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Multimodal heterogeneous data, such as structural magnetic resonance imaging

(MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF), are

effective in improving the performance of automated dementia diagnosis by providing

complementary information on degenerated brain disorders, such as Alzheimer’s

prodromal stage, i.e., mild cognitive impairment. Effectively integrating multimodal data

has remained a challenging problem, especially when these heterogeneous data are

incomplete due to poor data quality and patient dropout. Besides, multimodal data

usually contain noise information caused by different scanners or imaging protocols. The

existing methods usually fail to well handle these heterogeneous and noisy multimodal

data for automated brain dementia diagnosis. To this end, we propose a high-order

Laplacian regularized low-rank representation method for dementia diagnosis using

block-wise missing multimodal data. The proposed method was evaluated on 805

subjects (with incomplete MRI, PET, and CSF data) from the real Alzheimer’s Disease

Neuroimaging Initiative (ADNI) cohort. Experimental results suggest the effectiveness

of our method in three tasks of brain disease classification, compared with the

state-of-the-art methods.

Keywords: high-order, low-rank representation, dementia, classification, incomplete heterogeneous data

1. INTRODUCTION

Alzheimer’s disease (AD) is a highly prevalent and severe irreversible neurodegenerative disease
and it has already devastated millions of lives in the world (Cuingnet et al., 2011). AD is of an
escalating epidemic and it is a tremendous challenge to global health care systems (Kuljis̃, 2010).
AD is the most common dementia among the elders and it accounts for about 60–80% among
the age-related dementia cases. It is estimated that the regular cost for caring for AD patients
from families and health-care systems is up to $100 million every year (Reiman et al., 2010). The
number of AD patients increases very rapidly. It is estimated that the number of these patients
nearly doubles every year and the number will be up to 115 million worldwide (Kuljis̃, 2010) and
13.8million in the United States (Association et al., 2013) by 2050. Clinic and research show that the
potential pathology of AD appearsmany years ahead of the onset of cognitive symptoms. Therefore,
extensive studies pay attention to the automated diagnosis of AD and progression prediction of its
prodrome, i.e., mild cognitive impairment (MCI), to delay the progress of AD.
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Three types of data modalities have been widely used to
effectively predict the progression of AD, i.e., structural magnetic
resonance imaging (MRI), fluorodeoxyglucose positron emission
tomography (PET), and cerebrospinal fluid (CSF). Specifically,
MRI provides anatomical information about the brain, andMRI-
based feature representations (e.g., regional volumetric measures,
cortical thickness, and connectivity information) can be used to
quantify AD-associated brain abnormalities (Liu et al., 2015a,
2016). Also PET can be employed to detect the defect in cerebral
metabolic rate for glucose in the human brain (Foster et al.,
2007; Liu et al., 2015b). In addition, CSF is closely related to the
cognitive decline in AD and MCI subjects (Hansson et al., 2006).
It is of great value to capture the common hidden representation
and complementary information among three modalities for AD
diagnosis and MCI conversion prediction. Currently, various
methods have been used to learn the common latent subspace
across different modalities, such as canonical correlation analysis
(CCA) (Chaudhuri et al., 2009). For AD diagnosis, the recent
studies (Zhu et al., 2016a) have proposed to learn a common
hidden subspace from the original feature space of the different
modalities by canonical correlation analysis. Although significant
progress has been achieved, existing multimodal methods for
AD/MCI diagnosis seldom consider the negative influence of
noise information conveyed in multimodal data, leading to sub-
optimal performance.

Another common challenge in automated AD/MCI diagnosis
is that those multimodal data are usually incomplete in a block-
wise manner, where a specific modality (e.g., PET) may be
absent for a subject. For instance, even though all subjects in the
baseline Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database have MRI data, only about half of subjects have PET
and CSF data. The incomplete data problem may be caused
by poor data quality, high cost of PET scanning, and patient
dropouts. Since the collection of CSF requires invasive tests
(e.g., lumbar puncture), this may deter the patient’s commitment.
To effectively use these incomplete multimodal data, existing
studies have developed various methods to use these data for
the diagnosis of AD and MCI, including (1) sample exclusion
methods, (2) data imputation methods, and (3) multi-view
learning methods.

In the first category, subjects with missing values are directly
excluded (Friedman et al., 2001), which will significantly decrease
the number of samples for model training and consequently
degenerate the learning performance. In the second category,
one employs a specific algorithm to impute missing values based
on observed instances. There are various algorithms for data
imputation, such as zero, k-nearest neighbor (Hastie et al., 1999),
expectation maximization (Schneider, 2001), and singular value
decomposition (Golub and Reinsch, 1970). Even though one can
make use of all available samples after data imputation, these
kinds of approaches usually introduce extra noise information in
the data imputation process, thus degrading the robustness of the
learned models.

In the third category, multi-view learning methods (Xiang
et al., 2014; Liu et al., 2015a, 2017; Zhou et al., 2019) have
been developed to directly use all available subjects (even though
they may contain missing modalities), without discarding or

imputing missing values. In multi-view learning methods, each
view is usually treated as a specific data modality, and all
training samples can be categorized into multiple groups based
on the availability of the modality combinations. A multivariate
classification method is proposed (Fan et al., 2008), which uses a
regional statistical feature extraction scheme to extract the voxel
shape and direction of the brain image. The features are captured
in the functional structure representation, and thenmixes feature
selection methods and nonlinear support vector machines are
used to classify brain abnormalities, but this method cannot
effectively simulate the subtle and complex spatial structure of
the brain. A high-dimensional spatial pattern classificationmodel
is proposed in Fan et al. (2007). This technology can identify
subtle changes and complex spatial structure patterns within
the brain, which can classify individuals with certain specificity
and sensitivity. This method uses a feature selection mechanism
to find the most relevant local clusters among multi-view data,
and uses these local clusters to train a nonlinear support vector
machine classifier using Gaussian kernels. But this method will
cause a lot of loss of relevant information. Amanifold-regularized
multi-task feature learning method is proposed in Jie et al.
(2015, 2016) to retain the inherent correlation between multiple
data forms and the data distribution information in each form.
Specifically, the feature learning on each modal is expressed
as a single task, and the group sparsity regularizer is used to
capture the internal correlation between multiple tasks (i.e.,
modalities), and common features are selected from multiple
tasks. This method does not consider the influence of noise data
on the experimental results. A method of multi-modal image
registration by maximizing mutual information quantitative–
qualitative measurement is proposed in Luan et al. (2008). By
using the concept of quantitative and qualitative information
measurement of events, quantitative-qualitative measure of
mutual information (Q-MI) merges utility information into two
images and it can make the registration process focus more on
matching voxels with more efficient use value. Wu et al. (2008)
proposed a learning-based deformable registration method. This
method selects a set of geometric features with the best scale for
each point in the brain by optimizing the energy function, which
will transform the image with salient and consistent features.
Points (between different individuals) are used for the initial
registration of the two images, while other less significant and
consistent points are added to the registration process. But this
method will cause loss of image information. Laterly, Jia et al.
(2010) and Wu et al. (2013) also proposed other methods for
multi-modal image registration. Existing multi-view learning
method only consider the pairwise relationship rather than high-
order relationship among samples, while the exact relationship is
more complicated than pairwise in practice.

To address these two issues, in this paper, we propose a high-
order Laplacian regularized low-rank representation (hLRR)
method for automated AD/MCI diagnosis based on incomplete
heterogeneous multimodal data (i.e., MRI, PET, and CSF), as
shown in Figure 1. Our method has the following contributions:
(1) we propose an improved low-rank representation algorithm
to remove the noise information of the original data; (2) we
introduce a high-order Laplacian graph into the algorithm, and
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use the graph matrix to learn the structural relationships between
and within multi-view data. The proposed method can help
reduce the negative effect of the noise data via a low-rank
constraint, and also can capture the high-order relationship
among subjects via a hypergraph Laplacian regularization term.

The remainder of this paper is organized as follows. In
section 2, we review the related work on brain disease diagnosis
using incomplete multimodal data. In section 3, we present the
materials used in this work and the proposed method in detail.
Section 4 presents the experimental results on the public ADNI
database. More discussions are included in section 5. We finally
conclude this paper in section 6.

2. RELATED WORK

2.1. Brain Disease Diagnosis With
Multimodal Data
Based on multimodal data, the automated diagnosis of brain
diseases (such as AD and MCI) is a very critical problem in the
field because of the incomplete and heterogeneous data. Many
studies consider multimodal data classification in a multi-view
learning manner by treating each modality as one single view
(Sun, 2013). Multi-view learning has attracted extensive attention
due to its effectiveness in exploring complementary information
among multiple views. In the early years, many researchers
proposed a method based on the co-training (Blum andMitchell,
1998) framework and the success and appropriateness of the
method were also proved (Wang and Zhou, 2007). Recently,
many researchers proposed an approach based on common
hidden subspace learning using canonical correlation analysis
(Kakade and Foster, 2007). For AD diagnosis, there is also some
work (Xiang et al., 2014; Liu et al., 2017) aiming at taking full
advantages of multimodal incomplete heterogeneous data.

Recent studies focus on addressing the multimodal problem
through feature fusion by mapping multimodal data to a latent
feature representation space. For instance, the deep constrained
Boltzmann (Suk et al., 2014) was used to map multimodal data
to a high-dimensional space for automated AD diagnosis. In
Liu et al. (2018), high-level features in high dimensional space
are generated to complete the classification task. In Zhu et al.
(2016b), multimodal data are mapped into a unified feature
space for feature selection. The sparse representation (Wang H.
et al., 2011; Xu et al., 2015) is used to map multimodal data
to a unified representation space. Although this method can
ultimately retain the pathological information in the multimodal
data, it can suppress the association between these multiple
modalities. Several methods perform feature fusion by adding
linear or nonlinear constraints to multimodal data. Depth
polynomial network (DPN) (Shi et al., 2018) was used to add
linear constraints onmultimodal data for feature fusion to realize
the diagnosis of AD. A new deep learning structure (Suk et al.,
2016) was proposed to achieve feature fusion and AD detection
by continuously weighting the feature information. However,
existing methods seldom consider the problem of noise data and
redundant information in multimodal data.

2.2. Low-Rank Representation
Low-rank representation (LRR) (Liu et al., 2013) is a well-known
method employed to explore the potential low-dimensional
subspace structure embedded in data. Currently, LRR techniques
have attracted extensive attention in signal processing (Anvari
et al., 2017), image processing (Du et al., 2017), computer
vision (Zhou et al., 2011), and pattern recognition (Tan
et al., 2010). Denote N as the number of samples, and D as
the feature dimension. Given the mth modality data matrix
Xm=[x1, x2, · · · , xi, · · · , xNm ] ∈ R

DM×Nm , the goal of LRR is
to learn the lowest-rank representation to represent the data
samples as linear combinations of the bases in a given dictionary.
A classical LRR model is defined as follows:

argmin
Z,E

rank(Z)+ λ||E||0 s.t. X = AZ+ E (1)

where A is a dictionary matrix and E denotes the error
component. The term ||E||0 is the number of non-zeros in
error matrix E, λ is a parameter to balance the lowest-rank
representation and the error components. From Equation (1),
we not only can obtain the low-rank representation of sample X
but also can identify the noise information E. If we define the
dictionary matrix A as sample matrix X itself, Equation (1) can
be rewritten as follows:

argmin
Z,E

rank(Z)+ λ||E||0 s.t. X = XZ+ E (2)

which can be rewritten as follows:

argmin
Z,E

||Z||∗ + λ||E||1 s.t. X = XZ+ E (3)

where ||Z||∗ represents the nuclear norm the definition of which
is the sum of all singular values of matrix Z, and ||Z||∗ is the
convex envelope of rank(Z) in Equation (2). The term ||E||1 is
the L1 norm whose definition is the sum of absolutes of all entries
and ||E||1 is the convex envelope of ||E||0 in Equation (2). In
Equation (3), thematrixZ can be called an affinitymatrix because
of its element z(i, j) is a reflection of the similarity between xi and
xj. The column zi of matrix Z can be used as a representation of
sample xi because zi is a new representation of sample xi in terms
of other samples of X.

Many studies (Kim and Park, 2008; Wright et al., 2010) have
imposed some other helpful regularizations on the matrix Z

to introduce richer information. For example, if sparsity and
nonnegative constraints are imposed over matrix Z, Equation (3)
can be rewritten as follows:

arg min
Z,E

||Z||∗ + λ||Z||1 + γ ||E||1

s.t. X = XZ+ E,Z >= 0
(4)

from which one can observe that low-rank representation can
capture the underlying low dimensional data structure. However,
existing LRR methods do not explicitly consider the high-order
relationship among samples and cannot straightforwardly be
applied to deal with the incomplete multimodal data. To this
end, we propose an hLRR method for dementia diagnosis using
incomplete multimodal data.
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FIGURE 1 | Illustration of the proposed hLRR method. Three main components included are as follows: (1) multimodal data grouping, (2) representation learning via

the proposed hLRR model, and (3) ensemble classification based on the new representation.

3. MATERIALS AND METHODS

3.1. Materials and Data Pre-processing
In this work, multimodal data from the baseline ADNI database
(Jack et al., 2008) are used. According to the Mini-Mental
State Examination (MMSE) and other criteria, subjects in ADNI
can be categorized into three groups: normal controls (NCs),
MCI subjects, and AD subjects. In the baseline ADNI database,
there are a total of 805 subjects, including 226 NCs, 393 MCI
subjects, and 186 AD subjects. All subjects have at least one
of three data modalities, including T1-weighted structural MRI,
fluorodeoxyglucose PET, and CSF. Detailed description of ADNI
can be found online1.

For both MRI and PET modalities, we extractvolumetric
gray matter tissue inside pre-defined regions-of-interest (ROIs)
as feature representations. To be specific, for MRI, we first
apply the anterior commissure (AC)–posterior commissure (PC)
correction to each MRI scan by using the MIPAV software
package. Then, each MRI is re-sampled to have the same
resolution 256× 256× 256, followed by intensity inhomogeneity
correction using N3 algorithm (Sled, 1998) and skull stripping
(Wang Y. et al., 2011). Manual editing is performed to ensure that
both skull and dura are removed.We then remove the cerebellum
by warping a labeled template to each skull-stripped image, and
then segment the brain into three tissues (i.e., gray matter, white
matter, and CSF) using FAST (Zhang et al., 2001). The anatomical
automatic labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)

1http://adni.loni.usc.edu.

TABLE 1 | Number of subjects and number of features used in this study.

MRI PET CSF

Feature dimension 90 90 3

AD subjects 186 93 102

MCI subjects 393 201 190

NC subjects 226 101 112

Total subjects 805 395 404

(with 90 pre-defined ROIs in the cerebrum) are aligned to the
native space of each subject using a deformable registration
algorithm. For each subject, we finally extract the volumes of gray
matter tissue inside 90 ROIs as features. Note that these features
are normalized by the total intracranial volume that is estimated
by the summation of gray matter, white matter, and CSF volumes
from all those 90 ROIs. For PET scans, we align each PET image
onto its corresponding MRI scan by using rigid registration.
Then, we compute the mean intensity of each ROI in each PET
image as feature representation. Three CSF biomarkers is used
in this work, including amyloid β (Aβ42), CSF total tau (t-tau),
as well as the CSF tau hyperphosphorylated at threonine 181 (p-
tau). In this way, for each subject with complete multimodal data,
it can be represented by a 183-dimensional feature vector, i.e.,
90-dimensional MRI features, 90-dimensional PET features, and
3-dimensional CSF features. For clarity, we summarize the details
of studied subjects and their feature representations in Table 1.
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TABLE 2 | Notations used in a hypergraph.

Notation Meaning

Gm=(V ,εm,wm) The mth hypergraph corresponding to the mth modality

V The vertex set that contains N vertices

εm The hyperedge set corresponding to the mth modality

Wm
e The weights set for hyper-edges εm, wm

ej
being its element

wm
ej The weight for hyperedge ej in the mth modality

Ne
m The number of hyperedges in the mth modality

Wm in ∈ R
D1×N1Diagonal matrix of hyperedge weights in the m-th modality

Hm in ∈ R
D1×N1 The vertex-hyperedge incidence matrix in the mth modality

Dm
e The hyper-edge matrix with diagonal entries corresponding to the

degree of each hyperedge

Dm
v The vertex degree matrix with diagonal entries corresponding to

the degree of each vertex

3.2. Proposed Method
As illustrated in Figure 1, our proposed method contains three
steps as follows: (1) multimodal data grouping, (2) high-order
low-rank representation model construction, and (3) ensemble-
based classification, with details given below.

3.2.1. Multimodal Data Grouping
Based on the characteristic of subjects in ADNI, we partition all
subjects into seven groups, including (1) subjects with MRI, PET,
and CSF modalities; (2) subject with MRI and PET modalities;
(3) subject with MRI and CSF modalities; (4) subject with
PET and CSF data; (5) subjects with MRI; (6) subject with
PET; and (7) subject with CSF data. Using such a partition
strategy, we can ensure that each group will have complete

data. Denote Xm={x
i
m}

Nm
i=1 as the data matrix for all training

subjects with the mth (m=1,· · · ,7) representation, and Nm is the
number of subjects in the mth group. Let {X1 ∈ R

D1×N1 ,X2 ∈

R
D2×N2 , · · · ,Xm ∈ R

Dm×Nm , · · · ,XM ∈ R
DM×NM } denote

subjects in those M=7 groups, where Nm and Dm is number of
subjects and feature dimension, respectively, for themth group.

3.2.2. High-Order Low-Rank Representation
To capture the high-order relationship among multiple
modalities, we formulate the multimodal incomplete
heterogeneous data classification as a hypergraph construction
problem. The hypergraph is the generalized version of the
traditional graph. Each edge contains more than two vertices
in a hypergraph, while each edge in a traditional graph only
contains only two vertices in the traditional graph. Therefore,
the hypergraph can convey some high-order relationship
among vertices, whereas traditional edge only demonstrates
the pairwise relationship between two vertices. In this study,
we use hypergraph to discover the high-order information
among vertices (with each vertex denoting a specific subject).
We construct seven hypergraphs since there are seven groups in
this study, aiming to model the high-order relationship among
subjects within each group. Before constructing the hypergraph,
we give some notations about hypergraph, summarized
in Table 2.

Based on the notations, we define the (vi, ej)-entry of matrix
Hm indicating the vertex vi is affiliated with hyper-edge ej as

hmvi ,ej =

{

1, if vi ∈ ej
0, otherwise

(5)

The degree of a vertex vi is defined as

dmvi =
∑

ej∈ξm wm
ej
hmvi ,ej (6)

The degree of a hyper-edge ej is defined as

δmej =
∑

vi∈v
hmvi ,ej (7)

Also, the hyper-Laplacian matrix is typically employed to
discover the high-order information among vertices/subjects
based on the constructed hypergraph. Previous studies usually
construct a hypergraph by using the Euclidean distance to
measure the similarity between samples. However, the Euclidean
distance cannot utilize global structure information. Several
studies (Wright et al., 2009; Qiao et al., 2010) have proved
that sparse representation is not only effective in reflecting
the global structure information but also robust to data noise.
Therefore, in this work, we employ sparse representation for
hyperedge construction.

For the mth group, its training samples can be defined as the
data matrix Xm = [x1, x2, · · · , xi, · · · , xNm ] ∈ R

DM×NM . Based
on the sparse representation theory (Qiao et al., 2010), each xi
can be linearly represented using as few as other samples, e.g.,
xi =

∑

j 6=i sijxj is a sparse representation coefficient. The general

objective function of sparse representation is as follows:

min
si

‖xi − Xsi‖ + β ‖si‖1 s.t. 1 = 1Tsi (8)

where si=[si1, · · · , si,i-1, 0, · · · siN]
T is a weight vector, β is a

regularization parameter used to control the sparsity of si, and
1 ∈ R

N is a vector with all ones. In Equation (8), the component
sij of the weight vector si is employed to measure the significance
of xj to xi. With the sparsity constraint, one can encourage
that each xi is associated with as few other samples as possible.
Let si be the optimal weight vector of Equation (8), the sparse
representation weight matrix corresponding to data matrix Xm

can be defined as

S = [s1, · · · , si, · · · , sN]
T (9)

Based on Equation (9), we rewrite Equation (5) as

hmvi ,ej =

{
∣

∣sij
∣

∣ , if
∣

∣sij
∣

∣ > θ

0, otherwise
(10)

where θ is a small threshold and sij is the element of S in
Equation (9).

With the construction of the hypergraph and the notations
in Table 2 and based on our previous work about hyper-graph
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learning (Liu et al., 2017), we define each hyper-Laplacian (Zhou
et al., 2007) corresponding to each group as follows

Lm = I− (Dm
v )

− 1
2HmWm(D

m
e )

−1(Hm)
T(Dm

v )
− 1

2 (11)

where I is an identity matrix.
Motivated by the graph-based manifold learning (Belkin

and Niyogi, 2002) and the high-order relationship based on
hyper-graph construction, we can incorporate a hyper-Laplacian
regularization term into Equation (4) so that data points within
the same hyper-edge are similar to each other. We weight the
summation of pair-wise distance among given data points within

each hyper-edge by
Wm

e
Dm
e
. The hyper-Laplacian regularized form

of Equation (4) can be written as:

min
Z,E

‖Z‖∗ + λ ‖Z‖1 + β
∑

(i,j)⊂e∈ξ

∥

∥zi − zj
∥

∥

2 W(e)
D(e)

+ γ ‖E‖1

s.t. X = XZ+ E Z > 0 (12)

Finally, with some algebraic manipulations, we can obtain the
hyper-Laplacian regularized LRR model by the matrix form:

min
Z,E

‖Z‖∗ + λ ‖Z‖1 + β tr
(

ZLhZT
)

+ γ ‖E‖1

s.t. X = XZ+ E Z > 0 (13)

where the first term ‖Z‖∗ encourages to obtain the low-rank
representation of the original data matrix X, the second term
‖Z‖1 guarantees that the sparsity criterion can better capture
the local structure around each data vector, and the third term

tr
(

ZLhZT
)

guarantees to reflect the high-order relationship

among all the data. Also, the fourth term is an error component
that is used to remove the noise information.

For the mth block (w.r.t., Xm), we construct a hypergraph to
capture the high-order relationship among subjects, yielding a
hyper-Laplacian matrix Lm. To learn a new representation Zm,
we define the objective function of hLRR as follows:

min
Zm,Em

M
∑

m=1

‖Zm‖∗ + λ

M
∑

m=1

ηm ‖Zm‖1

+ β

M
∑

m=1

ηm tr
(

ZmLmZ
T
m

)

+ γ

M
∑

m=1

ηm ‖Em‖1

s.t. Xm = XmZm + Em,Zm ≥ 0 (m = 1, 2, · · · ,M) (14)

where tr
(

ZmLmZ
T
m

)

is the hyper-Laplacian regularized item
for the mth group. Also, λ, β , and γ are penalty parameters
to balance the three regularization terms. Note that ηm is an
indicator vector to denote whether each subject is involved in the
m-th group, i.e., ηm(i,i)=1 if xim exists; and 0, otherwise.

We use the linearized ADM with adaptive penalty (Lin et al.,
2011) to solve Equation (14). First an auxiliary variable Jm is

introduced to make the objective function of Equation (14)
separable and then Equation (14) is formulated as:

min
Zm ,Em ,Jm

M
∑

m=1

‖Zm‖∗ + λ

M
∑

m=1

ηm ‖Jm‖1 + β

M
∑

m=1

ηm tr
(

ZmLmZ
T
m

)

+ γ

M
∑

m=1

ηm ‖Em‖1

s.t. Xm = XmZm + Em,Zm = Jm,

Jm ≥ 0, m = 1, 2, · · · ,M (15)

The augmented Lagrangian function of Equation (15) is
as follows:

L (Zm,Em, Jm,Gm,Qm)

=

M
∑

m=1

‖Zm‖∗ + λ

M
∑

m=1

ηm ‖Jm‖1 + β

M
∑

m=1

ηm tr
(

ZmLmZ
T
m

)

+γ

M
∑

m=1

ηm ‖Em‖1

+

M
∑

m=1

(〈Gm,Xm − XmZm − Em〉 + 〈Qm,Zm − Jm〉)

+
µ

2

(

‖Xm − XmZm − Em‖
2
F + ‖Zm − Jm‖

2
F

)

(16)

where Gm and Qm are Lagrange multipliers and µ >0 is a
penalty parameter.

3.2.3. Optimization
There are three variables in Equation (16) to be optimized. In this
work, we employ an alternating iterative optimization method to
solve the proposed problem. Thus, two main steps are included
in the following iterative procedure: (1) fix parameter {Em, Jm}
in Equation (16) and then optimize Zm; (2) fix parameter Zm

in Equation (16) and then optimize {Em, Jm}. These two steps
are executed iteratively until some conditions are satisfied. For
optimizing Equation (16), two theorems are provided in the
section of Supplementary Material. The detailed description of
solving the hLRR is shown in Table 3.

3.2.4. Ensemble-Based Classification
In the third step, with the new data representation, we train
seven support vector machine (SVM) classifiers, with each SVM
corresponding to a specific group. Then, we use a simple majority
voting strategy to combine the outputs of multiple SVMs to
make a final decision. Specifically, we assume that the output
for each modality is yi (i = 1, 2, · · · ,M) where yi=1 denotes
the positive categorical label (e.g., AD) and yi=–1 denotes the
negative categorical label (e.g., NC). The final result for a new test

subject xj can be expressed as f(xj) = sign( 1
M

M
∑

i=1

yi).
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TABLE 3 | The proposed method hLRR.

Algorithm: High-order Laplacian regularized low-rank representation (hLRR)

Input :Xm,λ,β, γ and the number of nearest neighbors

Output :Zm,Em

Initialization :Compute hyper-Laplacian matrix Lm; E
0
m = J0m = G0

m = Q0
m=0, λ=0.05, β=2.0, γ=5.0, ρ0=3, µ0=10

−6, µmax = 106; ǫ1=ǫ2 = 10−6, k=0

Repeat:

Step 1 : Update Zk
m using Equation (17)

Step 2 : k=k+1

Step 3 : Update Ek
m using Equation (21)

Step 4 : Update Jkm using Equation (22)

Step 5 : Update Lagrange multipliers Gm and Qm, G
k+1
m = Gk

m+µk(Xm-XmZ
k+1
m -Ek+1

m ), Qk+1
m = Qk

m+µk(Z
k+1
m -Jk+1

m )

Step 6 : Update µ: µk+1=min(µmax,ρkµk), if max{η1
∥

∥Zk+1
m − Zkm

∥

∥, µk

∥

∥Jk+1
m − Jkm

∥

∥, µk

∥

∥Ek+1
m − Ekm

∥

∥} ≤ ǫ2, ρk=ρ0; otherwise ρk=1

Until : max{
∥

∥Zk+1
m − Zkm

∥

∥,
∥

∥Jk+1
m − Jkm

∥

∥,
∥

∥Ek+1
m − Ekm

∥

∥} ≤ ǫ2 and

∥

∥

∥
Xm−XmZ

k+1
m −Ek+1

m

∥

∥

∥

‖Xm‖
≤ ǫ1

4. EXPERIMENTS

4.1. Experimental Setup
For the benchmark datasets, they have been partitioned using 10-
fold cross-validation strategy, i.e., each dataset is first partitioned
into the training set and the testing set with a ratio of 9:1. And
then, a 10-fold inner cross-validation is done on the training set
for parameter selection, in which 9-folds are taken as training and
the remaining fold as validation. In the experiments, we perform
three classification tasks, including AD vs. NC, AD vs. MCI, and
NC vs. MCI. Seven metrics are used for performance evaluation,
including the classification accuracy (ACC), sensitivity (SEN),
specificity (SPE), balanced accuracy (BAC), positive predicted
value (PPV), negative predictive value (NPV), and the area under
the receiver operating characteristic curve (AUC).

4.2. Competing Methods
We compare the proposed method hLRR with four data
computation techniques, i.e., zero (filling the missing data with
all zeros), K-nearest neighbor (KNN) (Hastie et al., 1999),
expectationmaximization (EM) (Schneider, 2001), singular value
decomposition (SVD) (Golub and Reinsch, 1970). To illustrate
the superiority over the other multimodal data classification
methods, the proposed hLRR method is also compared with the
state-of-the-art methods: two incomplete multi-source feature
learning methods (iMSF) (Yuan et al., 2012) with logistic loss
(denoted as iMSF-1) and square loss (denoted as iMSF-2) and
convolutional nonnegative matrix factorization (CH-CNMF)
(Vaz et al., 2016), deepmulti-kernel learning (DMKL) (Strobl and
Visweswaran, 2013), stack autoencoder (SAE) (Xu et al., 2017),
logistic regression(LR) (Cui et al., 2016), and feature attribute
fusion(Attf) (Bosnic et al., 2020). For the compared methods
that were not originally developed to solve the incomplete data
problem, we use the KNN algorithm to impute missing values,
because of its stable performance. These compared methods are
briefly summarized as follows:

(1) Zero: This method is also called the complement zero
method which replaces all the missing values with 0.

(2) KNN: It finds the nearest k1 neighbors, and fills the missing
values by the mean feature value of these neighbors. In this
work, we set k1 = 5.

(3) EM: The EM is a popular iterative refinement algorithm.
Each step of EM algorithm consists of an expectation step
and a maximization step. The basic idea is to estimate
an initial value of missing data and calculate the value of
model parameters. The step E and step M are performed
iteratively to update the estimated missing values
until convergence.

(4) SVD: It completes the data by calculating the similarity
between complete data and missing data. First, the data
is processed and decomposed to obtain its feature vector.
Second, the characteristic were used to find the value most
similar to the missing value and complete it.

(5) iMSF-1: After the multimodal data are divided and the
complete data of each modal is obtained, sparse learning
is used to map the multimodal data into a shared space.
A classification integrator is constructed by combining the
data completion algorithm and this method.

(6) iMSF-2: The method is divided into two stages. In the first
stage, the multimodal data is projected into a shared feature
space, in which the model scores containing missing data
are contained. In the second stage, the missing values in the
score matrix are estimated and the data are completed.

(7) DMKL: It combines multi-core learning with deep
learning and draw on the idea of multi-core learning to
introduce adjustable hyperparameters. Multiple kernels are
sequentially combined into a multilayer deep network,
where each kernel has an associated weight value. It
improves the multi-core learning method by successfully
optimizing each multi-layer with multiple cores.

(8) CH-CNMF: The algorithm decomposes the data matrix
into a basic tensor containing the time pattern and an
activation matrix indicating the moment when the time
pattern appears. It is important that the time pattern
corresponds closely to the observed data and represents a
wide dynamic range.
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TABLE 4 | Results (%) of seven different methods in AD vs. NC classification.

Method
AD vs. NC

ACC SEN SPE BAC PPV NPV AUC

Zero 91.72 85.82 96.73 95.21 91.81 86.65 84.50

KNN 90.61 89.97 95.78 93.21 92.58 94.54 85.44

EM 90.05 83.56 91.27 88.63 89.46 88.37 87.79

SVD 91.49 89.65 90.54 90.14 92.78 86.65 90.15

iMSF-1 86.19 86.42 86.29 86.35 83.41 89.09 86.34

iMSF-2 88.57 86.14 90.45 88.29 87.36 89.70 88.30

DMKL 91.78 83.67 86.62 91.64 94.36 80.56 89.56

CH-CNMF 85.41 84.62 86.21 85.41 92.59 73.33 87.62

SAE 91.37 93.26 90.86 91.95 90.89 90.00 90.32

LR 85.32 87.63 96.47 85.32 89.65 83.64 85.21

Attf 87.01 93.56 90.47 83.67 88.69 87.50 89.54

hLRR (ours) 94.42 81.58 97.82 94.49 96.36 84.05 95.01

Accuracy (ACC), sensitivity (SEN), specificity (SPE), balanced accuracy (BAC), positive predictedvalue (PPV), negative predictive value (NPV), the area under the receiver operating

characteristic curve (AUC). Best values are in bold.

(9) SAE: The stack de-noising automatic encoder is used to
represent the modal data (early fusion). Then, on the basis
of learning features, a number of SVMs are used to predict
and classify the data with the learned features.

(10) LR: This method aims to obtain a linear classifier with a
decision function. The training and predicting framework
is the same as LIBSVM. It predicts the probability that the
sample belongs to a certain class, rather than hard labels.

(11) Attf: This method performed data fusion from both
attribute and sample views (Bosnic et al., 2020). For
attributes fusion, it is performed by enriching attributes of
the base dataset with those of the secondary dataset. For
sample fusion, it is performed by enriching the examples
set of the base dataset with those of the secondary dataset,
with more details given in Bosnic et al. (2020).

The parameters λ, β , and γ in Equation (14) are determined
from the parameter set {10−7, 10−6, · · · , 107} with grid search
strategy. The parameter k1 for KNN is determined from
{3, 5, 7, 9, 11, 15, 20}, the rank parameter for SVD is determined
from {80, 85, 90, 95}, and the parameter λ for iMSF is chosen
from {10−4, 10−6, · · · , 103}. The kernel parameter selection
range of DMKL is [0, 1], and here we choose 0.1. The SVM
classifier uses default parameters. All the methods are carried out
in MATLAB (R2016b) on a computer with Intel(R) Core (TM)
i7-4510U 2.50 GHz CPU and 16 GB RAM.

4.3. Results and Analysis
Table 4 shows the results of 11 different methods in AD vs.
NC classification. From the results, it can be seen that all
the algorithms have achieved good results, and the accuracy
is about 90%. Compared with other centralized algorithms,
our algorithm has achieved the best results. Compared with
several data completion/imputation methods (i.e., Zero, KNN,
EM, and SVD), our algorithm has improved the accuracy
results by about 3%. Compared with iMSF-1 and iMFS-2,
our method significantly improves the AUC values by about

7%. Compared with the other two deep learning methods,
our algorithm improves the accuracy by about 3%, and
improves the accuracy by 7% compared with the feature fusion
method. Compared with the algorithm of logistic regression and
factorization, it is improved by about 8%. In particularly, our
hLRR method can yield better results in terms of SPE, PPV,
and AUC, indicating that our method effectively reduces the
misdiagnosis rate.

Table 5 reports the comparison results of different methods
in AD vs. MCI classification. It can be seen that our method has
made a great improvement in terms of accuracy, which is about
9% higher than other methods. The improvement in terms of
othermetrics is also obvious, suggesting the effectiveness of hLRR
in identifying MCI subject from AD.

Besides, we report the MCI vs. NC classification results

achieved by different methods in Table 6. As can be seen that the

overall results of different methods in MCI vs. NC classification
are inferior to those in both tasks of AD vs. NC and AD vs.

MCI classifications. The underlying reason could be that, since

MCI is a prodromal stage of AD, brain dysfunction of MCI
subjects may be mild compared to AD subjects, and thus its

challenging to identify MCI subjects from NCs. On the other

hand, results in Table 6 suggest that, compared with the other
methods, the proposed hLRR method achieves the improvement
of at least 10% in terms of ACC and AUC values. These results

further demonstrate the effectiveness of the proposed method in
automated brain dementia diagnosis. From Tables 5, 6, we can
see that the proposed hLRR is superior to the other methods. The

possible reason is that our hLRR not only can avoid the influence

of noise data but also can reflect the high-order relationship
among multiple modalities.

Figure 2 shows the ROC curves of different methods in three
tasks. Through the ROC curve diagram, we can clearly see
that our method is significantly better than other methods in
the detection of AD and its early symptoms, especially in the
diagnosis of MCI. At the same time, our method reduces the
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TABLE 5 | Results (%) of seven different methods in AD vs. MCI classification.

Method
AD vs. MCI

ACC SEN SPE BAC PPV NPV AUC

Zero 77.40 33.80 92.94 63.89 70.81 71.57 36.77

KNN 76.38 34.17 96.13 59.66 75.35 57.80 40.30

EM 76.12 36.95 94.24 61.26 70.21 73.61 38.73

SVD 76.17 26.32 95.73 62.42 71.93 69.44 37.58

iMSF-1 74.48 38.49 91.70 65.10 69.83 76.07 65.10

iMSF-2 75.34 38.84 92.35 65.60 71.03 76.34 65.60

DMKL 77.49 46.75 86.87 65.87 79.62 60.34 59.56

CH-CNMF 74.14 20.00 93.02 56.51 76.92 50.36 69.62

SAE 76.53 95.32 37.26 64.37 77.85 70.69 70.36

LR 67.24 23.37 67.28 54.63 67.24 66.84 65.71

Attf 79.67 42.10 66.34 78.39 72.91 79.86 80.38

hLRR (ours) 88.40 99.50 88.08 93.79 87.77 97.75 81.65

Accuracy (ACC), sensitivity (SEN), specificity (SPE), balanced accuracy (BAC), positive predictedvalue (PPV), negative predictive value (NPV), the area under the receiver operating

characteristic curve (AUC). Best values are in bold.

TABLE 6 | Results (%) of seven different methods in MCI vs. NC classification.

Method
MCI vs. NC

ACC SEN SPE BAC PPV NPV AUC

Zero 65.78 60.61 67.73 59.31 70.36 56.11 56.34

KNN 61.55 49.75 78.98 66.62 78.73 54.11 55.21

EM 65.91 66.96 64.85 66.01 76.33 59.41 56.01

SVD 68.39 57.22 72.32 64.97 72.67 59.81 53.24

iMSF-1 72.90 82.17 57.52 69.21 76.86 64.10 63.32

iMSF-2 75.68 95.40 33.43 64.42 75.60 77.36 64.42

DMKL 75.41 71.07 57.14 83.56 66.67 79.07 63.58

CH-CNMF 72.13 47.62 85.31 66.31 35.32 75.56 67.62

SAE 75.81 83.67 53.95 70.86 63.26 77.28 65.67

LR 67.74 34.95 83.62 69.27 67.24 72.14 56.65

Attf 72.58 62.50 78.95 70.72 76.92 72.14 65.32

hLRR (ours) 85.32 95.63 72.96 84.96 67.51 92.26 83.54

Accuracy (ACC), sensitivity (SEN), specificity (SPE), balanced accuracy (BAC), positive predictedvalue (PPV), negative predictive value (NPV), the area under the receiver operating

characteristic curve (AUC). Best values are in bold.

FIGURE 2 | ROC curves achieved by different methods in (left) AD vs. NC classification, (middle) AD vs. MCI classification, and (right) MCI vs. NC classification.
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TABLE 7 | Running time of Zero, KNN, EM, SVD, iMSF-1, iMSF-2, DMKL, CH-CNMF, SAE, LR, Attf, and hLRR in AD vs. NC classification.

Method Zero KNN EM SVD iMSF-1 iMSF-2 DMKL CH-CNMF SAE LR Attf hLRR (Ours)

Time (s) 1.375 1.358 2.654 2.351 14.86 15.62 35.34 26.78 41.65 14.87 38.64 86.75

FIGURE 3 | Influence of λ on hLRR (with β and γ fixed) in three classification tasks, i.e., AD vs. NC, MCI vs. NC, and AD vs. MCI classification.

FIGURE 4 | Influence of β on hLRR (with λ and γ fixed) in three classification tasks, i.e., AD vs. NC, MCI vs. NC, and AD vs. MCI classification.

results of false negative and false positive diagnosis errors. The
diagnosis efficiency has been greatly improved, which provides a
reliable guarantee for the early treatment of patients.

4.4. Computation Time
We now investigate the computational cost of the hLRR, and
report the running time of different methods in AD vs. NC
classification in Table 7. As can be observed from Table 7, the
overall running time of our method is reasonable and acceptable
in practical applications. But the proposed hLRR needs more
running time compared to the other six methods, because of
the time spent on the construction of multiple hypergraphs. In
our future work, we will optimize the algorithm to reduce the
time complexity.

4.5. Parameter Analysis
In order to observe the sensitivity of a specified parameter (i.e., λ,
β , and γ ) in our method hLRR, we first fix all other parameters
with their optimal values and then compare the performance
of the proposed method under different values of this specified
parameter. The experimental results on parameter sensitivity

are reported in Figures 3–5. From Figure 3, we can see that,
with the fixed β , and γ , the proposed hLRR can achieve the
best result when λ = 0.1 for both tasks of AD vs. NC and
MCI vs. NC classification, and the best result is achieved when
λ = 10 for AD vs. MCI classification. The similar trend can be
found in Figures 4, 5, that is, our hLRR method yields the best
results when β and γ are within the range of [0.1, 10]. These
results imply that the hLRR model is not very sensitive to three
parameters. It can be seen from the experiments that the result
is comparably good when the hyper-parameters are in domain
[0.1, 10]. We will evaluate the proposed method onmore datasets
for extensive evaluation in the future.

4.6. Friedman and Nemenyi Test
Friedman test and Nemenyi test are used to compare several
algorithms on ADNI dataset. Friedman test can analyze whether
there are obvious differences between all comparison algorithms
on multiple datasets. Nemenyi test was used to further analyze
whether those pairs of algorithms have significant differences.
In Table 8, we report Friedman values for each algorithm in
AD vs. NC classification. Figure 6 shows the nemenyi and
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FIGURE 5 | Influence of γ on hLRR (with λ and β fixed) in three classification tasks, i.e., AD vs. NC, MCI vs. NC, and AD vs. MCI classification.

TABLE 8 | Friedman values for 12 different methods.

Method Zero KNN EM SVD iMSF-1 iMSF-2 DMKL CH-CNMF SAE LR Attf hLRR (Ours)

Chi-sq 1686.72 1686.72 1409.97 553.55 1463.67 1576.96 1769.32 28700 1252.70 1569.79 1638.24 219.9

algorithm difference diagram. From Table 8, we can clearly see
that there are obvious differences between our algorithm and
other algorithms. The gap between the theoretical value and
the actual value of our algorithm is obviously better than that
of other algorithms. According to Figure 6, we can intuitively
see the difference between the two algorithms. The horizontal
line in Figure 6 indicates the size of the average order value.
The solid dot on the horizontal line represents the average
order value of each corresponding algorithm. The blue line
represents the size of CD value. The red line represents the
CD value of each algorithm. The more overlapping red lines,
the more similar the performance of the two algorithms. We
can see that our hLRR has the same average order value as
Attf and DMKL algorithm, and the red line has the highest
overlapping degree, which indicates that three methods are
roughly consistent in performance. Also, our hLRR has similar
performance with SAE, KNN, and EM, and has a very big
gap with other algorithms in performance. From Figure 6, we
can clearly see that our method has achieved excellent results
compared with other methods.

5. DISCUSSION

5.1. Significance
Multimodality studies usually have to face the problem
of missing modalities caused by patient dropouts or poor
data quality. Existing AD-related studies typically discard
modality-missing subjects, thereby greatly reducing sample
size and degrading diagnostic performance (Zhang and Shen,
2012; Jie et al., 2016; Shi et al., 2020). This will significantly
limit their utility in applications where subjects may usually
lack one or several modalities. To this end, we propose
an hLRR method for AD diagnosis and MCI conversion
prediction based on incomplete multimodal data. Our
method can fully make use of all subjects even those with

FIGURE 6 | Nemenyi test chart of 12 different methods.

missing modalities. It is worth noting that the proposed
method can be straightforwardly applied to multimodality-
based diagnosis of other brain diseases such as autism
spectrum disorder (Wang et al., 2019; Lord et al., 2020)
and Parkinson’s disease (Bowman et al., 2016; Horsager et al.,
2020).

5.2. Limitations and Future Work
Several limitations of the current work need to be considered.
On the one hand, we simply employ the sparse representation
technique to construct hypergraphs in this work, leading
to a relatively higher computation cost. In the future,
we will use other computationally light methods (e.g., k-
nearest neighbor) to construct hypergraphs. On the other
hand, we only evaluate our method on the ADNI database
with MRI, PET, and CSF data. As future work, we will
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evaluate the proposed method on more new neuroscience
applications or datasets, such as epileptic EEG recognition
and Chinese physiological signal challenge dataset on
electrocardiogram classification.

6. CONCLUSION

In this paper, we propose an hLRR method for brain
dementia diagnosis using incomplete multimodal data.
We first partition subjects into seven groups, with each
group only containing modality-complete subjects. Then,
we develop an hLRR learning model to capture the high-
order relationship among subjects, with each hypergraph
corresponding to a specific group. Based on the learned feature
representations in multiple groups, we train multiple SVM
classifiers, followed by an ensemble classification strategy
to combine the outputs of different SVMs to make a final
decision. Experimental results on the public ADNI database
demonstrate the effectiveness of our proposed method for brain
disease diagnosis.
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APPENDIX

Theorem 1. Suppose that {Em, Jm} are fixed; then Zm can be
optimized with the following update rule:
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m
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m
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where 2ǫ(A)=USǫ(
∑

)VT is the singular value thresholding
operator (SVT) (Cai et al., 2010), USǫV

T is the singular value
decomposition(SVD) of A, Sǫ(x)=sgn(x) max(|x|-ǫ,0) is the soft
thresholding operator.

Proof.With {Em, Jm} fixed, Equation (16) can be expressed as
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Since Equation (A7) does not have a closed-form solution,
following Lin et al. (2011), we denote the smooth component of
Equation (A7) with
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According to linearized ADM with adaptive penalty (Lin
et al., 2011), Equation (A3) can be approximated by its
linearization
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‖X‖2F), among which ∇zq(Z
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m) is the gradient of q w.r.t., Zk

m.
Equation (A7) is equivalent to the following equation:
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with a closed-form solution given by Equation (A1).
Theorem 2. Suppose that Zm is fixed; then {Em, Jm} can be

optimized with the following update rules, respectively.
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Proof. Suppose that Zm is fixed, then we view {Em, Jm} as a
larger block of variables. We can update {Em, Jm} independently
by minimizing Equation (16), which naturally splits into two
sub-problems for Em and Jm, respectively. So the problem for
minimizing Em is formulated as follows:
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The problem for minimizing Jm is formulated as follows:
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Obviously, Equations (A7) and (A8) has the closed-form solution
as Equations (A5) and (A6), respectively.
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