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Obesity is a multifactorial disease, which in turn contributes to the onset of
comorbidities, such as diabetes and atherosclerosis. Moreover, there are only few
options available for treating obesity, and most current pharmacotherapy causes
severe adverse effects, while offering minimal weight loss. Literature shows that
metabotropic glutamate receptor 5 (mGluR5) modulates central reward pathways.
Herein, we evaluated the effect of VU0409106, a negative allosteric modulator (NAM)
of mGluR5 in regulating feeding and obesity parameters. Diet-induced obese C57BL/6
mice were treated for 14 days with VU0409106, and food intake, body weight,
inflammatory/hormonal levels, and behavioral tests were performed. Our data suggest
reduction of feeding, body weight, and adipose tissue inflammation in mice treated with
high-fat diet (HFD) after chronic treatment with VU0409106. Furthermore, a negative
modulation of mGluR5 also reduces binge-like eating, the most common type of eating
disorder. Altogether, our results pointed out mGluR5 as a potential target for treating
obesity, as well as related disorders.
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HIGHLIGHTS

- VU0409106 is a negative allosteric modulator of mGluR5.
- VU0409106 reduces food consumption, body weight, and anxiety behavior of mice treated with

high-fat diet.
- VU0409106 decreases inflammatory cytokines in the adipose tissue.
- VU0409106 treatment was able to reduce binge-like eating in mice.
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GRAPHICAL ABSTRACT | Diet-induced obese (DIO) C57BL/6 mice were treated for 14 days with VU0409106, a negative allosteric modulator of mGluR5. Food
intake, body weight, inflammatory/hormonal levels, and behavioral tests were performed. Our data suggest reduction of feeding, body weight, and adipose tissue
inflammation in DIO mice after chronic treatment with VU0409106.

INTRODUCTION

Obesity prevalence is expanding in most countries according to
the World Health Organization (Blüher, 2019). In fact, worldwide
obesity numbers nearly tripled since 1975 (Blüher, 2019). Obesity
is defined as an abnormal accumulation of body fat, associated
with genetics, hormones, and environmental factors (González-
Muniesa et al., 2017). The growing accessibility to highly
palatable food, rich in fats and sugars, and reduced energy
expenditure and sedentary lifestyle are considered the main
environmental factors contributing to weight gain (Ravussin
et al., 1988; Hill and Peters, 1998).

Obesity also increases the risk of several chronic conditions,
including cardiovascular diseases, diabetes, cancer, psychiatric
disorders, and many others (Kopelman, 2007). Changes leading
to a series of physiological imbalances can be established in obese
individuals, such as dyslipidemia and chronic inflammatory
response (Dandona et al., 2004; Van Gaal et al., 2006). Besides,
the progressive adipose tissue expansion in obesity is associated
with insufficient angiogenesis, leading to hypoxia, cellular stress,
oxidative damage, and necrosis, triggering an inflammatory

Abbreviations: HFD, High-fat diet; CHPG, 2-Chloro-5-hydroxyphenylglycine;
CD, Control diet; CNS, Central nervous system; mGluR5, Metabotropic glutamate
receptor 5; PLC, Phospholipase C; IP3, Inositol 3-phosphate; DAG, Diacylglycerol;
NAM, Negative allosteric modulator; DIO, Diet-induced obesity/diet-induced
obese; TNF, Tumor necrosis factor; IFN-γ, Interferon gamma; IL, Interleukin;
MCP-1, Monocyte chemoattractant protein; VEH, Vehicle; IP, Intraperitoneal
route; MTEP, [3-[(2-Methyl-1,3-thiazol-4-yl)-ethynyl]-pyridine.

response from adipocytes and local immune cells that becomes
chronic in the context of long term obesity (Wood et al.,
2009). Furthermore, a low-grade chronic inflammatory response
can result in increased circulating levels of proinflammatory
cytokines, leading to the onset of insulin resistance, diabetes,
atherosclerosis, osteoarthritis, and so on (Dandona et al., 2004;
Van Gaal et al., 2006; Kopelman, 2007; Wood et al., 2009).

Psychiatric disorders, including anxiety, depression, and binge
eating, are also linked to obesity, yet there is still debate about
whether they constitute cause or consequence of this disease
(de Zwaan, 2001; Wurtman and Wurtman, 2018). Either way,
efforts to reduce body weight and adiposity can be hampered
by depression, anxiety, and other mood disorders, as these
conditions can also promote weight gain (Collins et al., 2016).
In agreement, some evidence shows a link between high-fat diet
(HFD) consumption and the development of depression and
anxiety, in animal models (Sharma and Fulton, 2013; Gancheva
et al., 2017). Moreover, consumption of HFD might lead to neural
adaptations in brain reward circuitry, a key area involved in
binge eating and other addictive-like aspects of feeding behavior
(Sharma and Fulton, 2013; Murray et al., 2014).

The metabotropic glutamate receptor 5 (mGluR5) is a
G-protein–coupled receptor, associated with an intracellular rise
in [Ca2+]i through Gq/G11 protein signaling, increasing the
activity of PLC and the levels of IP3 and DAG (Niswender
and Conn, 2010). There is evidence that mGluR5 may underlie
obesity pathophysiology. For instance, the knockout of mGluR5
gene, as well as treatment with MTEP, a NAM of mGluR5,
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decreased body weight, plasma leptin and insulin levels, food
intake, and feeding after food deprivation (Bradbury et al.,
2005). Accordingly, CHPG, an mGluR5 agonist, stimulates
food intake in mice, supporting a role of this receptor in
mediating appetite and feeding (Ploj et al., 2010). Herein,
we used a NAM of mGluR5, VU0409106, to investigate the
effects of reducing mGluR5 activity over different aspects related
to obesity, including binge-like eating. Compared to MTEP
and related compounds, VU0409106 was recently synthesized,
exhibiting improved pharmacokinetics and in vivo activity on
reducing compulsion behavior without affecting motor behavior
in mice (Varty et al., 2005; Koros et al., 2007; Felts et al., 2013).

Our results indicated that obese mice chronically injected
with VU0409106 showed reduced body weight and adipose tissue
inflammation. Locomotor activity and compulsive behavior
were assessed, and the compound seems to reduce compulsive
behavior in treated mice. Furthermore, our data confirm
that the treatment with this drug was able to reduce binge-
like eating in mice.

MATERIALS AND METHODS

Animals
All procedures used in this study were approved and strictly
followed the ethical principles of animal experimentation
adopted by the Ethics Committee on Animal Use of Federal
University of Minas Gerais and institutionally approved under
protocol number 350/2015. Male C57BL/6 mice aging from 3 to
15 weeks were used. After weaning, mice were provided with
ad libitum water and either HFD with 45% of total calories
from fat, or control diet (CD) with 10% of total calories from
fat (Supplementary Material). Diet was obtained from Rhoster R©

Industry and Commerce (São Paulo, Brazil). All animals were
housed in groups (two per box) and in conditions of 25◦C, a 12
h light–dark cycle, with lights on 7 AM and off on 7 PM, and food
and water ad libitum.

Drugs
The compound VU0409106 was purchased from Tocris
Bioscience© (Bristol, United Kingdom). Fluoxetine
hydrochloride was donated by Infinity Pharma© (RJ, Brazil). The
drugs were dissolved by sonication into vehicle (VEH) consisting
of 10% Tween 80 (Sigma–Aldrich) and 90% physiological saline
solution and administered via intraperitoneal route (IP). The
doses of VU0409106 (50 mg) prepared were as follows: 3, 7.5, and
15 mg/kg. Fluoxetine, a selective serotonin reuptake inhibitor,
was used at doses of 10 mg/kg as a positive control on reducing
food consumption and body weight. After preparation, solutions
were stored in the freezer at a temperature of−20◦C until use.

Diet-Induced Obesity
Mice were placed on HFD from weaning (third week), and
body weight was measured weekly. At midweeks 12th and
14th, daily body weight and food intake were assessed in the
morning (14 days). During this period, food intake was calculated
by placing preweighed food in the cage daily. Consumption

was normalized by mice body weight. At the beginning of
the 15th week, mice were made to fast (7 AM–1 PM) and
euthanized (Figure 1).

Chronic Treatment in Obese Mice
The same protocol of diet-induced obesity (DIO) was used
to assess the effects of 14 days treatment of obese mice with
VU0409106 (Figure 1). Through the 12th to 14th week, mice
were injected in the morning daily, via the IP route, with
VEH, VU0409106 3 mg/kg, VU0409106 7.5 mg/kg, or fluoxetine
10 mg/kg. Those doses were based on previously reported data
(Yen et al., 1987; Niswender and Conn, 2010; Felts et al.,
2013). Daily food intake and body weight were measured, and
after the period of treatment, the hypothalamus, serum, and
epididymal adipose tissue were collected and properly stored for
subsequent analysis.

Fasting-Induced Food Intake Protocol
In order to assess the effects of VU0409106 on binge-like eating
behavior, mice were fed with CD from weaning, and they were
isolated in their cages at the beginning of the 11th week for
7 days for habituation. At the beginning of the 12th week,
animals were deprived of food for 14 h (1 h prior to lights
out, until 1 h after lights on). Thirty minutes before lights
on, animals were treated with vehicle (VEH) or VU0409106
at doses of 3, 7.5, or 15 mg/kg or fluoxetine 10 mg/kg.
After 14 h fasting, preweighed CD was reintroduced in cages,
and food intake was measured at 15, 30, 60, and 210 min
after refeeding. Food intake (milligrams) was normalized to
body weight (grams).

Intermittent HFD-Induced Food Intake
Protocol
A second protocol to assess the effects of VU0409106 on binge-
like eating behavior was conducted. Mice at 10 weeks of age were
subjected to intermittent or continuous HFD, as described in
the Supplementary Material. Previous work demonstrated that
successive cycle of 24-h intermittent exposure to HFD induces
binge-like eating in mice (Czyzyk et al., 2010). At the 12th week
of age, these mice were injected with either VEH; VU0409106 at
doses of 3, 7.5, or 15 mg/kg; or fluoxetine 10 mg/kg, 30 min prior
to another presentation of preweighed HFD to the mice of the
intermittent group. Food intake was measured 2.5 and 24 h after
HFD presentation.

Sample Processing
The hypothalamus and epididymal adipose tissue were rapidly
collected and homogenized in an extraction solution (100 mg
of tissue per milliliter), containing 0.4 M NaCl, 0.05% Tween
20, 0.5% bovine serum albumin, 0.1 mM phenyl methyl sulfonyl
fluoride, 0.1 mM benzethonium chloride, 10 mM EDTA, and
20 KIU aprotinin, using Ultra-Turrax. Lysates were centrifuged
at 13,000g for 10 min at 4◦C; supernatants were collected and
stocked at −70◦C until use. Blood samples were also obtained,
centrifuged at 1,500g for 10 min at 4◦C, and the serum was
collected and stocked at−70◦C until use.
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FIGURE 1 | Scheme of diet-induced obesity (DIO) and chronic drug treatment. Three-week-old C57BL/6 mice were divided into control diet group (CD) and high-fat
diet group (HFD). Animals were fed ad libitum throughout the experiment. At the 12th and 14th day, daily body weight and food intake were assessed for 14 days. In
the last day of treatment, mice were submitted to behavioral experiments and afterward to biochemical analysis.

Cytokines and Endocrine Markers
Analysis
The concentration of the cytokines interleukin 6 (IL-6), IL-10, IL-
12p70, interferon γ (IFN-γ), and tumor necrosis factor α (TNF-
α), and chemokine monocyte chemoattractant protein 1 (MCP-
1) was determined using a mouse CBA kit (BD Biosciences,
San Diego, CA) and acquired on a FACS CANTO II flow
cytometer (Becton Dickinson, San Jose, CA). The samples were
incubated with capture microspheres (beads) covered by specifics
antibodies to the respective cytokines and chemokines, as well
as the proteins of the standard curve. Then, the color reagent
was added, and the samples were incubated for 3 h, at room
temperature, and protected from light. Then, the plate wells were
washed with the Wash Buffer R© washing solution, provided in
the kit, and subjected to centrifugation for 5 min at 200 rpm
at room temperature. The supernatant was then aspirated and
discarded. The precipitate containing the microspheres was then
suspended with 300 µL of Wash Buffer R©. The CBA results
were analyzed by employing the software FCAP Array version
3.0 (Soft Flow Inc., Pécs, Hungary). Leptin, adiponectin, and
insulin levels were detected by enzyme-linked immunosorbent
assay (R&D Systems, Minneapolis, MN) in accordance to the
manufacturer’s instructions. Total cholesterol and triglyceride
assays were measured by specific kits from Bioclin R© (MG, Brazil).
The monoreagent cholesterol and triglycerides kit are based on
a colorimetric enzymatic test, in which a substrate is formed
in which the color produced is directly proportional to the
concentration of analyze, and its intensity is determined in a
spectrophotometer at 500 nm.

Glucose Measurement
All tests were performed in the morning with 6 h–fasted mice,
and tail vein blood sample was collected. Blood glucose test
was performed on mice at three different times: after weaning,
before 14 days drug treatment, and after drug treatment. For
measurements, -chek active device was used.

Open-Field Test
To evaluate the locomotor activity, an open-field test was
performed. In the afternoon, the animals were removed
from the bioterium and taken to the test room, where the
apparatus used in the experiment was located (the animals
were not deprived from food or water). The habituation
period was 30 min. After habituation, animals were placed
in the apparatus (PhenoTyper R©System; Noldus, Information
Technology, Leesburg, VA, United States) and remained in

the test for 30 min. The apparatus has an opaque plastic
arena (30 × 30 cm), and animals could explore freely the
entire area. The total distance traveled (cm) was analyzed
using Ethovision XT software (Noldus, Information Technology,
Leesburg, VA, United States).

Marble-Burying Test
The basic protocol for this experiment was performed according
to Nature Protocols (Deacon, 2006). For that, acrylic boxes
measuring 29 × 17.5 cm in length, 20 spheres (marbles), and
wood shavings were used. A quantity of wood shavings was
placed, filling the boxes approximately 7 cm and forming a flat
and compact surface. Twenty spheres were placed in rows (4× 5)
in the box on the shavings evenly spaced, with each space about
4 cm apart between the spheres. The animals faced the test in the
morning. Before being taken to the experimental room, animals
were kept for 30 min in packaging (there was no water or food
deprivation). The drugs were administered 15 min before starting
the behavioral test. The duration of the test was 30 min. The
analyses were performed after the tests. The number of spheres
buried and not buried was quantified. For the sphere to be
considered buried, two-thirds of its dimension should be below
the level of shavings. The same experimenter blindly analyzed all
the tests performed.

Statistics
Data are presented as mean ± SEM. All graphs and analyses
were performed using GraphPad Prism 5.0 (GraphPad Software,
San Diego). Before statistical tests, all data were analyzed
by Grubbs ESD method for outlier detection, and extreme
values were excluded from the analysis. Gaussian distribution
of data was confirmed by Kolmogorov–Smirnov normality test.
A comparison between two groups was performed by Student
t-test. Three or more groups were analyzed by one-way analysis
of variance (ANOVA) followed by Bonferroni post hoc test. The
two-way ANOVA, followed by the Bonferroni post hoc was used
in cases of two independent variables. In all cases, significance
was defined by p < 0.05.

RESULTS

DIO and Chronic Treatment With
VU0409106 in Mice
Mice fed with HFD exhibited significantly higher body weight
since the second week (two-way ANOVA, F(2,23) = 10.52,
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TABLE 1 | Wild-type C57BL/6 mice after 11 weeks on HFD or CD.

HFD CD

Serum insulin (pg/mL) 1.725 ± 0.208 2.088 ± 0.239

Serum triglycerides (mg/dL) 61.38 ± 5.382 59.50 ± 8.379

Serum adiponectin (pg/mL) 188.9 ± 18.24 178.5 ± 27.57

Hypothalamic adiponectin (pg/mg) 25.68 ± 4.849* 12.42 ± 2.412

Adipose tissue adiponectin (pg/mg) 29.17 ± 7.737 36.91 ± 5.978

Hypothalamic IL-12p70 (pg/mg) 2.824 ± 0.686 2.822 ± 0.388

Hypothalamic TNF-α (pg/mg) 1.465 ± 0.170 1.551 ± 0.151

Hypothalamic IFN-γ (pg/mg) 0.481 ± 0.059 0.5415 ± 0.089

Hypothalamic MCP-1 (pg/mg) 8.536 ± 1.897 9.497 ± 1.517

Hypothalamic IL-10 (pg/mg) 1.510 ± 0.137 1.588 ± 0.154

Hypothalamic IL-6 (pg/mg) 1.364 ± 0.198 1.221 ± 0.116

Serum IL-12p70 (pg/mL) 17.27 ± 4.598 24.36 ± 6.843

Serum TNF-α (pg/mL) 15.33 ± 3.330 15.03 ± 3.186

Serum IFN-γ (pg/mL) 2.590 ± 0.332 3.106 ± 0.486

Serum MCP-1 (pg/mL) 94.64 ± 15.06 89.18 ± 15.02

Serum IL-10 (pg/mL) 15.35 ± 4.324 18.95 ± 4.613

Serum IL-6 (pg/mL) 7.391 ± 1.480 8.053 ± 1.475

*Statistically different from control diet–treated mice, p < 0.05, Student’s t-test,
n = 6–8.

p = 0.0004) (Supplementary Figure 1A). In addition, HFD
group showed higher levels of total cholesterol (unpaired
t-test, t16 = 2.335, p = 0.0329) (Supplementary Figure 1B),
serum leptin (unpaired t-test, t13 = 2.184, p = 0.0479)
(Supplementary Figure 1C), and also epididymal adipose
tissue leptin levels (unpaired t-test, t12 = 5.584, p = 0.027)
(Supplementary Figure 1D). Inflammatory markers in
epididymal adipose tissue at the end of the DIO protocol
were also measured, and higher levels of cytokines IL-12p70,
TNF-α, IFN-γ, and the chemokine MCP-1 were detected
(unpaired t-test, IL-12.70 t10 = 2.506, p = 0.0311; TNF-α
t10 = 2.567, p = 0.028; IFN-γ t10 = 2.835, p = 0.0177; and
MCP-1 t11 = 2.869, p = 0.0153) (Supplementary Figures 1E–
J). Besides, results showed an increase in hypothalamic
adiponectin levels in mice fed with HFD, although no
other difference regarding serum insulin, adiponectin,
triglycerides, and inflammatory markers outside epididymal
adipose tissue was observed between HFD and control
group (Table 1).

Interestingly, treatment with VU0409106 7.5 mg/kg or
fluoxetine 10 mg/kg promoted weight loss (one-way ANOVA,
F(3,29) = 21.93, p < 0.001) and reduced food intake in
HFD mice (one-way ANOVA, F(3,35) = 9.654, p < 0.001)
(Figures 2A–C). Besides, mice fed with CD were also treated
with VU0409106, under the same protocol described for HFD
mice. CD mice did not show significantly reduced body
weight or food intake (Figures 2D–F). In order to investigate
if drug treatment interferes with locomotor parameters of
HFD and CD mice, the open-field test was performed.
Importantly, HFD- or CD-treated mice with VU0409106 did
not present reduction on total distance traveled compared
to control group (Figures 2G,H). In addition to locomotor
parameter, the effect of VU0409106 was evaluated on a
model of compulsion (marble burying) in both groups. It was

observed that HFD mice treated with VU0409106 7.5 mg/kg
or fluoxetine 10 mg/kg buried fewer marbles compared to
the control group (Figure 2I). Otherwise, CD mice treated
with VU0409106 in all different concentrations or fluoxetine
10 mg/kg buried fewer marbles as compared to control
group (Figure 2J).

Nonetheless, we also observed a reduction of inflammatory
cytokine levels IL-12p70, TNF-α, and IFN-γ in HFD mice
treated with VU0409106 7.5 mg/kg in the adipose tissue of
C57BL/6 obese mice (one-way ANOVA, IL-12p70 F(3,23) = 3.116,
p = 0.0459; TNF-α F(3,24) = 3.904, p = 0.021; and IFN-γ
F(3,27) = 3.962, p = 0.0184) (Figures 3A–C). However, no
difference was observed comparing vehicle-, VU0409106-, and
fluoxetine-treated HFD mice in terms of leptin, adiponectin, total
cholesterol, triglycerides, and inflammatory cytokine levels in
hypothalamus or in serum (Supplementary Materials 2–6).

In addition, treatment with VU0409106 at both doses also
reduced serum insulin levels in HFD mice (one-way ANOVA,
F(3,23) = 5.749, p = 0.0044) (Figure 4A), and VU0409106
7.5 mg/kg decreased glucose levels (unpaired t-test, t17 = 2.936,
p = 0.0092) (Figure 4B).

Effect of VU0409106 Treatment on
Binge-Like Eating Behavior
To assess the effects of negative mGluR5 modulation on fasting-
induced food intake (Bradbury et al., 2005), 12 weeks-old non-
obese mice were made to fast for 14 h (1 h prior to lights
off until 1 h after lights on). Thirty minutes before returning
food to the cages, mice were injected with vehicle, fluoxetine
10 mg/kg, or VU0409106 at doses of 3, 7.5, or 15 mg/kg. Food
intake was measured 15, 30, 60, and 210 min after food was
reintroduced and normalized by body weight. Mice injected with
VU0409106 7.5 and 15 mg/kg showed reduced food intake after
30 min of returning food to the cage, as compared to vehicle-
treated animals (Figure 5A) (two-way ANOVA; interaction
F(12,96) = 1.782, ns; group factor F(3,96) = 16.74, p < 0.0001;
time factor F(4,96) = 105.8, p < 0.0001), and this reduction was
even more pronounced at the end of the experiment (210 min
after food presentation) (one-way ANOVA, F(4,24) = 8.611,
p = 0.0002) (Figure 5B). We also assessed binge-like eating
behavior in a different protocol based on intermittent HFD
exposure (Czyzyk et al., 2010). Ten-week-old non-obese mice
were subjected to successive cycles of HFD and developed
binge-like eating behavior (Supplementary Material). Thirty
minutes before the third cycle of HFD exposure, mice were
injected with vehicle, fluoxetine 10 mg/kg, or VU0409106
at 7.5 or 15 mg/kg. Food intake was measured 2.5 and
24 h later. As shown in Figure 5, mice with intermittent
access to HFD had considerably higher food intake (one-
way ANOVA, F(4,30) = 17.99, p < 0.0001) (Figures 5C–E),
including food intake per minute, which characterizes the
binge-like eating behavior. At both tested doses of VU0409106,
and also fluoxetine, results showed a reduction in binge-like
eating 2.5 h after HFD presentation (Figures 5C,D). However,
at 24 h, no difference was observed among drug-treated
groups (Figure 5E).
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FIGURE 2 | Continued
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FIGURE 2 | Effects of 14 days’ treatment on body weight, cumulative intake, and behavioral tests in HFD mice and CD mice. Scatter plot representation.
(A) Treatment with VU0409106 7.5 mg/kg or fluoxetine 10 mg/kg reduced body weight of HFD mice (n = 8–9). (B) Food intake of HFD mice is decreased after
treatment with VU0409106 7.5 mg/kg or fluoxetine 10 mg/kg (n = 8–11). (C) Graphical representation showing 14 days’ treatment on body weight of HFD mice.
Treatment with VU0409106 (3 or 7.5 mg/kg) or fluoxetine (10 mg/kg) did not reduce body weight (D) or food intake (E) of CD mice (n = 8–11). (F) Graphical
representation showing 14 days’ treatment on body weight of CD mice. (G) Treatment with VU0409106 7.5 mg/kg did not alter the distance traveled of HFD mice
(n = 6–8). *p < 0.05, **p < 0.01, and ***p < 0.001 compared to vehicle after Bonferroni multiple-comparison post hoc test. (H) Treatment with VU0409106 (3 or
7.5 mg/kg) or fluoxetine (10 mg/kg) on CD mice did not change the distance traveled comparing to the control group. (I) VU0409106 7.5 mg/kg or fluoxetine
10 mg/kg reduced the number of marbles buried in HFD mice (n = 9–11). **p < 0.01 and ***p < 0.001 compared to vehicle after Bonferroni multiple-comparison
post hoc test. (J) VU0409106 3 and 7.5 mg/kg or fluoxetine 10 mg/kg reduce the number of marbles buried in CD mice (n = 9–10). *p < 0.05, **p < 0.01, and
***p < 0.001 compared to vehicle after Bonferroni multiple-comparison post hoc test.

FIGURE 3 | Decreased levels of inflammatory cytokines IL-12p70, TNF-α, and IFN-γ in the epididymal adipose tissue of HFD mice after treatment with VU0409106.
Fourteen days’ treatment with VU0409106 7.5 mg/kg of HFD mice reduced (A) IL-12p70, (B) TNF-α, and (C) IFN-γ levels in the epididymal adipose tissue of HFD
mice. (D–F) No effect of VU0409106 or fluoxetine on (D) MCP-1, (E) IL-10, or (F) IL-6 levels. The results are shown as mean ± SD from (n = 6–8). *p < 0.05
compared to vehicle after Bonferroni multiple-comparison post hoc test.

FIGURE 4 | Fourteen days’ treatment with VU0409106 reduced serum insulin and glucose levels of HFD mice. (A) Scatter plot representation of treatment with VEH
(vehicle), VU0409106 (3 or 7.5 mg/kg), and fluoxetine (10 mg/kg) (n = 7–8). *p < 0.05 and **p < 0.01 compared to vehicle after Bonferroni multiple-comparison
post hoc test. (B) Glycaemia levels of HFD mice were measured prior (pretreatment) and after 14 days drug treatment (posttreatment). Blood samples were collected
after 6-h fasting. VEH (vehicle), VU0409106 (3 or 7.5 mg/kg), and fluoxetine (10 mg/kg) (n = 10–11), **p < 0.01 compared to vehicle after Student’s t-test.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 631311

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-631311 February 4, 2021 Time: 15:21 # 8

Oliveira et al. Negative Modulation of mGluR5

FIGURE 5 | NAM VU0409106 reduced binge-like eating behavior in C57BL/6 mice. Fasting-induced food intake results are shown in A and B. (A) Food intake after
15, 30, 60, and 210 min of food return to the cage (a: different from vehicle at time 60; b: different from vehicle at time 210; and c: different from vehicle at time 30
after Bonferroni multiple-comparison post hoc test). (B) Food intake at 210 min (n = 6), **p < 0.01 and *** p < 0.001 compared to vehicle after Bonferroni
multiple-comparison post hoc test. Intermittent-HFD-induced binge-like eating results are shown in (C–E). HFD intakes were monitored (C,D) 2.5 h and (E) 24 h
after presentation of HFD (n = 7), #p < 0.05, **p < 0.01, and ***p < 0.001 after Bonferroni multiple-comparison post hoc test.

DISCUSSION

In order to assess potential therapeutic applications of mGluR5-
targeting drugs in obesity, herein we focused on the role of
negative modulation of mGluR5 by VU0409106 in feeding
regulation, body weight, binge eating, and adipose tissue
inflammation on diet-induced obese mice. Importantly,
VU0409106 is a drug structurally distinct from MTEP acting as
a potent and selective NAM of mGluR5 binding at recognized
allosteric binding site (Felts et al., 2013). This drug crosses
the blood–brain barrier, displays good central nervous system
(CNS) rates following intraperitoneal injection, and also reduces
compulsive behavior in mice (Felts et al., 2013), which might
be an interesting tool for treating CNS-related disorders, as
binge eating in the context of obesity. Besides, rodents treated
with VU0409106 differently from MTEP did not show altered
locomotor activity, which may be related to alterations in
learning and memory, social behavior deficits, and disruption on
prepulse inhibition (Varty et al., 2005; Koros et al., 2007).

In the current study, we induced obesity in mice by using
a protocol with 45% HFD. Our results showed that after HFD
treatment, mice showed obesity features, such as increased body
weight, cholesterol, leptin levels, and inflammatory markers. It
is well known that adipose tissue inflammation is a hallmark
of obesity and underlies several metabolic alterations associated
with this condition (Dandona et al., 2004; Buettner et al., 2007;
Wood et al., 2009). Accordingly, HFD mice showed elevated
levels of the chemokine MCP-1 and inflammatory cytokines
IL-12p70, TNF-α, and IFN-γ in the epididymal adipose tissue,

10 weeks after introduction of HFD. These findings reinforce
the presence of an inflammatory milieu as described in obesity
(Dandona et al., 2004; Huh et al., 2014). Moreover, the lack
of higher levels of IL-10, a pivotal anti-inflammatory cytokine,
points out the absence of a counter-regulatory process, which
in turn may contribute to the chronic, low-grade inflammation
typical of obesity (Juge-Aubry et al., 2005).

We also investigated the levels of adiponectin, a hormone
produced by adipocytes, generally found at lower levels in obese
subjects (Kern et al., 2003; Nigro et al., 2014). Although no
difference was observed between HFD and CD mice regarding
serum or adipose tissue levels of adiponectin, higher levels
of this adipokine were found in the hypothalamus of obese
mice. Based on the anti-inflammatory effects of adiponectin, its
increased levels in the hypothalamus may explain, at least in
part, the lack of a central inflammatory response in the HFD
group (Huang et al., 2008; Nigro et al., 2014). In line with
this finding, an intracerebroventricular injection of adiponectin
was able to reverse the elevated proinflammatory signals
in the hypothalamus of HFD mice, reinforcing adiponectin
anti-inflammatory role in the brain in the obesity context
(Koch et al., 2014).

It has been reported that the modulation of the glutamatergic
system might be a promising strategy to treat obesity (Barja-
Fernandez et al., 2014; Bojanowska and Ciosek, 2016).
Accordingly, we investigated whether 14 days’ treatment
with VU0409106 would oppose obesity in mice under HFD.
The systemic administration of VU0409106 reversed weight
gain and decreased food intake in HFD mice. Our data are
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FIGURE 6 | Anti-inflammatory role of VU0409106 in the adipose tissue of obese mice. (A) Increased adiposity may contribute to hypoxia, stress, and cell death,
which triggers an inflammatory response with enhanced local levels of inflammatory mediators, especially cytokines such as IL-12p70, TNF-α, and IFN-γ and the
chemokine MCP-1 and consequent immune cell recruitment. As a result, a chronic, low-grade inflammation of adipose tissue is sustained. (B) Chronic
administration of VU04090106 reduces food consumption and body weight and promotes an anti-inflammatory milieu.

in accordance with previous results showing that mGluR5
mediates appetite and energy balance in rodents (Bradbury
et al., 2005). Also, previous data showed that MTEP, a NAM
of mGluR5, decreased consumption of highly palatable food
without altering consumption of the standard diet, which may
explain, at least in part, the lack of treatment effect in CD
mice (Bisaga et al., 2008). These results needed to be further
investigated in order to clarify if the effect of VU0409016 is
directly related to brain reward circuits. It is well known that
eating behavior is directly affected by food taste and also that

high-fat food is highly palatable (Rockwood and Bhathena, 1990;
Melhorn et al., 2010; Small, 2012; Bake et al., 2014). Because
of the difference in nutrient composition between diets, it is
possible that VU0409106 acts by suppressing the intake of
HFD more than CD as meal patterns are altered when mice are
subjected to an HFD (Melhorn et al., 2010). Besides, mGluR5 is
a diffuse receptor found in the brain, distributed in the following
structures: olfactory bulb, anterior olfactory nucleus, olfactory
tubercle, cerebral cortex, hippocampus, lateral septum, striatum,
nucleus accumbens, inferior colliculus, and spinal trigeminal
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nucleus (Shigemoto et al., 1993). In addition, studies show that
mGluR5 is expressed in several regions of the hypothalamus
as in the preoptic, suprachiasmatic nucleus, and ventrolateral
region (van den Pol et al., 1995). However, among these regions,
mGluR5 is strongly expressed in the ventrolateral pole of the
ventromedial nucleus (an area related to metabolic balance and
food intake) (van den Pol et al., 1995). As mGluR5 are expressed
in key brain areas controlling feeding behavior and rewarding
brain circuits, as hypothalamus, nucleus accumbens, and
dorsolateral striatum, it is possible that the negative modulation
of these receptors reduced the rewarding aspects induced by the
palatable food in the HFD group (van den Pol et al., 1995; Boer
et al., 2010; Terbeck et al., 2015). In fact, there is evidence that
glutamatergic antagonists seem to be more selective in decreasing
the reinforcing effect of food, which is more related to hedonic
than homeostatic processes (Saper et al., 2002). Moreover, it
is quite tempting to postulate that the mechanisms underlying
the effects of negative modulation of mGluR5 on reducing
food intake may resemble the antagonist of those receptors on
decreasing self-administration and drug-seeking behavior of
agents, such as alcohol, cocaine, nicotine, and opiates (Paterson
and Markou, 2005; Bäckström and Hyytiä, 2006; Osborne and
Olive, 2008; Rutten et al., 2011; Wang et al., 2013).

In the behavioral tests performed, no uncommon results were
found. As previously described, MPEP and fluoxetine decrease
the compulsive behavior of burying marbles on mice (Spooren
et al., 2000; Nicolas et al., 2006; Arora et al., 2013), and the
compound VU0409106 itself has a similar ability (Felts et al.,
2013). In the open-field test, according to our results VU0409106
administration did not cause hyperlocomotion or sedation in
treated mice. However, more side effects of the compound
need to be explored.

The negative modulation of mGluR5 by VU04090106 also
decreased the adipose tissue inflammation induced by HFD.
It is unclear how VU0409106 decreased inflammatory markers
selectively in the adipose tissue without affecting their levels in
the serum or hypothalamus. Nonetheless, VU0490106-associated
decrease in inflammatory signaling in the epididymal adipose
tissue of HFD mice may also be dependent on the body weight
loss alongside with reduced adiposity due to decreased food
intake, which in turn leads to diminished stress upon adipocytes
and to a decrease in local inflammation (Figure 6). Corroborating
our findings, anti-inflammatory effects, including decrease in
the expression of inflammatory cytokines, as well as in the
recruitment of immune cells to the lesion site, have been also
reported following negative regulation of mGluR5 in other
pathological conditions, such as traumatic brain injury (Byrnes
et al., 2009; Yang et al., 2017). Considering the widespread
distribution of mGluR5 (e.g., CNS, liver, hepatocytes, thymus,
immune cells), further studies are necessary to address the
mechanisms behind VU0490106 anti-inflammatory properties in
obesity (Boldyrev et al., 2005; Ferrigno et al., 2017).

An intriguing effect was observed in the serum insulin and
glucose levels of HFD mice in response to the treatment with
VU0409106 (Figure 6B). Although no difference in serum insulin
level was observed between HFD and CD mice, only HFD mice
had lower insulin and glucose levels after VU0409106 treatment.

Likewise, lower serum insulin level after mGluR5 negative
modulation was observed only in HFD mice as reported by
Bradbury et al. (2005). Evidence suggests that mGluR is involved
in the regulation of hormone secretion in the endocrine pancreas
(Brice et al., 2002; Storto et al., 2006). The mGluR5 appears
also to be required for an optimal insulin response to glucose
both in clonal beta cells and mice (Storto et al., 2006). In clonal
pancreatic beta cells, mGluR5 is expressed at the cell surface
and also found in purified insulin-containing granules (Storto
et al., 2006). Moreover, the NAM of mGluR5, MPEP, was able to
inhibit glucose-stimulated [Ca2+]i increase and insulin secretion
in those cells (Storto et al., 2006) supporting our findings.

Binge-eating disorder is strongly linked with obesity, and
binge eating per se is associated with a high burden of metabolic
risk factors in the general population (Succurro et al., 2015; Davis,
2017). Binge-eating disorder has genetic and environmental
components, being also associated with abnormalities in main
cognitive areas as prefrontal cortex and the striatum (Kessler
et al., 2016). In addition, glutamatergic neurotransmission is an
interesting target for binge-eating disorder treatment, as it plays
a role in reinforcing action of natural stimuli, such as food and
drug abuse (Bisaga et al., 2008; Gass and Olive, 2008; Kalivas,
2009; Guardia et al., 2011). Thus, in order to assess the effects
of negative modulation of mGluR5 in a model of binge-eating
disorder, we selected two different protocols: a fasting protocol
and an intermittent HFD access model, which does not involve
the stress of forced fasting (Smith and Robbins, 2013). There is
evidence that different neural substrates may control hunger- and
non–hunger-driven food intake (Cao et al., 2014; Xu et al., 2017).
Our results showed that in both protocols, the NAM VU0409106
was able to reduce the binge-like eating behavior. Fluoxetine, a
selective inhibitor of reuptake of serotonin, which is largely used
in the treatment of binge-eating disorders, was also effective in
reducing binge-like eating in our models (Arnold et al., 2002;
Guardia et al., 2011; Li et al., 2015). In addition, the role of
mGluR5 on eating disorders was assessed by several authors
(Bradbury et al., 2005; Bisaga et al., 2008; Guardia et al., 2011).
More recently, interesting work described the part of mGluR5,
in vivo, in bulimia nervosa (Mihov et al., 2020). In this study,
the authors found higher distribution volume of mGluR5 in
areas linked to processing emotional and cognitive information
related to self-control, as anterior cingulate cortex and medial
orbitofrontal cortex in individuals with bulimia (Mihov et al.,
2020). Overall, our data confirm the role of mGluR5 on eating
disorders and paved the way for the development of therapeutic
strategies focused in the glutamatergic transmission for the
treatment of this condition.

It is also important to highlight that our DIO model used
small laboratory animals, which have different feeding patterns
and compensatory mechanisms than humans, which may limit
the extrapolation of the findings. And besides the limitations of
this study on lacking on a deeper investigation of the mechanisms
behind VU0409106 weight loss and decreased inflammatory
markers on the adipose tissue, our findings may have important
clinical implications. The current study confirms the role of
mGluR5 on feeding and body weight regulation, pointing out
this glutamatergic receptor as an important clinical target to treat
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obesity and related disorders. Further research and prospective
studies, however, are needed to assess and evaluate the potential
of VU0409106 on long-term treatment.

CONCLUSION

This work provides first evidence of positive results on
the mGluR5 NAM, VU0409106, in DIO and binge-like
eating models. The weight loss achieved by VU0409106
administration was restricted to obese mice; likewise, the
reduced food intake. The compound also reduced epididymal
adipose tissue inflammation, suggesting that it could hold
other therapeutic effects in the context of obesity and
metabolic syndromes. We also showed that both hunger-
and non–hunger-driven food intake, resembling binge-like
eating, are suppressed by VU0409106-negative mGluR5
modulation. In summary, this work adds to previous
evidence linking potential therapeutic application of mGluR5
antagonists to obesity and obesity-related disorders, paving
the way for the development of translational approaches and
promised treatments.
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