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Recent decades have witnessed an increasing number of large to very large imaging
studies, prominently in the field of neurodegenerative diseases. The datasets collected
during these studies form essential resources for the research aiming at new biomarkers.
Collecting, hosting, managing, processing, or reviewing those datasets is typically
achieved through a local neuroinformatics infrastructure. In particular for organizations
with their own imaging equipment, setting up such a system is still a hard task,
and relying on cloud-based solutions, albeit promising, is not always possible. This
paper proposes a practical model guided by core principles including user involvement,
lightweight footprint, modularity, reusability, and facilitated data sharing. This model is
based on the experience from an 8-year-old research center managing cohort research
programs on Alzheimer’s disease. Such a model gave rise to an ecosystem of tools
aiming at improved quality control through seamless automatic processes combined
with a variety of code libraries, command line tools, graphical user interfaces, and instant
messaging applets. The present ecosystem was shaped around XNAT and is composed
of independently reusable modules that are freely available on GitLab/GitHub. This
paradigm is scalable to the general community of researchers working with large
neuroimaging datasets.

Keywords: processing workflows, neuroimaging, quality control, data management, neuroinformatics, cohort
studies

INTRODUCTION

Neuroimaging has now taken a central role in the context of research in Alzheimer’s disease (AD)
as in neuroscience in general. Its non-invasive nature, its relative widespread availability, and its
potential to provide efficient disease predictive markers have incentivized global efforts to assemble
large imaging datasets, with numbers of subjects starting to reach ranges of epidemiological studies
(Van Horn and Toga, 2014; Abe et al., 2015; Júlvez et al., 2016; Miller et al., 2016; Cox et al.,
2019). With the advent of modern computational methods and the constant progress in imaging
techniques, images are now routinely taken through automatic processing workflows, yielding a
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series of endpoints to be analyzed against other variables, which
may potentially develop into findings. Despite good practices and
quality assurance (QA), each step (acquisition or processing) is
likely to exhibit anomalous behaviors and may lead to erroneous
conclusions if unnoticed. In this regard, quality control (QC)
protocols are designed to track down and protect against such
errors but have until now faced major obstacles. Their purpose
is to assess the conformity of any applicable dataset with a set
of custom specifications and consequently determine whether
the dataset is suited for further processing/analysis. On the one
hand, individual visual inspection has proven to be neither fail-
safe nor compatible with the size of the largest cohort studies
(Alfaro-Almagro et al., 2018). On the other hand, automated or
semi-automated QC offers promising cost-reducing perspectives
(Esteban et al., 2019a; Sunderland et al., 2019); however, it
remains hard to generalize as it strongly depends on the study
design (single/multisite, clinical/cohort study) and needs to be
adapted to each imaging sequence (Oguz et al., 2014; Bastiani
et al., 2019) and each step of the workflow (raw images,
processing outputs) (Klapwijk et al., 2019). Table 1 draws an
inventory of existing resources focused on QC of neuroimaging
data, automated or not, with corresponding references and
repositories, if applicable. This list is first and foremost illustrative
of their variety and specificity in relation to types of input data.
Interestingly, the recent years have seen the emergence of new
approaches aiming at unifying, on one side, QC protocols across
groups and, on the other, processing workflows in some of these
modalities such as structural magnetic resonance imaging (MRI)
(Esteban et al., 2017) or functional MRI (Esteban et al., 2019b).
Such approaches may pave the way for a general process of
standardization of QC tools and procedures that would extend
to most used neuroimaging data modalities.

l Improved data management is also directly associated
with improved quality assessment: a system in which one can
easily find and work with the data is likely to make quality
assessment easier. Inversely, a system in which finding the
data is complicated will make quality assessment much harder.
As a consequence, the capacity to evaluate the results of any
workflow and the capacity to identify/navigate through them in
a larger repository are both tightly coupled. This is especially
relevant for workflows such as the ones used in neuroimaging
studies, which typically combine high levels of complexity,
heterogeneity (e.g., in numbers of files, nature/structure of
data) on the one hand, and, on the other, a high degree of
required expertise to assess their outputs. With respect to this,
to date, individual research groups may choose among different
strategies, essentially based on their size and allocated resources,
among which:

– organizing a local file repository and relying on core
tools/libraries, predefined procedures and adoption of best
practices.

– setting up a local management platform by building upon
some existing open-source or proprietary systems (or
developing it from scratch).

– subcontracting data management as a service, as included
in “Science in the cloud” solutions.

Different sets of technical solutions exist for each of these
approaches. In particular, initiatives such as BIDS (Gorgolewski
et al., 2016) or BIDS-Apps (Gorgolewski et al., 2017) play an
extremely valuable role in the spread of software-engineering
practices along the neuroimaging research workflow, with
beneficial consequences on reproducibility. The BIDS standard
has become, over the past years, a spearhead in the promotion
of FAIR principles (Wilkinson et al., 2016) by addressing
data findability, reusability, and interoperability across groups,
systems, and tools. As BIDS provides the formalism to organize
the data and metadata, data accessibility, for its part, requires
additional software that will generally include basic features
for data management and exploration. As two open-source
cloud-based solutions that have built upon BIDS, OpenNeuro
(Poldrack et al., 2013) and Brainlife.io (Avesani et al., 2019) are
iconic examples of platforms giving access not only to datasets
but also to online computational resources, giving substance
to the concept of virtual laboratory (Frisoni et al., 2011). As
such, the purpose of the “Science in the cloud” model is also
to facilitate data sharing and reproducibility by centralizing
resources for data storage, management, computation, and
QC in the neuroinformatics field. This model has begun to
spread (Redolfi et al., 2015; Manjón and Coupé, 2016; Kiar
et al., 2017; Glatard et al., 2018) and draws a promising
future for the community. Notwithstanding the preceding, it
may still fail to address immediate down-to-earth needs from
small to average-sized research groups, especially the ones
dealing with self-acquired imaging data. First, implementing
these frameworks or adapting them locally requires strong
IT skills and a specialized labor force, making it technically
out of reach for many groups with insufficient human
and/or computational resources, or without connection to large
consortia. Second, relying on existing open-access instances
is still hardly compatible with data confidentiality policies in
most studies, as these are rarely permissive enough to allow
upload to third-party platforms from the start. The basic
needs of the many research groups include, for instance, basic
data collection/querying/handling in average-sized datasets (e.g.,
up to several thousands of subjects), combined with further
exploration/review along most typical analysis workflows. It is
particularly compelling that in comparison to the magnitude
of efforts underway to assemble large imaging datasets, the
range of technical solutions to address such basic needs is
actually limited. As previously reported by Nichols and Pohl
(2015) and Shenkin et al. (2017), extensible neuroimaging
archive toolkit (XNAT) (Marcus et al., 2007), LORIS (Das et al.,
2010), and NIDB (Book et al., 2013) appear indeed as the
main existing open-source neuroinformatics software platforms
supporting data sharing.

Now that neuroscience has entered a propitious era of
data and computation, practical solutions are still required to
efficiently operate local databases and run tailored controls on
complex type-agnostic raw and processed data.

Quality control and data management are thus both
interrelated. They both have transversal impacts on the research
workflow, from the data acquisition to the analysis. Both if poorly
executed may have a strong negative impact on reproducibility.
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TABLE 1 | List of currently available resources intended for quality control of neuroimaging data (adapted from https://incf.github.io/niQC/tools).

Name References Data Technology Code repository

dashQC n/a fMRI, registration Javascript https://github.com/SIMEXP/dashQC_fmri/issues

qcApp n/a FreeSurfer Java https://github.com/ntraut/QCApp

qsiprep n/a DWI Python https://github.com/pennbbl/qsiprep

uniQC n/a fMRI Matlab https://github.com/CAIsr/uniQC

exploreDTI Leemans et al., 2009 DWI Matlab n/a

dtiprep Oguz et al., 2014 DWI C++ https://github.com/NIRALUser/DTIPrep

PCP-QAP Shehzad et al., 2015 T1w, fMRI Python https://github.com/preprocessed-connectomes-project/
quality-assessment-protocol

brainbox Heuer et al., 2016 segmentation Javascript https://github.com/OpenNeuroLab/BrainBox

exploreASL Mutsaerts et al., 2017 ASL Matlab n/a

mriqc Esteban et al., 2017,
Esteban et al., 2019a

T1w, fMRI Python https://github.com/poldracklab/mriqc

PALS Ito et al., 2018 T1w, fMRI Python https://github.com/npnl/pals

rtQC Heunis et al., 2019 fMRI Matlab https://github.com/rtQC-group/rtQC

visualqc Raamana, 2018 T1w, FreeSurfer Python https://github.com/raamana/visualqc

mindcontrol Keshavan et al., 2018 FreeSurfer Python, Javascript https://github.com/OpenNeuroLab/mindcontrol

AFQ-Browser Yeatman et al., 2018 DWI Python, Javascript https://github.com/yeatmanlab/AFQ-Browser

braindr (braindrles) Keshavan et al., 2019 snapshots Javascript https://github.com/OpenNeuroLab/braindr;
https://github.com/SwipesForScience/SwipesForScience

eddyqc/quad/squad Bastiani et al., 2019 DWI C (FSL) https://git.fmrib.ox.ac.uk/matteob/eddy_qc_release

fmriprep Esteban et al., 2019b fMRI Python https://github.com/poldracklab/fmriprep

qoala-t Klapwijk et al., 2019 FreeSurfer R https://github.com/Qoala-T/QC

snaprate Operto, 2019 snapshots Python, Javascript https://github.com/xgrg/snaprate

nisnap Operto and Huguet, 2020 snapshots Python https://github.com/xgrg/nisnap

As advocated in the neuroimaging community, e.g., by the
ReproNim initiative (Kennedy et al., 2019), core resources
may already exist but their use should be facilitated so as
reproducibility is achieved by design, not as an afterthought.
Such considerations have nurtured the development of a
novel infrastructure scheme–presented here–for imaging data
management and processing, focused on facilitating scalable
QC and aiming at maximizing the reuse of existing open core
tools/libraries.

This model was implemented and adapted to the needs
of a specific research program, namely, the ALFA project,
yet with concerns about lean development principles and
reusability. The ALFA project (Alzheimer’s and Families) is a
research platform started by the Barcelonaβeta Brain Research
Center (BBRC) for the prospective follow-up of a cohort of
cognitively normal subjects–most of which are the offspring
of AD patients. Extensive phenotyping of participants includes
cognitive assessment, lifestyle questionnaires, blood extraction
for further genetic analysis, cerebrospinal fluid collection,
positron emission tomography (PET) imaging, and multimodal
MRI examination performed on-site on a single Philips Ingenia
CX 3T scanner. The interested reader may refer to Molinuevo
et al. (2016) for a full description of the various arms of the
project and administered examinations. Since 2012 when BBRC
was created, its neuroimaging platform has been acquiring and
is currently managing data from over 5000 participants across
its different studies. Imaging protocols include standard MRI
sequences (with T1/T2/diffusion-weighted, inversion recovery,
and resting-state functional MRI), some more advanced ones

(arterial spin labeling, susceptibility-weighted imaging, and
quantitative flow, among others), and, for a subset of participants,
PET imaging–fluorodeoxyglucose (FDG) and flutemetamol. This
paper documents the core concepts and implementation of this
infrastructure for imaging data management, processing, and
control. The first section will detail the routine data flow at
BBRC, which this infrastructure partially supports. In a second
section, the paper will describe the different ways provided to
researchers of the group to interact with the platform. The third
section will focus on QC performed on large imaging datasets.
The fourth section will then elaborate on the employed strategy
to foster sustainability and reproducibility and describe principles
for future development.

BBRC: ANATOMY OF A SINGLE-SITE
IMAGING RESEARCH PLATFORM

Participants may be included in one of the hosted programs such
as the ALFA study, and get assigned with a unique accession
number (Figure 1). This accession number is represented
as a barcode and follows the participant through the whole
acquisition protocol, which, on a standard basis, includes full
neuropsychological evaluation, assessment of clinical history,
APOE genotyping, lifestyle questionnaires, blood sampling,
and–for a subset of individuals–cerebrospinal fluid extraction.
Structural and functional MRI is acquired on-site on a dedicated
MR scanner. Participants of the ALFA+ program undergo both
flutemetamol and FDG PET at the Hospital Clinic of Barcelona.

Frontiers in Neuroscience | www.frontiersin.org 3 April 2021 | Volume 15 | Article 633438

https://incf.github.io/niQC/tools
https://github.com/SIMEXP/dashQC_fmri/issues
https://github.com/ntraut/QCApp
https://github.com/pennbbl/qsiprep
https://github.com/CAIsr/uniQC
https://github.com/NIRALUser/DTIPrep
https://github.com/preprocessed-connectomes-project/quality-assessment-protocol
https://github.com/preprocessed-connectomes-project/quality-assessment-protocol
https://github.com/OpenNeuroLab/BrainBox
https://github.com/poldracklab/mriqc
https://github.com/npnl/pals
https://github.com/rtQC-group/rtQC
https://github.com/raamana/visualqc
https://github.com/OpenNeuroLab/mindcontrol
https://github.com/yeatmanlab/AFQ-Browser
https://github.com/OpenNeuroLab/braindr
https://github.com/SwipesForScience/SwipesForScience
https://git.fmrib.ox.ac.uk/matteob/eddy_qc_release
https://github.com/poldracklab/fmriprep
https://github.com/Qoala-T/QC
https://github.com/xgrg/snaprate
https://github.com/xgrg/nisnap
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-633438 April 11, 2021 Time: 10:47 # 4

Huguet et al. Management and QC of Large Neuroimaging Datasets

FIGURE 1 | The Barcelonaβeta Brain Research Center: general view of the imaging data flow, from patient inclusion to data sharing. Imaging and non-imaging data
follow different data flows. Imaging sessions are automatically imported in XNAT from the in-house MR scanner and external PET camera. Processing workflows are
sent to computational resources from the Barcelona Supercomputing Center.

Imaging and non-imaging data are stored and managed in
two individual platforms. Non-imaging data are imported into
a relational database and follow a specific data flow that is
not described here. Imaging data are directly transferred from
the scanner to both a PACS archive and an XNAT platform.
Extensible neuroimaging archive toolkit (XNAT) (Marcus et al.,
2007) is the most broadly deployed open source system to
have emerged among imaging platforms in recent history. In
this context, the PACS archive is used for long-term backup
purposes, preserving a pristine copy of the acquired imaging
data, and for daily routine visual review and reporting by
radiologists, whereas XNAT is a much more flexible system
geared toward researchers, allowing transformation, automatic
processing, browsing, downloading, and eventually sharing.
A Clinical Trial Processor (CTP) service (Aryanto et al., 2012)
is run between the MR scanner and XNAT to ensure proper
de-identification of protected health information. Outsourced
PET imaging data are directly pulled from the acquisition site:
a daily daemon service pulls new imaging scans from an sFTP
server and pushes them to the PACS archive which then auto-
forward to XNAT (via CTP). The workflow is open to external
collaborators, who may also push data in independently managed
projects distinct from the ALFA study.

Once the data have been successfully imported into XNAT,
imaging sessions are routed to their corresponding XNAT
project/study and then taken through automatic workflows.
These workflows are managed by the XNAT Pipeline Engine,

which directly draws computational power from the Barcelona
Supercomputing Center1. Workflows include processing–e.g.,
involving all types of neuroimaging software or published
methods/algorithms–but also automatic controls based
on Validators, as described further in section “Generalized
Automatic Sanity Check/Quality Control.” This results in the
generation of derived images, numerical endpoints, or validation
reports. Along with the primary raw data, they form the body of
online available resources that users may reach by then logging
into the system.

This data flow is presented in Figure 1.

BETTER CONTROL ON DATA BY
PROVIDING MULTIPLE ACCESS WAYS

XNAT as the Infrastructure Core Engine
for Imaging Data Management
Among the most significant ones from the last decade,
neuroimaging projects like the Open Access Series of Imaging
Studies (Marcus et al., 2010), IMAGEN (Schumann et al.,
2010), the Human Connectome Project (Marcus et al., 2011),
the International Neuroimaging Data-sharing Initiative (Mennes
et al., 2013; Kennedy et al., 2016), the Adolescent Brain Cognitive
Development (Casey et al., 2018), the UK Biobank (Miller et al.,

1http://www.bsc.es
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2016), followed by the more recent ONDRI (Scott et al., 2020)
or EPAD (Ritchie et al., 2020), have all in common that their
respective infrastructures for data sharing are based on XNAT.
This not only confirms the status of XNAT as a central technology
but also highlights the opportunity of any model built around
XNAT in terms of reusability.

We chose to rely on XNAT as the core engine of our
infrastructure for imaging data. Among the few existing options
available, XNAT offers an adequate cost–benefit ratio for groups
of all sizes when comparing the complexity of implementation
to all of its built-in features. XNAT provides tools for common
management, user access, data processing, and sharing, thus
covering many aspects of the basic neuroimaging workflow.
It also includes a DICOM storage service (C-STORE SCP)
for receiving and sorting images from any DICOM-compliant
imaging device, which is essential for organizations managing
their own imaging equipment. User access to the archive is
provided by a secure web application. Workflow execution
is enabled by a Pipeline Engine, while XNAT maintains full
histories by tracking all changes to the data, thus enforcing
data traceability. Finally, XNAT implements a security system
that allows administrators to grant access to specific actions or
datasets following predefined user roles.

To date, XNAT is still under active development with strong
community-based support, aligning with current trends in the
community as shown by recent support for BIDS format and
containerized data processing (e.g., using Merkel, 2014). Most
users may operate the database and search the repository through
the built-in web-based application. Aside from this graphical
interface, XNAT provides a Representational State Transfer
(REST) Application-Program Interface (API) that allows users
to query the database and therefore programmatic interaction
with its contents. Furthermore, the pyxnat (Schwartz et al., 2012)
library capitalizes on this API and allows users to interact with
XNAT using Python.

We advocate that users should have multiple proposed ways
and be free to choose their preferred one to operate the platform,
as a greater flexibility in this regard is a stepping stone for
improved data review and issue tracking. With respect to this,
a few previous examples have built onto XNAT (Gee et al.,
2010; Harrigan et al., 2016; Job et al., 2017), often leveraging
its RESTful API (Schwartz et al., 2012; Gutman et al., 2014),
to extend its standard features and present new ones. Such an
approach stands out by its light footprint, relying on XNAT’s
core features without needing to touch its codebase, to the
mutual benefits of maintainability, dependability, portability, and
usability. In line with this approach, this present paper describes
a collection of lightweight solutions which together form an
adaptive modular ecosystem focused on user experience and
neuroimaging data QC.

Barcelonaβeta + XNAT: bx
Interacting with the data on XNAT can be done mainly in two
ways: either graphically using the web application or through a
REST API. While the former is suited for all profiles, the latter
is intended for a more technical category of users, allowing them
to automate bulk operations, e.g., downloading large collections
of data and populating projects or any type of systematic task

that would otherwise, using the web application, require many
manual operations. Version 1.7.5 of XNAT now includes a
Desktop Client that may be used to download collections of
images for instance from an entire study (or project in XNAT
jargon). Still, between “all clicks” and “all script” lies a large gray
zone with users who without being experienced coders may still
have some knowledge on how to use command-line tools. For
this special category, we wrote bx, which allows us to run from a
terminal among a predefined set of bulk operations using a single
command. This includes, for instance:

- downloading images of a given sequence over a project
in the NIfTI format (better suited to a majority of post-
processing software suites).

- downloading processing outputs over a project (e.g.,
segmentation maps, 3D models, etc.).

- downloading an Excel table with all numeric outcomes
from a given pipeline over a project.

- downloading a table with acquisition dates from an entire
project.

- in general, downloading any given type of resources over
an entire project.

In particular, to get a local copy of the results from FreeSurfer
recon-all pipeline (Fischl, 2012) over the entire XNAT project
ALFA, one would simply run:

bx freesurfer6 files ALFA

Destination folder is set in a locally stored configuration file
along with the user’s XNAT login credentials.

By extension, the following command:

bx freesurfer6 aseg ALFA

would generate a single spreadsheet file containing all
the structural volumes estimated by FreeSurfer (in aseg.stats
files). The current version (0.1.6) also includes, among others,
commands for SPM (Ashburner and Friston, 2005), ANTs
(Avants et al., 2009), FSL (Jenkinson et al., 2012), ASHS
(Yushkevich et al., 2015), and CAT (Gaser, 2016), with
subcommands for collecting output files, measurements yielded
by the pipeline, QC-oriented snapshots, validation reports,
or automatic test outcomes (as described later in section
“Generalized Automatic Sanity Check/Quality Control”).
Importantly, any command may be applied to an entire project,
one single MRI session, or also curated image collections2 relying
on discretionary criteria (e.g., based on clinical, genetic or
cognitive characterization, or any other external variable).

Such a tool thus provides an additional command-based
way to interact with the XNAT data which optimizes a
set of “frequent” use cases (based on user reports, like
bulk downloading pipeline outputs) while abstracting the
rest (i.e., obviating intermediate steps such as selection of
subjects/experiments/resources). Since it was built over pyxnat,
this makes it rather easy to get adapted to specific local
configurations (or additional resources).

2As inventoried by the command: bx lists.
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FIGURE 2 | Screenshots of the #xnat channel from the Barcelonaβeta Slack workspace. (Left) Monitors provide members of the channel with daily updates on the
current data available on the imaging platform without any user action. (Right) Basic human chatbot interactions give access to more specific statistics. In this
example, the user is querying for the progress over time of some processing task (with DTIFIT).

It is distributed as a PyPI package under the name bbrc-bx and
hosted on GitLab: https://gitlab.com/xgrg/bx.

Cron Jobs, Bots, and Monitors
In addition to bx-like scripts and XNAT’s standard interface,
daily summaries are delivered automatically through both
emails and instant messaging (IM). We built onto XNAT
email notification service so that subscribed users receive a
comprehensive sanity report (detailed in section “Generalized
Automatic Sanity Check/Quality Control”) for every new session
uploaded from the scanner. In parallel, automatic monitors
running on a Slack (Johnson, 2018) #xnat channel provides
authorized users with daily updates on numbers of available
subjects/raw sessions per project and available resources such
as processing outputs (derivatives) (left part in Figure 2). Such
automatic delivery systems complement standard user experience
by directly feeding with periodic statistics on the database, thus
allowing to check instantly on the system’s general integrity status
without user action. Users may also get further customized views
on this information through basic human-chatbot interactions,
e.g., longitudinal statistics. Figure 2 illustrates this integration:
on the left, members of the #xnat channel are updated every
day on available data, and on the right, users may ask about
the progress over time (daily numbers of a given resource)
of any pipeline on the platform. This approach may naturally
be adapted to other messaging systems (e.g., Mattermost, Riot,
Zulip, IRC) or project management tools possessing an API (e.g.,
Trello, Basecamp).

We advocate for giving users multiple controlled ways to
deal with data. XNAT RESTful API is one of the most powerful
features of its framework and allows to build a variety of access
modalities, each of which comes with pros and cons. For example,
the graphical user interface gives individual and comprehensive
control on the data, though manually operated; pyxnat adds a

programmatic interface to it and is, therefore, rather developer-
oriented; bx optimizes bulk downloading operations from scripts,
yet for a set of pre-selected resources; and IM-based tools
provide only high-level summarized information but add an
interactive and collaborative touch and nicely intertwine with
natural conversations among users.

“GIVEN ENOUGH EYEBALLS, ALL
GLITCHES ARE SHALLOW”3

Each step of an analysis workflow should ideally be paired
with specific checkpoints. Given the increasing quantity
and complexity of datasets, relying on automatic control is
imperative, but manual inspection can rarely be avoided.
The following approach aims at capitalizing on automatic
controls while allowing multiple users to jointly participate in
visual inspection.

Generalized Automatic Sanity Check/QC
In line with recent trending standards such as BIDS (Gorgolewski
et al., 2016) or NIDM (Keator et al., 2013), we present a validator-
based modular approach, which, in our current implementation,
covers image types such as T1-weighted, DWI, and PET images,
and processing outputs like FreeSurfer, SPM, and FSL DTIFIT,
and the approach may be easily extended to others. For each type
of data, we define a tailored procedure for QC. Such procedures
consist of predefined sequences of checkpoints: each checkpoint
(later referred to as Test) is associated with some particular
aspect of the data and would result either as passed or failed.
In this present implementation, every new imaging resource
pushed into the system is thus automatically taken through a QC

3Adapted from Raymond (1999)
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FIGURE 3 | (Left) Validators: concepts and classes. Validators and Tests all share the same template. Validators are defined by a list of Tests, which in turn yield
some Results. Each Results object embeds a main Boolean, which defines whether the Test was successful, and some additional data for logging purposes or
report generation. (Right) Example of a produced validation report (only the first page is displayed); the color code highlights the matching between sections of the
report and the corresponding concepts: green refers to Validators, each blue area corresponds to a Test, and Results are shown in red squares.

procedure adapted to the type of data. Checkpoints are defined
based on aspects of the data or metadata known to potentially
exhibit undesired variability, e.g., due to technical or human-
related factors. They may, for instance, include verifying that the
output of some process matches some expected list of files, that
some image parameters fall in specific intervals. Nevertheless,
the approach is designed so as to give the most flexibility and
scalability to the range of possible checkpoints. The use of a single
template for all checkpoints–each of them being documented
with human-readable specifications (e.g., detailed in each Test’s
docstring, as explained hereafter) and resulting in a binary
outcome–makes them easier to read and comprehend, especially
in code. As a result, every new imaging session is provided
with a checklist, by which the execution of further pipelines
may be conditioned. It is worth noting though that by being

designed as an independent command-line tool, any procedure
from this module may be executed, not only automatically, but
also manually upon request on any applicable dataset. The tool,
written in Python, is based on two nested concepts: Tests and
Validators (Figure 3).

A Validator is an object defined by a set of Test objects,
each of which would check specific traits of a given XNAT
entity (e.g., an incoming imaging session, or results from a
processing workflow). Validators are run like any other pipelines
by XNAT Pipeline Engine, triggered by some functional events
(e.g., archiving of a session and completion of a processing
pipeline, among others). The outputs from these series of checks
are stored as additional resources and would be used to infer,
either by visual review or programmatically, on the validity of the
target resource.
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A Test is defined by a run() and a report() function. The run()
function returns a Results() object that has two attributes, namely,
has_passed (Boolean) and data (list). This run() function may
target any resource, either an Experiment or a Scan (following
the XNAT terminology). Every Test has also two hardcoded
class-level attributes, namely, passing and failing, pointing at
two Experiments (or two 2-uples Experiment + Scan) from the
running XNAT instance on which the test should respectively
pass and fail [used for continuous integration (CI)]. Depending
on the test purpose, it may return Results(has_passed = True) or
Results(has_passed = False). One additional data argument may
be passed to the Results constructor to record extra information
(e.g., elapsed time) from the test execution.

In practice, running a Validator on a given experiment takes
its associated set of Tests and runs them sequentially. A Test
may apply to a Scan instead of an Experiment (e.g., checking that
DICOM files have been converted to NIfTI), in which case the Test
could be performed over all the existing Scans of the Experiment.
Upon failure of a Test, scan quality flags may be adjusted from
usable to questionable/not usable on XNAT. Once completed, the
Validator dumps the results data in a JSON record and generates
a Markdown-based PDF report (Figure 3). This report is built by
calling each Test’s report() function consecutively and compiling
their results in as many individual sections. By default, every
section includes the docstring attribute taken from every Test
class for the sake of traceability and self-sufficiency.

Both resulting PDF and JSON files appear on XNAT as
resources of the validated experiment, so that users may query
on them4 or dump them from the entire database, e.g., into a
single spreadsheet file5. This is made directly possible using bx
commands (section “Barcelonaβeta + XNAT: bx”) thanks to the
seamless integration between both tools.

One key strength of this model is its adaptability/genericity. It
allows rapid implementation of new Tests on any type of imaging
data provided it can be identified as an XNAT Experiment
or Scan. The actual performed verifications are stated in the
run() function and may hence use any required external library.
Another key advantage is the low cost associated with CI-
related maintenance. Regression testing is indeed critical for
the system to be sustainable as more checkpoints and more
data are added. Automated unit testing for CI is performed
after every new change in the code, based on the two class
attributes passing and failing provided for each Test. Every
single Test is thus systematically re-executed against two
specific cases after any change in the code. Along with this,
each generated report includes a reference to the last SHA
identifier issued by the version control system. As all Tests
share the same template, the testing code for CI requires no
updates and remains always adapted to any newly added Test.
Such a design yields to a unit-test-to-production-code ratio
currently under 1:30.

In our current implementation, Tests have so far covered
aspects related to both MR and PET acquisition and their

4For instance, using the following bx command: bx spm12 report
<project> (to download reports from SPM12 segmentations from a whole
XNAT project).
5The command would be: bx spm12 tests <project>.

post-processing derivatives. Supplementary Table 1 gives an
illustrative summary of currently implemented Tests, including
their associated docstrings to describe their purpose.

For example, every time a new PET session is imported to
XNAT, a PetSessionValidator is triggered. This Validator currently
includes a set of nine Tests. The first one, IsTracerCorrect,
checks that the tracer information is correctly registered in the
DICOM headers. The second one, IsSeriesDescriptionConsistent,
makes sure that metadata are consistent across the session;
then, IsScannerVersionCorrect checks in the DICOM headers
that the scanner model matches, in this case, “SIEMENS
Biograph64 VG51C”. Then, follow IsSubjectWeightConsistent
and IsTracerDoseConsistent controlling that the values registered
for subject’s weight and tracer dose match some target intervals
(between 40 and 150 kg and between 1.5e8 and 3.5e8 Bq,
respectively). Finally, the Validator runs IsSubjectIdCorrect to
ensure the subject’s ID has the right format; HasUsableT1,
which checks whether the subject has a valid T1-weighted
image stored on XNAT; and both IsCentiloidRunnable and
IsFDGQuantificationRunnable, which assess whether the data are
suited for the execution of two quantification pipelines.

Another example is ASHSValidator, which is triggered every
time some hippocampal subfield segmentation is executed
over an MR session (using the ASHS pipeline). The Validator
sequentially runs HasAllSubfields, which makes sure that
all expected subfields appear in the final segmentation;
HasCorrectASHSVersion controlling the software version;
HasCorrectItems checking that the list of generated files matches
the right one; HasNormalSubfieldVolumes, which assesses
whether resulting subfield volumes fall inside some safety
intervals; and ASHSSnapshot, which generates a snapshot of the
final segmentation (shown in Figure 4).

Other Validators include, for instance, ArchivingValidator
(triggered every time an MR session is imported/archived),
SPM12Validator, CAT12Validator, FreeSurfer6Validator,
ANTSValidator, and DTIFITValidator (triggered after every
execution of SPM12, CAT12, FreeSurfer6, ANTS, and FSL
DTIFIT, respectively). For a more comprehensive list of Tests,
Validators, and details on their purpose, the reader may refer
either to Supplementary Table 1 or directly to the code
repository for the latest version, as sharing the same template
[where each Test is a class with two test cases, a docstring, a
run(), and a report() function, as described above] makes them
easily readable.

The source code is released as an independent tool, bbrc-
validator, available as a PyPI package and code is hosted
on GitLab6.

Generating Summarized
Representations of Segmentation
Results: nisnap
Among the broad typology of outputs generated by most
neuroimaging analysis workflows, numeric and image-based
results are probably the most common. In particular, any
segmentation technique will generally yield either a label volume

6https://gitlab.com/bbrc/xnat/bbrc-validator
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FIGURE 4 | Snaprate: General user interface, running in a web browser. The upper part displays a zoomable snapshot (here a segmentation of hippocampal
subfields). The lower part shows a section for the review section and navigation controls, including links to XNAT and to other types of snapshots. Results from prior
checkpoints are also displayed in red (if failed) or green (if passed).

or probability maps to describe some target structures/objects,
possibly coming with some derived numeric descriptors, as this
is the case with standard software such as SPM or FreeSurfer for
cortical/subcortical segmentation. Despite some recent efforts to
predict it automatically (Klapwijk et al., 2019; Robinson et al.,
2019), the assessment of their performance is still relying mostly
on visual inspection. Pre-rendering summarized representations
of these results, or snapshots, instead of any manual procedure
involving standard visualization software (e.g., freeview, fsleyes,
BrainVisa/Anatomist, and mricron) is a way to minimize time
costs and risks of errors. To ease their generation from any
Python-enabled environment, we released nisnap (Operto and
Huguet, 2020). Through one main plot_segment() function, it
includes controls for opacity, layout, color map, plane/slice
selection, label picking, static, or animated rendering. Users may
also choose between contours or solid color rendering. Though it
also features a specific submodule for XNAT integration, nisnap
is designed to be used with any individual NIfTI images. The
function compiles a figure made of a selected set of slices, both
from the input segmentation and (if provided) the original image,
and renders an overlay of the former over the latter with the
desired options. Animated mode generates a GIF animation with
a fading effect on the segmentation. Eventually, an image file is
created at the specified location with the resulting snapshot.

The tool may be used from Python scripts or command-
line interfaces for offscreen rendering or from Jupyter notebooks
for real-time visualization. In our context, Validators rely
on nisnap to convert results from SPM, FreeSurfer, or
ASHS into snapshots which are then included in validation
reports (section “Generalized Automatic Sanity Check/Quality
Control”). Snapshots are then collected in a subsequent step
for visual review using snaprate (section “Assisted Visual QC:
snaprate”). Figure 4 shows an example of snapshot produced by
nisnap and displayed for review through snaprate.

nisnap is released as an independent tool, available as a PyPI
package and code is hosted on GitHub7.

Assisted Visual QC: snaprate
Automatic controls performed by Validators include generation
of snapshots (e.g., for segmentation results using SPM, CAT,
FreeSurfer, processing of diffusion-weighted imaging data using
FSL, and registration using ANTs, among others). Although
navigation is not enabled as it would be with a full-featured
NIfTI viewer, e.g., Papaya8, brainbrowser (Sherif et al., 2015),
and brainbox (Heuer et al., 2016), snapshots are lightweight

7http://github.com/xgrg/nisnap
8https://github.com/rii-mango/Papaya
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resources that are displayed instantly and easily cacheable at
runtime, hence resulting in optimized overall time of review.
Such rendered representations allow fine-grained customization
and are suited for the review of large collections of data.
Nevertheless, they can still not be checked in a fully automatic
way and generally require visual inspection. In particular, such
an approach involving tool-assisted visual review of summarized
versions of processing results has already been proposed, e.g.,
based on MR slices (Raamana, 2018) or pre-generated snapshots
(Keshavan et al., 2019). Some alternatives include features for
real-time NIfTI visualization and manual voxel labeling, thus
enabling crowdsourced reviews and corrections (Heuer et al.,
2016; Keshavan et al., 2018).

In line with this–and in order to minimize the burden
given to experts and optimize the review process–we present an
assisting tool (Figure 4) that naturally connects to the previously
described system, collects previously generated snapshots (along
with an optional predefined set of useful Test outputs), and
displays them within a multi-user collaborative web application.
Registered raters may navigate and assign each of them with a
descriptive comment and a quality score. Snapshots are produced
prior to the review process during automatic individual report
generation, described in the previous section. Rendering is done
based on either nilearn.plotting submodule (Abraham et al.,
2014) or nisnap (as described in section “Generating Summarized
Representations of Segmentation Results: nisnap”).

As snapshots are generated during the execution of Validators
and their corresponding Tests, they may then be displayed
along with the outcomes from those prior checkpoints. For
instance, segmentation results produced by SPM12 come with
prior Tests such as HasNormalVolumes (“do global gray/white
matter volumes fall inside predefined target intervals?”) or
SPM12SegmentExecutionTime (“did the pipeline take longer
than a given threshold?”). Such checkpoints may be displayed
under the snapshot to provide additional assistance to the review
process. One of them can be selected, at the user’s choice, so that
the navigation will jump from one failed case to the following
one. In case further inspection of a given case is required, a
direct link takes the user to the corresponding experiment on
the XNAT platform. Users are also allowed to switch between
pipelines/types of snapshots to assess their quality over the same
subject (Figure 4).

We present snaprate (Operto, 2019) in its particular XNAT-
centric software ecosystem. Nevertheless, the tool itself is
designed to work alone with any type of pre-generated
snapshots or figures. Here, image-based processing outputs are
represented as a collection of slices either from the original
images (e.g., fractional anisotropy or tensor maps from FSL
DTIFIT) or from the original T1-weighted images overlaid
with the segmentation/registration results (e.g., from SPM, CAT,
FreeSurfer, ASHS, ANTs) (Figure 4). Prior to the review, all
snapshots are extracted from reports and bulk downloaded into
a single folder using bx9. Then, snaprate operates as a web
application (using the Tornado10 Python web framework) on

9Using the command: bx snapshot <project>.
10http://www.tornadoweb.org

which users may log in using their individual browser. Every
action (addition/edit of any score/comment) is automatically
stored server-side as tabular data and may also be downloaded
locally as spreadsheet files.

Code is available on GitHub at: http://github.com/xgrg/
snaprate and a full demo can be found at http://snaprate.
herokuapp.com.

DISCUSSION

Recent decades have witnessed an increasing number of large
to very large imaging studies, prominently in the field of
neurodegenerative diseases. The datasets collected during these
studies form essential resources for the research aiming at new
biomarkers. Nevertheless, setting up a basic infrastructure to
collect, host, manage, process, review, and share those datasets
is still a hard task, especially for organizations with their own
imaging equipment, and the number of options in terms of
existing open-source software platforms for neuroinformatics
facilitating the seamless connection of an imaging scanner is
still quite limited. Larger projects may afford to develop their
own systems to serve these datasets, hence providing high-
performance and customized service (e.g., primary access to
the data, to computational resources, algorithms) to a restricted
set of users. However, such systems are rarely designed to
provide reusable solutions that could be easily adapted elsewhere.
As opposed to this, the approach described in this article
is characterized by its low footprint and high modularity,
hence facilitating selective reuse and allowing incremental
development. By low footprint, we suggest that the presented
components not only introduce little dependencies (i.e., essential
Python libraries) but also work with basic human-friendly
objects (e.g., spreadsheets, JSON files, JPEG images, and PDF
documents) making them again easily reusable independently.

The approach was implemented and is currently running in
the context of an individual research institution managing cohort
programs on risk factors and biomarkers of AD: the BBRC.
It may in itself serve as a practical example for organizations
with similar purposes. Such an empirical description, though,
may not substitute a proper comparative study, not presented
in this article, to assess the relative performance of this model.
Nevertheless, it was built following guiding principles taken from
best coding practices and software quality (e.g., extensibility,
reusability, minimum cost to develop, clear definition of purpose)
(Hoare, 1972). In that regard, all described components (bx,
nisnap, snaprate, bbrc-validator) include diligent automated
testing for CI (e.g., through sandboxed executions of most
commands), thus yielding code coverage rates consistently
over 90%. Additionally, as described in section “Generalized
Automatic Sanity Check/Quality Control,” each Test in every
Validator is, by definition, assigned with two imaging sessions,
one that is expected to pass and the other, to fail. This
not only complements the Test’s documentation by providing
the reader with genuine examples but also ensures that Tests
are systematically tested against real-life cases after every new
change in the code. It is also worth noting that those current
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FIGURE 5 | General view on the XNAT-based ecosystem architecture. The different satellite tools described in this manuscript are represented with their mutual
interactions. Each of them is based on a specific type of user interaction, e.g., command line, scripts, web browser, and instant messaging (IM). Interaction with
XNAT (e.g., xnatbot, xnat-monitor, bx, nisnap) relies on the pyxnat library. Validators are run as pipelines and produce reports (calling nisnap for snapshot generation).
Snapshots are collected from any given XNAT project thanks to one of bx’s commands (snapshot) and passed to snaprate for visual quality assessment.

Validators (as the ones featured in Supplementary Table 1)
have been tailored to the needs of one specific organization
(e.g., checking the software version of a Philips MR scanner)
and may be considered neither comprehensive nor suited
for other institutions. However, the modularity and flexibility
of the system allow them to easily adapt them to their
respective contexts.

Another potential limitation of this present model is that by
mostly focusing on automatic outputs, it is not well-adapted
to handle manual corrections. In this version, workflows are
automatically launched and managed through the XNAT Pipeline
Engine, and their history is stored and searchable in the XNAT
database. Pipelines are defined by a set of dependencies and
conditions based on other pipelines and prior automatic tests.
Failing cases are then flagged and ignored in subsequent steps.
One drawback of this conservative approach is that failed cases
(failed workflows or QC) are simply discarded from further
analysis, resulting currently in a line loss of data that could
probably be harnessed if processed manually. On the other hand,
this strategy, by limiting manually input data/parameters, avoids
the creation of forks and makes traceability easier to control by
guaranteeing that any resource can only have a linear history.
In this respect, coupling the system to a solution like DataLad
(Wagner et al., 2019) to address version control may provide an
interesting avenue for improvement.

The overall system is built around XNAT, which is among
the most broadly deployed open source systems for managing

medical imaging data in research (Nichols and Pohl, 2015).
We then enriched the platform with QC-oriented features by
taking advantage of its REST API using Python (Schwartz et al.,
2012). QC is balanced between automatic tests and tool-assisted
visual inspection. On the one hand, automatic operations include
sanity checks, collection of quality metrics, quality prediction,
and generation of human-readable reports, all part of a single
module, bbrc-validator, which was designed to have new tests
easily added (and covered by CI automated testing). On the
other hand, visual inspection is based on collaborative review of
pre-rendered snapshots. Figure 5 illustrates this XNAT-centered
ecosystem as a whole.

With all neuroimaging studies growing in scale and
complexity, QA/QC has become a difficult task and a heavy
burden, which is managed in very heterogeneous ways
across research groups (depending on data type, sample
size, experience, and resource availability, among others).
Emergence of standardized QC methods is still required and
is currently hindered by the existing variety of acquisition
protocols (modalities and scanner manufacturers) or processing
pipelines. While efforts have been initiated by the community
in this regard–e.g., by the INCF Special Interest Group on
Neuroimaging Quality Control11 (niQC)–common frameworks
remain needed to make QC-related tasks easier and more
efficient, with enough practical flexibility to be adapted across

11https://incf.github.io/niQC/
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different contexts, and hence contribute to ongoing discussions
on standardization. Mistakes and errors are inevitable: such
a model as the one described in this paper does not claim to
eradicate them all, but to reduce their likelihood and severity by
punctuating workflows with tailored checkpoints and safeguards.
New caught inconsistencies get converted into new control
points, increasing general “test coverage rate” (Miller and
Maloney, 1963) across iterations, hence tending toward better
global data quality assessment in the long run–provided no
changes affect the data source.

We also think that such a model, by integrating a routine
automatic collection of quality-related parameters, on one side,
and a component for facilitated collaborative visual review, on
the other, may efficiently serve as a stepping stone for improved
automatic classifiers for QC and potentially contribute with new
crowdsourced quality metrics, as proposed by Esteban et al.
(2019a). Following this, one interesting future development
would be to connect snaprate to MRIQC’s automatic prediction
(Esteban et al., 2017).

On a different level, tools like monitors or bx are also based
on XNAT, through calls to its REST API using pyxnat, and as
such help in achieving customized and diversified user experience
with the database.

We hence present a collection of basic individual components
that, taken as a whole, form a novel ecological arrangement based
on strong core principles (lightweight, reuse of existing tools,
and reproducibility), which has shown efficiency in the context
of single-site imaging cohort studies conducted by an individual
research platform. Again, modularity makes it easy to take one
or several components and allow their reuse by other groups,
primarily the ones making use of large neuroimaging datasets
for their research.

Finally, some of the presented components such as snaprate or
nisnap are purely independent from XNAT since they are based
on source-agnostic snapshots and as such may be used in any
framework. The other ones are interfaced with the platform core
using a unique library, pyxnat (Figure 5), therefore making the
whole system virtually adaptable to other types of platforms just
by replacing the binding module. Nevertheless, by leveraging its
built-in features in particular for access right management, we
believe that having XNAT as a cornerstone of the model is bound
to have a downstream positive impact on data sharing (Herrick
et al., 2016), primarily in groups lacking the necessary technical
support (Poline et al., 2012; Haselgrove et al., 2014).

CONCLUSION

Quality control of neuroimaging datasets and their processed
derivatives is still an open problem in all cohort studies and
generally synonymous with heavy burden. Its strong dependence
on protocol specifications (i.e., study design, imaging protocol,
and processing workflows) hinders the adoption of standardized
approaches. Furthermore, the nature of subsequent analyses is
also linked to the right verification procedure to implement
and the same dataset may have to go through different QC
passes depending on the final research question. To cope with

this, a substantial amount of intermediate control steps may be
automatized, as described in this paper, while the remaining
needed visual inspection may be facilitated by integrated
collaborative semi-automatic tools. As both aspects are tightly
interconnected, all these QC procedures must be supported
by some flexible and efficient data management strategies. We
showed in that context that, capitalizing on existing components
and by only adding some light interaction layer between them,
user experience in accessing data can be diversified and thus
fit with a variety of user profiles. Hence, providing improved
access to data at its source is bound to give way to better analysis
workflows in terms of traceability and reproducibility. All these
components take part in a whole ecosystem that has been
assembled and is currently running at the BBRC, an individual
research unit managing cohort research programs on AD. By
its modularity and the lightweight footprint/reusability of its
parts, this ecosystem may be easily adjusted and/or augmented
in accordance with other research groups’ needs.
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