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Purpose: To investigate changes in blur detection sensitivity in children using
orthokeratology (Ortho-K) and explore the relationships between blur detection
thresholds (BDTs) and aberrations and accommodative function.

Methods: Thirty-two children aged 8–14 years old who underwent Ortho-K treatment
participated in and completed this study. Their BDTs, aberrations, and accommodative
responses (ARs) were measured before and after a month of Ortho-K treatment. A two
forced-choice double-staircase procedure with varying extents of blur in three images
(Tumbling Es, Lena, and Street View) was used to measure the BDTs. The participants
were required to judge whether the images looked blurry. The BDT of each of the images
(BDT_Es, BDT_Lena, and BDT_Street) was the average value of the last three reversals.
The accommodative lag was quantified by the difference between the AR and the
accommodative demand (AD). Changes in the BDTs, aberrations, and accommodative
lags and their relationships were analyzed.

Results: After a month of wearing Ortho-K lenses, the children’s BDT_Es and
BDT_Lena values decreased, the aberrations increased significantly (for all, P ≤0.050),
and the accommodative lag decreased to a certain extent [T(31) = 2.029, P = 0.051].
Before Ortho-K treatment, higher-order aberrations (HOAs) were related to BDT_Lena
(r = 0.463, P = 0.008) and the accommodative lag was related to BDT_Es (r = −0.356,
P = −0.046). After one month, no significant correlations were found between the BDTs
and aberrations or accommodative lags, as well as between the variations of them (for
all, P ≥ 0.069).

Conclusion: Ortho-K treatment increased the children’s level of blur detection
sensitivity, which may have contributed to their good visual acuity.

Keywords: blur detection sensitivity, orthokeratology, blur adaptation, higher-order aberration, accommodation
lag

INTRODUCTION

Orthokeratology (Ortho-K) has been demonstrated to improve naked visual acuity during the
day (Swarbrick, 2006; Khan et al., 2016) by reshaping the corneal surface and to slow myopia
progression (Swarbrick, 2006; Le et al., 2010; Santodomingo-Rubido et al., 2015, 2017; Wen
et al., 2015; Huang et al., 2016; Chen et al., 2018) by changing the peripheral defocusing state
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(Queirós et al., 2010; Kang and Swarbrick, 2011; Santodomingo-
Rubido et al., 2013). An increasing number of children have been
using them in China (Tay et al., 2017), Singapore (Saw et al.,
2019), etc., especially for the latter reason.

Although some studies (Queiros et al., 2012; Zhao et al.,
2018) have shown that myopic children’s quality of life partially
improves with good acceptance of Ortho-K (Wen et al., 2015;
Li et al., 2016), visual and optical quality in children wearing
Ortho-K lenses deteriorate because of the reshaped cornea
and the affected tear film (Li et al., 2018). Previous studies
have reported that Ortho-K inevitably increases higher-order
aberrations (HOAs) and decreases contrast sensitivity (Hiraoka
et al., 2008a,b; Gifford et al., 2013; Vincent et al., 2020). Santolaria
et al. (2013) reported that people using Ortho-K tend to complain
about distortions from car headlights and bright lights at home.
Bad visual and optical quality may cause the perception of blur
to some extent. However, it is not common for people receiving
Ortho-K to complain about blur in the clinic. Hiraoka et al.
(2009b) investigated patient satisfaction with visual outcomes
using a visual analog scale. The results showed a relatively high
level of patient satisfaction following Ortho-K use, which was
associated with pretreatment myopic error and posttreatment
uncorrected visual acuity.

Blur is a visual signal that triggers the visual feedback
mechanism and plays an important role in the emmetropization
process (Norton and Siegwart, 1995). It has been shown that
people are likely to adapt to blur if it lasts for a certain period of
time (Khan et al., 2013). Therefore, we speculated that children
with Ortho-K experience a blur adaptation induced by increased
aberrations and greater diurnal variations in vision (Queiros
et al., 2012; Guo et al., 2018). Blur adaptation is defined as an
improvement in visual resolution after exposure to the blur (i.e.,
defocusing) without a change in the refractive error (Vera-Diaz
et al., 2004; Cufflin et al., 2007). After blur adaptation, contrast
sensitivity (Pesudovs and Brennan, 1993), blur sensitivity (Cufflin
et al., 2007), and sometimes even the accommodative response
(AR) (Vera-Diaz et al., 2004) improve. The blur detection
threshold (BDT), that is, the amount of detectable blur equivalent
to the depth of focus (Jacobs et al., 1989), is closely related to
blur sensitivity.

We present a novel hypothesis that Ortho-K provides good
naked visual acuity with good satisfaction, partially because
children with Ortho-K undergo a blur adaptation. Since the BDT
is a good indicator of blur sensitivity, we evaluate the BDT in
children before and after Ortho-K treatment to verify whether
the deteriorated visual quality changes their blur perception after
wearing Ortho-K lenses. Optical physical parameters, such as
accommodative lag and ocular aberrations, might explain the
changes in the visual feedback mechanism. The relationship
between BDTs and visual quality or accommodative function also
needs to be clarified.

To the best of our knowledge, no literature has reported the
effect of wearing Ortho-K lenses on blur sensitivity. Therefore,
this study aimed to evaluate changes in blur detection sensitivity
after Ortho-K treatment by measuring the BDT. Moreover,
we probed whether this change is related to aberrations or
accommodative lag.

MATERIALS AND METHODS

Participants
This clinical study was conducted at the Eye Hospital of
Wenzhou Medical University (Wenzhou, China) between May
2016 and October 2017. Forty-three children aged 8–14 years
old wore Ortho-K lenses in both eyes, and the right eyes
were initially recruited in this study. The spherical equivalent
(SE), calculated by adding half of the cylinder (in minus
lens notation) to the sphere, ranging from −1.00 diopters
(D) to −6.00 D and no more than −0.75 D of astigmatism.
None of the participants had records of ocular, systemic,
or neurologic diseases or any type of vision dysfunction. In
addition, none of the participants had previously undergone
Ortho-K treatment or other myopia control treatments. At
enrollment, their visual acuity was correctable to 0.00 (logarithm
of the minimum angle of resolution (logMAR) visual acuity)
or better, and after a month of Ortho-K treatment, their
naked visual acuity during the day should have reached 0.00
(logMAR visual acuity) or better. One child was excluded
because of excessive follow-up ARs, and ten children did
not have ideal naked visual acuity. In total, thirty-two
children completed this study. The participants and their
guardians were informed of and understood the adverse
reactions, and they all signed the informed consent forms.
This study followed the tenets of the Declaration of Helsinki
and was approved by the Ethics Committee of Wenzhou
Medical University.

Procedure
All the Ortho-K lenses used in this study were VST-DESIGN
with four-zone reverse geometry rigid contact lenses (Lucid,
South Korea), included the base curve, reverse curve, alignment
curve, and peripheral curve and were composed of Boston XO
material, with an oxygen permeability (DK) of 100 × 10−12

(cm2
×mlO2)/(s×ml×mmHg). The lenses had a total diameter

of 10.2–10.8 mm, a central zone diameter of 0.6 mm, and a central
thickness of 0.23 mm.

The detailed produce is summarized in Figure 1. The
participants first underwent a series of pre-examinations,
including subjective refraction, intraocular pressure, axial length,
corneal topography and endothelial cell count analysis. Then,
lens fitting was performed and evaluated by experienced doctors
with slit-lamp biomicroscopy according to the fluorescence
pattern and topography. All of the participants were instructed
to regularly follow up 1 day, 1 week, 1 month, and then every
3 months after lens delivery.

After enrollment, the BDTs, aberrations, and ARs of
the participants were measured before receiving Ortho-K.
Measurements were taken on the right eyes, fully corrected
with frames, with the left eyes occluded. After a month, the
aberrations, ARs and BDTs of the remaining participants were
measured for a second time. For most of the Ortho-K children,
their corneal parameters as well as refraction (Li et al., 2018;
Queirós et al., 2020), visual quality (Stillitano et al., 2008;
Santolaria Sanz et al., 2015), and visual performance including
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FIGURE 1 | Procedure of this study. Forty-three children who were scheduled
to wear Ortho-K lenses had a series of pre-examinations. After lens fitting was
performed, the personalized Ortho-K lenses were ordered. The baseline
measurements were conducted before they received the Ortho-K lenses. After
a month of Ortho-K use, ten children without ideal naked visual acuity were
excluded, and the remaining children were measured again. Visual acuity of
0.00 refers to the logMAR visual acuity.

naked visual acuity (Lu et al., 2018; Xia et al., 2019) reached a
steady state at one month.

Blur Detection Threshold (BDT)
The testing procedure was designed to be similar to a computer
game, easy for children to complete, which was presented on a
19” LCD Monitor (DELLTM P1914S Monitor, 1280× 1024 pixels,
TX, United States). A neutral gray background provided uniform
illumination for the test. The environmental luminance was 155
lux. The heads of the participants were stabilized with a chinrest
to keep the eyes one meter away from the screen. This distance
was chosen to reduce accommodative lag.

The procedure included three images: Tumbling Es, Lena,
and Street View (Figure 2), with an average luminance of 50.85,
19.41, and 13.24 cd/m2, respectively. Two hundred pictures with
spherical defocus ranging from 0 D ∼ 2 D in steps of 0.01 D
for each image were obtained by fast Fourier transformation
(FFT) based on a pupil radius of 2 mm. The Stiles-Crawford
effect (Applegate and Lakshminarayanan, 1993) was considered,
with an attenuation factor of r = 0.05 mm2 and a vertical
offset of 0.2 mm.

A double-staircase method was used. The two staircases
occurred alternately and in parallel, and the three images also
appeared in random order. Images with different blur levels were
presented for 1 second. The participants were required to judge
whether the image looked blurred by clicking on a “blurred” or
a “not blurred” button. The first image in the ascending staircase
was the clearest one with 0 D defocus, and the first image in the
descending staircase was the most blurred with +2 D defocus.
The steps of the staircases were 0.20 D until the first inversion,
0.10 D until the second inversion and 0.05 D from the third

inversion onward. The BDT was calculated automatically on the
last 3 reversals out of 5 (Figure 3).

Accommodative Lag
The AR was obtained with a Grand Seiko WAM-5500 open
field infrared autorefractor (Grand Seiko, Hiroshima, Japan). One
“Tumbling Es” image, a 4 × 4 array of high-contrast letters
(the same image used in the BDT procedure with 0 D defocus)
was displayed 1 m away from the target. The AR was measured
three times in static mode. The mean value was taken as the
AR, and the accommodative lag was calculated based on the
following formulas for accommodative demand (AD) and the AR
(Gwiazda et al., 1993):

Accommodative Demand =
1/DTE

1− DLE ∗ LENS ∗ 2
Accommodative Response = RI

Accommodative lag = AR-AD

where DTE = the distance from the eye to the target (1
m), DLE = the distance from the lens to the eye (0.12 m),
LENS = the signed dioptric power of the lens, and RI = the
mean value (calculated above) from the values read from the
Grand Seiko device.

These equations correct for the effectivity of a spectacle lens
placed 12 mm in front of the eye.

Aberrations
The ocular aberrations were measured three times in a dark room
with a WASCA wavefront analyzer (Carl Zeiss Meditec, Jena,
Germany) through the natural pupil without the use of dilation
drugs, and the mean value was used for data analysis. The pupil
diameter used for analysis was 5 mm. The total HOAs, trefoil,
coma, and spherical aberrations (SA) were used for analysis. The
total HOAs were calculated as the root mean square (RMS) of the
third- to seventh-order coefficients. The RMS of C3

−3 and C3
3

and the RMS of C3
−1 and C3

1 were calculated to represent trefoil
and coma, respectively. The SA was equal to C4

0.

Data Analysis
SPSS version 22.0 was used for data analysis. The normality of the
data was assessed using the Shapiro-Wilk test before conducting
parametric tests. Differences between baseline measurements
and remeasurements after one month of Ortho-K were tested
using paired Student’s t-tests or Wilcoxon signed-rank tests,
depending on whether the data were normally distributed.
Similarly, correlations between the BDTs and aberrations
or accommodative lags, including baseline measurements,
remeasurements and their variations, were assessed with Pearson
correlation coefficients or Spearman correlation coefficients,
depending on whether the data were normally distributed.
P ≤0.05 was set as the level of significance.

RESULTS

Thirty-two participants (15 boys and 17 girls), aged 8 to 14
years old (11.05 ± 1.59, mean ± SD), successfully completed the
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FIGURE 2 | Images used to measure the BDT. Three images with spherical defocus ranging from 0 D ∼ 2 D in steps of 0.01 D are included in the procedure. From
left to right: Tumbling Es, Lena, and Street View. The defocus degree of the top images is 0 D and that of the bottom images is 2 D.

FIGURE 3 | Ascending staircase. The first image in the ascending staircase was the clearest picture with 0 D defocus. The numbers in the figure represent the last
five reversals in the procedure, and the BDT is the average value over the last three reversals.

1-month follow-up examinations. The SE at baseline was >−6.00
and <−1.00 D (−3.57 ± 1.23) and ≥−0.75 and ≤0.00 D
(−0.19 ± 0.28) with refractive astigmatism. Before Ortho-K
treatment, the AD was 0.92± 0.03 D, and the AR was 0.52± 0.41
D; 1 month after receiving Ortho-K, the AD was 1.00 ± 0
D, and the AR was 0.79 ± 0.42 D. The mean value of the
corrected visual acuity was 0.00 ± 0.02 (logMAR) at baseline,
and the naked visual acuity after one month of treatment was
0.04 ± 0.05 (logMAR) (Wilcoxon signed-rank test, Z = −2.982,
P = 0.003). There were no complaints from the subjects about
wearing the Ortho-K lenses.

BDT_Es and BDT_Lena decreased significantly following
treatment (P ≤0.040). The HOAs, trefoil, coma, and SAs
increased significantly (all P ≤0.050); accommodative lag

decreased from 0.40 ± 0.41 D at baseline to 0.26 ± 0.31 D after
1 month [T(31) = 2.029, P = 0.051]. In summary, the results
showed that after Ortho-K, the BDTs (BDT_Es and BDT_Lena)
and the accommodative lags of the participants decreased, while
the aberrations increased (Table 1).

Before Ortho-K treatment, HOAs were significantly related to
BDT_Lena (r = 0.463, P = 0.008), accommodative lag was related
to BDT_Es (r = −0.356, P = −0.046) (Figure 4), and the other
possible combinations between aberrations and the BDTs were
not significant (all P ≥ 0.051). After Ortho-K treatment, there
were no relationships among accommodative lag, aberrations and
the BDTs (all P ≥ 0.069) (Figure 4). The relationships among the
variations in accommodative lag, aberrations and BDTs (BDT_Es
and BDT_Lena) after Ortho-K treatment were further analyzed,
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TABLE 1 | Variations in aberrations, accommodations and BDTs before and one
month after Ortho-K treatment.

N Before (M ± SD) After (M ± SD) T/Z P

BDT_Es (D) 32 0.51 ± 0.14 0.47 ± 0.16 2.146 0.040

BDT_Lena (D) 32 0.65 ± 0.18 0.60 ± 0.16 2.321 0.027

HOAs (µm) 32 0.21 ± 0.09 0.54 ± 0.18 −9.501 < 0.001

Trefoil (µm) 32 0.07 ± 0.04 0.10 ± 0.06 1.963 0.050

Coma (µm) 32 0.13 ± 0.08 0.30 ± 0.18 −5.028 < 0.001

SAs (µm) 32 0.07 ± 0.07 0.35 ± 0.13 4.693 < 0.001

Accommodative
lag (D)

32 −0.40 ± 0.41 −0.26 ± 0.31 2.029 0.051

N, number of participants; HOAs, total higher-order aberrations; SAs, spherical
aberrations; BDT_ Es, the blur detection threshold for the Tumbling Es image;
BDT_Lena, the blur detection threshold for the Lena image; BDT_Street, the blur
detection threshold for the Street View image; M± SD, mean± standard deviation.

and no significant correlations were found (for all, P ≥ 0.201)
(Supplementary Figures 1–5).

DISCUSSION

This is the first study that investigated the effect of Ortho-K on
the BDTs and analyzed the correlations among BDTs, aberrations
and accommodative lags. To prevent the influence of nonideal
visual acuity on BDT evaluation, participants whose naked visual
acuity was 0.00 logMAR or better at the one-month follow-
up examination were included, and the experiments were all
conducted in the morning. These parameters were evaluated
before and one month after Ortho-K treatment because the
naked visual acuity of the subjects may become worse than 0.00
(LogMAR visual acuity) at a long-term follow-up visit due to
myopia progression (Wen et al., 2015; Na and Yoo, 2018). The
results showed that the blur detection sensitivity for Es and
Lena in the children improved after Ortho-K treatment. Previous
studies (Battaglia et al., 2004; Wang et al., 2006; Venkataraman
et al., 2015) have indicated that the blur adaptation effect exists
only in fovea, therefore more arresting images are a better target
for BDT measurement. According to our previous study (Lu et al.,
2016), the Es and Lena images are more suitable for measuring
the blur adaptation effect.

In this study, aberrations (HOAs, trefoil, coma and SAs)
increased significantly, demonstrating that the visual quality
in the children worsened after Ortho-K treatment. The HOAs
increased from 0.21 ± 0.09 µm to 0.54 ± 0.18 µm, coma
increased from 0.13 ± 0.08 µm to 0.30 ± 0.18 µm, and the
SAs increased from 0.07 ± 0.07 µm to 0.35 ± 0.13 µm after
one month. Our results were consistent with those from previous
articles. Lian et al. (2014) found that 30 days after wearing Ortho-
K lenses, HOAs increased from 0.27 ± 0.12 µm to 0.69 ± 0.21
µm, coma increased from 0.14 ± 0.10 µm to 0.36 ± 0.26 µm,
and SAs increased from 0.06 ± 0.11 µm to 0.44 ± 0.20 µm.
The reason for the minor difference is likely the different pupil
diameters used for analysis; we used 5 mm diameters, while their
study used 6 mm diameters. Analysis with a larger pupil diameter
can result in larger aberrations (Wang et al., 2003); therefore,
the values in this study were slightly smaller than those of the
other study. Indeed, the changes observed in our study and in the

study by Lian et al. are similar. Gifford et al. (2013) also reported
that ocular HOAs, SAs and coma increased considerately after
7 nights of wearing Ortho-K lenses. Studies have shown that
increased HOAs in Ortho-K Children can be induced by changes
in the corneal surface and treatment zone decentration (Berntsen
et al., 2006; Hiraoka et al., 2009a; Gifford et al., 2013).

Few studies have investigated the blur sensitivity of Ortho-
K lens wearers, especially in children. Because of the high
correlation between the BDTs and HOAs before Ortho-K
treatment, there is reason to believe that the blur detection ability
is affected by visual inputs not only from lower-order aberrations
such as defocus and astigmatism but also from HOAs. However,
after Ortho-K treatment, the HOAs significantly increased, while
the BDTs did not increase but significantly decreased. This
phenomenon seems to be an unintended variation in which BDTs
changed in the opposite direction as the HOAs after Ortho-
K, whereas they were positively correlated before Ortho-K. The
correlation between the BDTs and HOAs did not exist any more
after Ortho-K treatment because HOAs were variously affected
by corneal shape, lens parameters, lens location et al. The changes
of BDTs induced by HOAs were also individually different. We
suggest that the variations in BDTs are due to blur adaptation,
which could be induced by blur perception. Labhishetty et al.
(2019) found there were no significant differences in BDTs
between progressive myopic children and their non-myopic
peers, which could be explained by compensation in higher visual
processes for poor retinal image quality. Hence, the amount of
BDT variations induced by additional blur caused by Ortho-K
treatment was small, however, the difference is significant because
the measurements are quite repeatable and precise. In present
study, BDT_Es decreased by 0.04 D and BDT_Lena decreased
by 0.05 D. The value is even higher than that with the blur
adaptation effect induced with a plus lens. In our previous study,
after blur adaptation with 2-diopter plus lens, BDT_Es decreased
by 0.023 D and BDT_Lena decreased by 0.035 D (Lu et al.,
2016)). Therefore the same targets were used in this study to
evaluate the BDTs.

The markedly increased HOAs (0.21 vs. 0.54 µm) indicate
deteriorated visual quality, which could lead to the subjects’
blur perception. This unnatural blur may induce blur adaptation
in children. The decreased BDTs could be explained as a blur
adaptation effect. Several studies have indicated that after blur
adaptation, blur sensitivity is significantly improved (Cufflin
et al., 2007; Lu et al., 2016). The phenomenon wherein the BDT
decreases after blur adaptation was also demonstrated in our
previous study (Lu et al., 2016). Mon-Williams et al. indicated
that “neural compensation” may be achieved in children after
receiving Ortho-K (Mon-Williams et al., 1998). Therefore, the
ability to discriminate blur signals in children must have been
improved after wearing Ortho-K lenses for 1 month.

Another piece of evidence indicating blur adaptation was
the decrease observed in the accommodative lag after Ortho-
K treatment in our study. The decrease in the accommodative
lag was essentially consistent with but less than the change
observed in Han et al. (2018)’study as a result of a smaller AD.
Blur is the main signal that drives accommodation. Previous
studies have suggested that accommodation is related to blur
adaptation. One such study (Vera-Diaz et al., 2004) reported
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FIGURE 4 | Relationships between BDTs and aberrations and accommodative lag. Two of the BDTs are plotted as a function of aberrations or accommodative lag.
Each dot represents the results from one participant. The average of these results is plotted with a square symbol. Red solid square represents pre-treatment, and
the hollow one represents post-treatment. The error bars represent the standard deviation. HOAs, total higher-aberrations; BDT_Lena, the blur detection threshold
for the Lena image; BDT_Es, the blur detection threshold for Tumbling Es image.

that individuals with myopia showed a significant increase in
the near AR (33 cm) after a 3-minute blur adaptation exercise.
Le et al. (2010) indicated that blur adaptation in both myopic
and emmetropic participants would elevate instability of the AR.
The increase in accommodative lag in individuals with myopia
or premyopia might be due to the decrease in blur stimuli during
near work (Goss and Wickham, 1995), indicating that blur should
be an effective signal for increasing the AR. We speculate that
the decreased accommodative lag is induced by blur adaptation,
which is caused by the deterioration in visual quality following
Ortho-K in children. The presence of similar BDTs in myopic and
emmetropic children but a larger accommodative lag in myopic
eyes means the low sensitivity to defocus could be compensated
by some form of an adjustment in the higher visual processes (i.e.,
blur adaptation) to preserve or increase the subjective perception
(Labhishetty et al., 2019).

In another way, it was indicated (Wang et al., 2018) that
the increased coma was highly related to the decentration
of orthokeratology lenses. Oshika et al. (2002) found
that coma-like aberration and corneal multifocality had
significant positive correlations with the magnitude of apparent

accommodation in pseudophakic eyes. His group (Hiraoka
et al., 2015) reported later that the ocular coma-like aberration
and corneal multifocality significantly increased in children
undergoing orthokeratology and the change in coma-like
aberration was highly associated with the change in corneal
multifocality. In this study, the increased coma-like aberration
and increased range of focus after orthokeratology treatment
also might induce greater accommodative response, that is less
accommodative lag, although no correlation was found between
HOAs and accommodative lag as well as variations of them
(Supplementary Figure 6).

Based on the close correlation between the BDTs and HOAs
as well as the accommodative lag before Ortho-K treatment
and the variable trend after treatment, we speculate that the
significantly worsened visual quality could result in blur, leading
to a blur adaptation effect and therefore a decrease in the
BDTs and accommodative lags. A smaller BDT, which represents
higher blur sensitivity, may promote the ability to recognize
visual targets, which could explain the subjective sharpness and
visual acuity of the children wearing Ortho-K lenses despite their
poor visual quality, provided that a large number of lower-order
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aberrations were excluded. A number of studies have affirmed
that blur could induce the emmetropization process and be
closely related to myopic progression (Norton and Siegwart,
1995; Read et al., 2010; Chakraborty et al., 2012; Wang et al.,
2016; Delshad et al., 2020). We have verified that blur adaptations
do exist in children wearing Ortho-K lenses, and the role
of blur adaptation in the myopia control effect of Ortho-K
needs further study.

In conclusion, this study confirmed that after receiving
Ortho-K lenses, aberrations increased, blur sensitivity increased,
and the accommodative lag decreased. The correlation among
these visual function parameters supports the notion that
increased blur sensitivity is related to deteriorated visual quality
caused by cornea reshaping by Ortho-K. Children with Ortho-
K undergo blur adaptation, contributing to their good visual
acuity in the daytime.
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