analysis in the neuroimaging field.
In principle, other statistical tests, such as mass multivariate
methods, could serve as suitable FS methods and deserve further
investigation. Indeed, considering Figure 3, other statistical maps
could obtain a similar distribution of relevant voxels.

In this work, the CNN architecture proposed by Spasov
et al. (2019) was adopted due to both its high performance and
efficiency in the AD-vs.-NC classification task. However, different
CNN architectures could be used, and further investigations are
required to assess the t-masking performance when different
CNN architectures are adopted.

We obtained the best PE with a reduction of 90% brain
voxels, protecting from the curse of dimensionality. However,
in the DL literature, FS techniques are often under-investigated
since deep neural networks aim to implicitly extract the relevant
features. Based on our findings, we argued that FS techniques, like
t-masking, should deserve more attention in DL models’ design.
The t-masking approach is integrated into the learning process
and is based only on simple statistical analysis on training data,
with limited a priori hypotheses. For this reason, it is in line with
the fundamental ideas of DL.

It is possible to adopt data augmentation, pre-trained layers, or
transfer learning strategies to obtain better performance. Transfer
learning reaches state-of-the-art performance in pathological
brain detection with AlexNet-based neural network architectures,
as demonstrated by Lu et al. (2020) and Lu et al. (2019). We
excluded the application of these techniques since this work was
focused just on the impact of FS on the performance. However,
the study of the impact of the concurrent combination of multiple
strategies to the global performance of a DL model deserves
attention and further investigations.

In the context of the CDR-based AD-vs.-NC classification task
with transfer learning, Nanni et al. (2020) reached 0.83 AUC
when only very mild AD subjects (CDR = 0.5) were selected. With
a 0.88 test AUC, the proposed t-masking model fs_CNN_MRI
outperformed the ensemble transfer learning model for the
same classification task and reached comparable performance
when a conventional ML was applied to the same classification
task (0.89 AUC).

Our results show that t-masking could not improve the
performance under some specific conditions. Indeed, we have
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FIGURE 4 | Performance of the models as a function of the t-mask threshold. Error bars represent the standard deviation of the mean. For all t-masking models, the
curves show how the metrics reach a peak value, improving the performance to the threshold increase until a final breakdown due to the loss of relevant voxels. The
zero-point thresholds are equivalent measures of the norm_MRI model for fs_CNN_MRI and fs_noise_CNN_MRI. The bottom row shows the results in the case of
“voxel-wise” dropout (with increasing p-value on the abscissa). There is evidence that the performance of fs_random_CNN_MRI rapidly decreases at increasing
p-value.

found that when the number of selected voxels was limited,
the performance deteriorated with increasing overfitting. This
result could be ascribed to the loss of relevant information when

decreasing the number of voxels. If t-masking is considered for
different classification tasks, the active regions (i.e., regions in
which voxels are selected by masking) might be too few. A high

Frontiers in Neuroscience | www.frontiersin.org 9 April 2021 | Volume 15 | Article 630747

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-630747 April 14, 2021 Time: 15:30 # 10

Messina et al. Feature Selection for CNN Classification in Neuroimaging

TABLE 2 | Comparison of PE for models using FS techniques, analyzed in Tohka
et al. (2016).

Performance enhancement

EN-VACV +1.8%

EN-VABEE +1.4%

EN-05CV +1.8%

EN-05BEE +1.0%

LASSOCV +1.4%

LASSOBEE 0%

LASSOSTAB −0.2%

EN-05STAB −0.1%

GNCV +1.5%

GNBEE +0.7%

SVMF-FDR +1.3%

SVMF-1000 +1.6%

SVMF-125 +2.1%

SVM-ALL 0%

t-Masking CNN +6 ± 2%

The original article’s notation is maintained. The results are referred to an average
of the experimental conditions with resampled images to 4 and 8 mm isotropic
and spatial resolutions. In the case of results from Tohka et al. (2016), the PE is
computed by subtracting the test accuracy of the model under consideration with
SVM-ALL test accuracy; in the case of fs_CNN_MRI, the PE is computed by a
subtraction with raw_MRI. Negative values refer to worse performance.

variability as a function of the training set could be found,
depending on the brain disorder’s intrinsic physiology. A possible
solution could be to use different imaging modalities or to
exploit multimodal imaging. A further limitation of our study
is represented by the dataset size, and further investigations are
required to test how our FS technique improves the classification
performance capabilities on a larger dataset.

The FS t-masking approach deserves attention also for the
possibility of being easily generalizable for the classification of
other pathologies, as well as for other neuroimaging modalities
(if it is possible to make a voxel-wise comparison through a
spatial normalization). Furthermore, the t-masking, although
demonstrated on a CNN in this work, can, in principle, be used
to perform FS in other DL architectures.

Considering the comparison with results obtained by Tohka
et al. (2016), as reported in Table 2, it should be noted that their
experimental procedure differed from ours due to the use of a
split-half resampling-type analysis. However, they reported an
average test accuracy. For this reason, average cross-validation
results are more suitable for comparison than classical cross-
validation, despite the latter method being more used in the
literature. Despite the less challenging classification task (AD
vs. NC with respect to very mild AD vs. NC, in our work)
and the differences in the analyzed dataset (for example, MRI
T1-w images acquired with a 1.5-T scanner), it is interesting
to compare their results with ours by using the PE as a more
objective comparison criterion. In particular, we have achieved
a threefold improvement in performance compared to their
algorithms. It is useful to underline that the model SVM-ALL
refers to an SVM classifier without any FS application and,
consequently, that it is possible to compare the PE obtained by

Tohka et al. (2016) by using FS methods. Accuracy comparison
cannot be applied due to the different data sources. Moreover, the
presented comparison should be analyzed considering that they
did not select AD subjects using a CDR-based analysis. We did
not find other studies analyzing a very mild AD-vs.-NC binary
classification task on the OASIS-3 dataset. However, Saraswathi
et al. (2013) used a GA-ELM-PSO (refer to the article for the
notation) classifier for AD multiclass classification by CDR-level
voxel-based morphometry for feature extraction and a genetic
algorithm for FS. They used an OASIS dataset (not OASIS-3),
obtaining an 81% test accuracy for the very mild classification. In
real-world applications, t-masking could be suitable in contexts
with hundreds (or few thousands) of subjects available for
training. The use of t-masking indeed requires increased use
of resources during training. In particular, the computation of
the t-mask requires an additional computational step in the
training phase, thus requiring proper RAM resources and extra
computational time. Therefore, the t-masking CNN model pays
the performance improvement with a higher training time than a
CNN alone because t-masking takes about 5 min to compute the
t-mask of 108 subjects. Besides, if properly managed, the voxel
selection operated by t-masking can, in principle, shorten the
training time due to sparse active voxels and improve the DL
model interpretability.

CONCLUSION

In this work, we analyzed the application of a group-analysis-
based FS, the t-masking, to deep neural network architecture, in
the case of a very mild AD-vs.-NC classification task on a 180-
example dataset of structural MR. We showed that the t-masking
application could enhance the classification performance even
better than could conventional FS techniques. Moreover,
t-masking is generalizable to other binary classification tasks,
different neuroimaging modalities, and other DL architectures.
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