
fnins-15-638474 March 1, 2021 Time: 16:56 # 1

ORIGINAL RESEARCH
published: 04 March 2021

doi: 10.3389/fnins.2021.638474

Edited by:
Hong Qu,

University of Electronic Science
and Technology of China, China

Reviewed by:
Yujie Wu,

Tsinghua University, China
Timothée Masquelier,

Centre National de la Recherche
Scientifique (CNRS), France

*Correspondence:
Khaled Nabil Salama

khaled.salama@kaust.edu.sa

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 06 December 2020
Accepted: 15 February 2021

Published: 04 March 2021

Citation:
Guo W, Fouda ME, Eltawil AM

and Salama KN (2021) Neural Coding
in Spiking Neural Networks:

A Comparative Study for Robust
Neuromorphic Systems.

Front. Neurosci. 15:638474.
doi: 10.3389/fnins.2021.638474

Neural Coding in Spiking Neural
Networks: A Comparative Study for
Robust Neuromorphic Systems
Wenzhe Guo1,2, Mohammed E. Fouda2,3, Ahmed M. Eltawil2,3 and Khaled Nabil Salama1*

1 Sensors Laboratory, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical,
and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia, 2 Communication and Computing Systems Laboratory, Computer, Electrical, and Mathematical Sciences
and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 3 Department
of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States

Various hypotheses of information representation in brain, referred to as neural codes,
have been proposed to explain the information transmission between neurons. Neural
coding plays an essential role in enabling the brain-inspired spiking neural networks
(SNNs) to perform different tasks. To search for the best coding scheme, we performed
an extensive comparative study on the impact and performance of four important neural
coding schemes, namely, rate coding, time-to-first spike (TTFS) coding, phase coding,
and burst coding. The comparative study was carried out using a biological 2-layer
SNN trained with an unsupervised spike-timing-dependent plasticity (STDP) algorithm.
Various aspects of network performance were considered, including classification
accuracy, processing latency, synaptic operations (SOPs), hardware implementation,
network compression efficacy, input and synaptic noise resilience, and synaptic fault
tolerance. The classification tasks on Modified National Institute of Standards and
Technology (MNIST) and Fashion-MNIST datasets were applied in our study. For
hardware implementation, area and power consumption were estimated for these
coding schemes, and the network compression efficacy was analyzed using pruning
and quantization techniques. Different types of input noise and noise variations in the
datasets were considered and applied. Furthermore, the robustness of each coding
scheme to the non-ideality-induced synaptic noise and fault in analog neuromorphic
systems was studied and compared. Our results show that TTFS coding is the best
choice in achieving the highest computational performance with very low hardware
implementation overhead. TTFS coding requires 4x/7.5x lower processing latency and
3.5x/6.5x fewer SOPs than rate coding during the training/inference process. Phase
coding is the most resilient scheme to input noise. Burst coding offers the highest
network compression efficacy and the best overall robustness to hardware non-idealities
for both training and inference processes. The study presented in this paper reveals the
design space created by the choice of each coding scheme, allowing designers to frame
each scheme in terms of its strength and weakness given a designs’ constraints and
considerations in neuromorphic systems.

Keywords: neural codes, rate coding, burst coding, phase coding, time to first spike coding, spiking neural
networks, unsupervised learning, neuromorphic computing

Frontiers in Neuroscience | www.frontiersin.org 1 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.638474
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.638474
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.638474&domain=pdf&date_stamp=2021-03-04
https://www.frontiersin.org/articles/10.3389/fnins.2021.638474/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 2

Guo et al. Neural Coding in SNNs

INTRODUCTION

Artificial neural networks (ANNs) have achieved state-of-the-
art results in various applications ranging from computer
vision (Krizhevsky et al., 2017), speech recognition (Graves and
Schmidhuber, 2005), to natural language processing (Collobert
et al., 2011). However, the great success comes at the cost of
massive large-scale computational operations and high energy
consumption (Han et al., 2015). Spiking neural networks
(SNNs) have attracted ever-growing attention from research
communities for its superior energy efficiency. Inspired by
the biological nervous system, SNNs transmit and process the
information on the occurrence of a spike or an event generated
by a neuron, the central computing unit. The large spike sparsity
and simple synaptic operations (SOPs) in the network enable
SNNs to outperform ANNs in terms of energy efficiency. The
computing capability of SNNs has been explored in a broad
range of applications, such as pattern recognition (Sengupta
et al., 2019), object detection (Zhou et al., 2020), navigation
(Koul and Horiuchi, 2019), and motor control (Naveros et al.,
2020). Recently, various neuromorphic computing systems built
on SNNs have been proposed to solve the bottleneck posed
by the traditional Von Neumann computing systems (Furber
et al., 2014; Davies et al., 2018; Frenkel et al., 2019). Their
massive parallelism, asynchronous event-driven operations, and
distributed memory provide huge potential in accelerating
information processing and reducing energy consumption in
many applications.

The human brain is by far the most complex, sophisticated,
and energy-efficient computing system. Its remarkable
computational power is realized through the interaction
and communications among neurons, the primitive processing
units, which transmit information between each other through
trains of action potentials (spikes). It is well known that sensory
information is encoded in the spike patterns. A neural code refers
to the neural representations of information in a pattern. Neural
coding schemes of spike patterns have been extensively studied
to unveil the mystery of our cognitive systems and provide
the underlying fundamentals of information transmission
and processing (Gerstner et al., 1997; Li and Tsien, 2017;
Azarfar et al., 2018).

Various coding methods have been proposed to explain
the information encoding mechanism, such as rate coding
(Adrian and Zotterman, 1926), temporal coding, phase coding,
and burst coding. Rate coding utilizes spiking rates to
represent information, and it has been a dominant paradigm in
neuroscience and ANNs for decades because of its robustness
and simple mechanism. Rate coding has been experimentally
discovered in most sensory systems, such as visual cortex and
motor cortex (Srivastava et al., 2017). However, rate coding
scheme is limited by a lengthy processing period and slow
information transmission. To explain efficient and fast response
mechanism in our brain, temporal coding was hypothesized
as a neural code that uses the precise spike timing to convey
information in different forms, such as the timing of the first
spike (Johansson and Birznieks, 2004), the rank order between
spikes (Thorpe and Gautrais, 1998), and relative spike latency

(Gollisch and Meister, 2008). Time to first spike (TTFS) coding
scheme transmits information to the destination neurons on the
arrival of the first spike, which enables a super-fast transmission
speed. Many experiments have pointed out the significance of
the first spikes in various parts of our nervous system, such
as retina, auditory systems, and tactile afferents (Ponulak and
Kasinski, 2011). Various works have reported that applying TTFS
coding scheme in SNNs can significantly reduce the number
of spikes and improve inference speed (Rueckauer and Liu,
2018; Oh et al., 2020; Park et al., 2020). Phase coding encodes
information in spike patterns whose phases are correlated with
internally generated background oscillation rhythms, which has
been experimentally observed in the hippocampus and olfactory
system (O’Keefe and Recce, 1993; Laurent, 1996). Faster inference
speed was reported to be achieved by phase coding compared
with rate coding in SNNs (Kim et al., 2018c). It has been widely
observed that neurons also communicate with each other in a
burst of spikes in various parts of the nervous system, such
as thalamus cortex, hippocampus, and auditory system, which
gives rise to the hypothesis of burst coding (Zeldenrust et al.,
2018). Burst spikes were demonstrated to be more reliable in
information transfer and contain more information, which can
lead to high energy efficiency and fast processing speed in SNNs
(Park et al., 2019).

Recent studies compared different neural coding schemes
in inference performance in SNNs converted from well-trained
deep neural networks (DNNs) (Park et al., 2019, 2020). The
TTFS-based temporal coding was demonstrated to exhibit
the highest classification accuracy, fastest inference speed,
and lowest energy consumption. Its superior performance
was attributed to the only one spike operation and the
utilization of precise timing. However, these works used a
DNN-converted SNN and only showed the comparison in
inference performance at the algorithmic level. The impact
and performance of different neural coding methods on the
training process have yet to be investigated, which is vital
for designing an online learning system. They also failed
to provide a comparison from hardware implementation
perspectives. For example, noise resilience, fault tolerance,
and implementation overhead are essential considerations in
designing a real-time neuromorphic system. Therefore, in this
work, we present a comparative study of the impact and
performance of different neural coding schemes from various
aspects of design during both the training and inference
processes. Four neural coding schemes, namely, rate coding,
TTFS coding, phase coding, and burst coding, are chosen for
their importance in understanding the underlying information
encoding mechanism and their important roles in many parts
of nervous systems. The performance is evaluated in terms
of classification accuracy, processing latency, SOPs, hardware
implementation, network compression efficacy, noise resilience,
and fault tolerance.

The main contributions of our work are
summarized as follows.

• We discuss the important neural coding schemes and
propose a simple and effective burst coding scheme that

Frontiers in Neuroscience | www.frontiersin.org 2 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 3

Guo et al. Neural Coding in SNNs

applies a burst of spikes for information transmission,
which is proven to be fast and robust.
• We investigate and analyze the impact of different neural

coding schemes on the performance of a SNN in various
aspects for training and inference processes.
• We present a comprehensive comparison among different

coding schemes in terms of classification performance,
computational performance, hardware implementation,
network compression efficacy, noise resilience, and
fault tolerance.
• The selection of the best coding scheme is discussed for

achieving the best performance of neuromorphic systems
under different design constraints.

BACKGROUND AND METHODS

Neural Models and Network Architecture
To model spiking neurons, the leaky integrated-and-fire (LIF)
model was used in this work because of its computational
efficiency and capability of capturing the essential features of
information processing in the nervous system (Burkitt, 2006).
The model consists of one first-order linear differential equation
that defines the dynamics of membrane potential and a threshold
condition that determines the generation of spikes (Guo et al.,
2020a). Synapses serve as the transmission medium that permits
the signals (electrical or chemical) to be passed from one neuron
to the target neuron. They are modeled as conductance with time-
varying dynamics. Spike-timing-dependent plasticity (STDP)
relates the synaptic plasticity to the relative timing difference
between a presynaptic spike and postsynaptic spike. A simplified
STDP was used to update synaptic weights (Masquelier and
Horpe, 2007), which is described by

1wij =

{
µ+wij

(
1− wij

)
, if tj − ti < 0,

µ−wij
(
1− wij

)
, if tj − ti > 0.

(1)

where wij is the synaptic weight between a presynaptic neuron j
and a postsynaptic neuron i, tj, and ti are the firing time of the
presynaptic neuron j and the postsynaptic neuron i, respectively,
µ+ and µ− are the learning rates. A learning time window was
used so that the presynaptic spikes that were located outside the
window with respect to a postsynaptic spike have no relation with
the postsynaptic spike.

A two-layer SNN architecture was adopted and tested on
the Modified National Institute of Standards and Technology
(MNIST) dataset and Fashion-MNIST dataset (Lecun et al.,
1998; Diehl and Cook, 2015; Xiao et al., 2017). As shown in
Figure 1, this architecture consists of an input layer and a
processing layer. The input layer has 784 units, each of which
converts an input pixel into spikes using different neural coding
schemes. The input layer is fully connected to the processing
layer. In the processing layer, 100 excitatory neurons were
used, which send spikes to inhibitory neurons in a one-to-one
fashion, whereas each inhibitory neuron sends spikes to all the
excitatory neurons except the one that it receives spikes from.
This connection pattern implements a winner-take-all (WTA)

FIGURE 1 | SNN architecture. The input layer encodes the input pixels into
spikes and is fully connected to the excitatory (Exc) neuron layer. The
processing layer follows a winner-take-all principle with a special connection
pattern between excitatory neurons and inhibitory (Inh) neurons, which
induces lateral inhibition effect.

mechanism, which imposes lateral inhibition on excitatory
neurons and hence competitions for learning input features. To
ensure fair competition, a threshold adaption scheme is applied.
Whenever a neuron fires, its threshold is increased by an adaption
constant and then slowly decays with time. The phenomenon of
threshold adaption has been commonly observed in the central
nervous system. A simple classification scheme is implemented
based on the firing activity of excitatory neurons. After training,
excitatory neurons are assigned labels to which they fire the most
spikes. They are then divided into 10 groups, each of which
corresponds to a digit and contains all the neurons labeled by this
digit. During inference, the classification result for an input image
is the digit of the group with the highest average spike counts. All
the simulations in this work were run in a Python-based platform.

Coding Schemes
Neural coding schemes are used to convert input pixels into
spikes that are transmitted to the excitatory neurons. Four
different types of neural coding schemes were studied and
compared, namely, rate coding, TTFS coding, phase coding, and
burst coding. The operation principles of the coding schemes are
illustrated in Figure 2. The details of these schemes are explained
in the following subsections. It is worth mentioning that these
coding schemes are used only for input data encoding and the
output neurons are regular LIF neurons, not encoded.

Rate Coding
Rate coding is the most widely used coding scheme in neural
network models. This scheme considers each input pixel as a
firing rate and converts the pixel into a Poisson spike train
with the firing rate. Input pixels are scaled down by a factor λ.
The factor is selected as four for the optimal classification and
computational performance, and the corresponding firing rates
are confined between 0 and 63.75 Hz. As shown in Figure 2A,

Frontiers in Neuroscience | www.frontiersin.org 3 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 4

Guo et al. Neural Coding in SNNs

FIGURE 2 | An illustration of neural coding schemes; (A) Rate coding, (B) Time-to-first spike coding, (C) Phase coding, and (D) Burst coding. P is the value of an
input pixel. ISI is the inter-spike interval.

Poisson spike trains were generated by comparing the scaled
pixels with random numbers.

Time-to-First-Spike Coding
Time to first spike coding was discovered to encode information
for fast responses within a few milliseconds, like tactile stimulus
(Johansson and Birznieks, 2004), by using the first spikes. Park
et al. (2020) proposed a fast and energy-efficient TTFS coding
scheme that used an exponential-decaying dynamic threshold
to convert input pixels to the first-spike patterns. The larger an
input pixel is, the more information it carries, and the earlier
it emits a spike. The input pixels are first normalized through
the division by the maximum value. An exponential function
is used to compute the threshold Pth, described by Pth(t) =
θ0exp(−t/τth), where θ0 is a threshold constant and set as 1, and

τth is the time constant. A spike is generated when the input pixel
exceeds the threshold, and the input is inhibited from generating
more spikes, as shown in Figure 2B. In this scheme, the input
pixels are translated into the exact timing of the first spikes.

The precise times of the input spikes are used to decode the
amount of information that input spikes deliver to the post-
synaptic neurons in the decoding phase. The input spikes excite
the synapse to produce synaptic input in form of the sum of
post-synaptic potentials (PSPs) as below

zj (t) =
∑
i

PSPij(t) = ws (t)
∑
i

wijsi(t) (2)

where zj(t) is the synaptic input to the postsynaptic neuron j,
PSPij(t) is the post-synaptic potentials resulting from the input
neuron i, si(t) is the input spike train from the presynaptic neuron

Frontiers in Neuroscience | www.frontiersin.org 4 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 5

Guo et al. Neural Coding in SNNs

i, wij is the synaptic weight. ws(t) is the spike weight at time
t and it is an exponentially-decaying function [i.e., ws (t) =
exp (−t/τs)]. The PSP is in a simplified form and has been
widely adopted (Kheradpisheh et al., 2018; Kim et al., 2018c; Lee
et al., 2019). The input neuron contributes to the postsynaptic
neuron only at its firing time and its effect is not accumulated in
time. This simplified form eliminates the need for vector matrix
multiplication in the network, which can significantly improve
hardware system performance. The spike weighting ensures that
different firing times lead to different amount of information.
The earlier a spike arrives, the larger weight it carries, and the
more information it transmits to the post-synaptic neurons. The
decoding process is necessary to ensure the precise transmission
of input information. The post-synaptic neurons accumulate
their membrane potentials by integrating the synaptic input and
output spikes once the potentials reach the firing threshold.

Phase Coding
Kim et al. (2018c) proposed a simple phase coding scheme
by converting input pixels into their binary representation
where the bit, “1,” signals a spike, as shown in Figure 2C.
The phase information is added to the spikes by assigning
different weights to each bit in the representation. The
number of the phases is 8, determined by the largest pixel
intensity (255). The spike weight changes with time periodically,
given by ws(t) = 2−[(1+mod(t−1, 8))], which represents the
significance of each bit in the binary representation. The
decoding phase uses the weighted spikes to produce the synaptic
input, described by Equation (2). The larger an input pixel
is, the more significant spikes it produces, and the more
information it transmits.

Burst Coding
Burst coding enables fast and efficient information transmission
by sending a burst of spikes at one time. Sending a burst
of spikes instead of a single spike can increase the reliability
of synaptic communication between neurons. It has been
demonstrated that in burst coding, information is carried in
the number of spikes (Ns) and the inter-spike interval (ISI)
in the burst (Izhikevich et al., 2003; Eyherabide et al., 2009).
Accordingly, we propose a simple and effective burst coding
scheme that converts input pixels into spike bursts with the
number of spikes and ISI proportional to the pixel intensities.
The conversion is illustrated in Figure 2D. First, input pixels
are normalized in the range from zero to one. For an input
pixel P, the number of spikes in a burst is calculated as

Ns (P) = dNmaxPe, where Nmax is the maximum number of
spikes and d·e is the ceiling function. The conversion of ISI is
given by

ISI (P) =

{
d− (Tmax − Tmin) P + Tmaxe, Ns > 1,

Tmax, otherwise.
(3)

where Tmax and Tmin are the maximum and minimum
intervals, respectively. The ISI is confined in [Tmin, Tmax].
A larger input pixel produces a burst with a smaller ISI
and more spikes inside. The parameters are configured in
a biological range. Nmax is chosen as five for the optimal
classification and computational performance, and more
than five spikes in a burst are very rare in a biological
system (Buzsáki, 2012). Tmax was chosen as the time
window for processing one image. Tmin was taken as 2 ms
(Reich et al., 2000).

The network parameters used in our simulation are associated
with LIF neuron model, synaptic model, and STDP. The network
parameter settings for all the coding schemes are shown in
Table 1. The model parameters associated with each coding
scheme are listed in Table 2. Due to a large parameter dimension,
manual tuning is not reliable and grid search is very time-
consuming. Thus, we used genetic algorithm (GA) to optimize
the parameters together for SNNs with each coding scheme
to achieve sufficient classification accuracy. In rate coding,
the scaling factor λ is selected separately for the optimal
classification and computational performance, as its impact is
more significant. The same optimization applies to the maximum
number of spike Nmax in burst coding. The optimization
detail is discussed in section “Classification and Computational
Performance.” The maximum and minimum intervals in burst
coding are selected carefully so that the burst spike frequency
is confined in a reasonable and biological range. In TTFS
coding, the two time constants are optimized together with the
network parameters by GA, as they have smaller impact on the
computational performance.

RESULTS AND DISCUSSION

Input Spike Patterns
The input spike patterns and average input spike counts over
all the training images obtained from different coding methods
are shown in Figure 3. The spike patterns were converted from
an example digit five. In the rate coding scheme, the spike

TABLE 1 | SNN parameters used in the simulation for each coding scheme.

SNN parameters Description Values for different coding schemes

Rate TTFS Phase Burst

τm, Vth Time constant and firing potential threshold in LIF model. 10 ms,0.6 mV 10 ms, 0.5 mV 10 ms,0.8 mV 10 ms,0.4 mV

τg Time constant in synaptic conductance model. 30 ms 10 ms 30 ms 30 ms

µ−, µ+ Learning rates in STDP model. 0.002, 0.02 0.0004, 0.09 0.006, 0.004 0.001,0.07

θ+ Firing threshold adaption constant. 0.008 mV 0.04 mV 0.008 mV 0.005 mV

Frontiers in Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 6

Guo et al. Neural Coding in SNNs

TABLE 2 | Model parameters of each coding scheme used in the simulation.

Coding
scheme

Rate TTFS Phase Burst

Parameters λ τth, τs NA tmax, tmin, Nmax

Values 4 6 ms, 15 ms NA 10 ms, 2 ms, 5

pattern consists of random spikes in the time window. The spike
frequency for each input neuron is proportional to the pixel
intensity. The average spike count changes with time with the
mean of around four, and the total count in 100 ms time window
is 689. In the TTFS coding scheme, each input produces only one
spike, and the latest spike appears before 20 ms. The total count
is 166. Phase coding scheme generates periodic spike patterns,
leading to the highest spike count of 20,325. In the burst coding
scheme, each input neuron outputs a burst of spikes or a single
spike, depending on the pixel intensity. A large intensity results in
a high-frequency burst, while a small intensity produces a sparse
burst or a single spike. The latest spikes appear before 20 ms. The
total count is 598. Clearly, phase coding generates the most input
spikes, while TTFS coding has the fewest input spikes.

Classification and Computational
Performance
The SNN training process is described as follows. An input
dataset (MNIST or Fashion-MNIST) is divided into 60,000
training images and 10,000 inference images. Each input image is
converted into spikes by different coding schemes within a time
window (or latency) ranging from five to 200 ms. The latency
is optimized for all the coding schemes. Images are processed
sequentially. Learning happens in the synaptic weights between
the input layer and excitatory neuron layer. Weights are updated
by the STDP rule. 10 epochs of training process are run for each
coding scheme. Label assignment and inference is performed
after each epoch of training process.

We evaluated the coding schemes on the image classification
tasks using MNIST and Fashion-MNIST datasets. The
classification performance of each coding scheme was based on
classification accuracy and processing latency during training
and inference phases. Figure 4 shows the classification results
on MNIST dataset for each scheme, including the classification
accuracy for different numbers of training epochs and training
latencies. The training latency is defined as the time duration of
training the SNN with each input image. For rate coding, the
accuracy is improved when the training latency is increased up
to 80 ms, while 20 ms training latency is long enough for TTFS
coding to produce the highest accuracy (Figures 4A,B). Both
methods require four epochs of training to reach the highest
accuracy. For phase coding, the accuracy increases with the
training latency of less than 60 ms and decreases afterward
(Figure 4C). This is because, with a longer training latency,
the weights associated with the neurons that fire actively at the
beginning of the training are updated more frequently, causing
these neurons to dominate the competitions. The same behavior
can be observed in the case of burst coding, but the drop is less
significant after 20 ms training latency (Figure 4D). The optimal

training latency is 30 ms for phase coding and 20 ms for burst
coding. Both methods require three epochs of training to reach
the highest accuracy.

Since the optimal training latency and number of epochs
vary among these coding schemes, we defined the effective
training latency as the product of the training latency and the
optimal number of epochs for a fair comparison among the
coding schemes. The accuracy change with the effective training
latency is shown in Figure 5A for all the coding schemes.
Burst coding shows the fastest training convergence speed, while
rate coding gives the worst training convergence speed. The
inference convergence results are shown in Figure 5B. In this
case, TTFS coding leads to the fastest inference convergence
speed, while rate coding still largely lags. These results reveal the
disadvantage of rate coding, which is the need of a long latency
to encode precise information. TTFS coding uses the precise
timing of the first spike to represent the information, enabling
the fastest information transmission during inference. However,
TTFS coding requires a higher training latency than burst coding
because training requires a large number of spikes for weight
updates. Phase coding also requires a higher latency to encode
the information at different phases.

The average simulation runtimes of the SNN with different
coding schemes were monitored for processing each image from
MNIST dataset during both training and inference phases. The
simulations were run in Python language in a single CPU process.
The number of spikes and SOPs was also computed. The results
are listed in Table 3. The best accuracy achieved by each coding
scheme and the required effective training and inference latencies
are included for a better comparison. TTFS coding leads to
the highest accuracy. It requires the least inference latency and
runtime, and the lowest number of spikes and SOPs during both
training and inference phases. TTFS coding requires 4x and 7.5x
lower processing latency and 3.5x and 6.5x fewer SOPs than rate
coding during the training and inference process, respectively.
These advantages are attributed to the fact that TTFS coding
uses only the first spike and the precise timing for information
coding. However, the effective training latency for TTFS coding is
longer than those for phase and burst coding. Because of the high
training latency, the training simulation runtime for TTFS coding
is the same as that for burst coding, even though burst coding
uses many more spikes and SOPs. While phase coding has short
training and inference latencies, it results in the worst simulation
runtime because of the large number of spikes and SOPs. Rate
coding gives the lowest accuracy and requires very long latency to
reach the convergence. In addition, all the simulations were also
run in the SNNs trained and tested on Fashion-MNIST dataset.
The results are listed in Table 4. TTFS coding, phase coding,
and burst coding show the best accuracy, while rate coding still
gives the worst accuracy. The results further confirm the same
observations and analyses made in the case of MNIST dataset.
Therefore, we can conclude that TTFS coding shows the best
overall classification performance, while phase coding and rate
coding show the worst classification performance.

For rate coding and burst coding, the classification and
computational performance relies on the choice of the model
hyperparameters, namely the scaling factor λ and the maximum

Frontiers in Neuroscience | www.frontiersin.org 6 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 7

Guo et al. Neural Coding in SNNs

FIGURE 3 | First row: input spike patterns of an example input digit five for different coding methods in 100 ms time window. Second row: average input spike
counts over all the training input images for different coding methods in 100 ms time window.

burst spikes Nmax, respectively. Therefore, we justify our choice
of the model hyperparameters used in the comparisons. The
values of the model hyperparameters are selected for the optimal
classification and computational performance based on a figure
of merit (FOM), which is defined as,

FOM =
Accuracy

Total latency×# total spikes×#total SOPs

where the total refers to the sum of the values for training
and inference, and each quantity is normalized over the
corresponding maximum value. By optimally selecting the
hyperparameters, we guarantee the fairness of the comparison.
Table 5 summarizes the comparison of classification and
computation performance on MNIST dataset for different λ.
Decreasing λ from eight to four, i.e., increasing the firing rate,
can increase the accuracy by around 1%, while further decreasing
does not lead to substantial improvement of accuracy. A larger λ

requires higher training and inference latency. A smaller λ can
only decrease the inference latency but requires more training
spikes and operations. Therefore, according to the FOM, the
choice of the scaling factor λ as four is the optimal. For burst
coding, Table 6 summarizes the classification and computational
performance for different Nmax. Clearly, larger Nmax leads to
more spikes and SOPs. When Nmax is increased from five to
10, no improvement can be observed in the performance. While
decreasing Nmax from five to two reduces the number of spikes
and SOPs, it prolongs both training and inference duration more
significantly and also lowers the classification accuracy. Thus,
according to the FOM, Nmax = 5 is the optimal choice.

Hardware Implementation of Coding
Schemes
In this section, we will discuss the hardware implementation
details of each coding scheme in terms of area and power
consumption. For the area estimation, the implementation of
each coding scheme is considered for general digital systems
which are commonly used in state-of-art neuromorphic chips
such as Loihi and TrueNorth (Merolla et al., 2014; Davies et al.,
2018). The gate-level implementations of all the coding schemes
are illustrated in Figure 6. For better comparison, we estimate the
equivalent number of NAND gates for each digital gate and use
the total number of equivalent NAND gates as a criterion of the
hardware area for each coding scheme. The estimation of NAND
gate count is based on the designs reported in Weste and David
(2015) and summarized in Table 7 for N coding modules.

The rate coding module is implemented with a pseudo-
random number generator and a comparator. In Figure 6A,
the random number generator was realized in a 16-bit linear
feedback shift register with three XOR gates. The total equivalent
NAND gate counts are 348 for a single coding module. The
implementation of phase coding is the simplest, which only
requires multiplexers and 8-bit registers to generate the periodic
binary representation of the input, as shown in Figure 6B. The
total NAND gate count is 76. TTFS coding can be implemented
in two parts. One is used to generate the time-decaying threshold
and spike weight, while the other is responsible to generate
the first spike. The implementation of exponential functions
is complex in a digital hardware system. We adopt a simple
and popular implementation method that uses memory tables
(ROMs) to store the pre-calculated values. Since the training
window of TTFS coding is 20 ms, and the time step is 0.5 ms,

Frontiers in Neuroscience | www.frontiersin.org 7 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 8

Guo et al. Neural Coding in SNNs

FIGURE 4 | Classification accuracy on MNIST dataset after different numbers of training epochs for different training latencies in the SNN with (A) Rate coding,
(B) TTFS coding, (C) Phase coding, and (D) Burst coding.

FIGURE 5 | Classification accuracy on MNIST dataset for different coding schemes at different (A) effective training latency and (B) inference latency. The effective
training latency is defined as the training latency multiplied by the number of epochs required to achieve the best accuracy.

Frontiers in Neuroscience | www.frontiersin.org 8 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 9

Guo et al. Neural Coding in SNNs

TABLE 3 | Comparison of classification and computational performance on MNIST dataset among different neural coding schemes.

Rate TTFS Phase Burst

Accuracy (%) 87.46 88.57 88.18 88.39

Effective latency (ms) (Training/inference) 320/150 80/20 90/30 60/30

Simulation time/image (ms) (Training/inference) 3.79/6.36 1.10/0.78 4.29/6.93 1.11/1.01

spikes (× 107) (Training/inference) 12.594/0.997 3.565/0.152 68.150/5.782 10.134/0.570

SOPs (× 108) (Training/inference) 130.785/9.932 37.300/1.506 690.072/57.798 104.947/5.679

Being bold indicates that this value is the best result in this row.

TABLE 4 | Comparison of classification and computational performance on Fashion-MNIST dataset among different neural coding schemes.

Rate TTFS Phase Burst

Accuracy (%) 68.29 71.31 71.36 71.27

Effective latency (ms) (Training/inference) 320/150 80/20 60/30 60/30

Simulation time/image (ms) (Training/inference) 3.95/7.65 1.28/0.91 6.89/13.23 1.34/1.55

spikes (× 107) (Training/inference) 27.471/2.152 9.393/0.393 48.502/12.204 23.795/1.326

SOPs (× 108) (Training/inference) 281.481/21.516 95.583/3.921 492.870/121.904 242.611/13.253

Being bold indicates that this value is the best result in this row.

the depth of the memory table is set as 40. We use nine bits to
represent the threshold and spike weight with one bit for the
integer part and eight bit for the fractional part. A multiplier is
required to compute the synaptic input, as indicated in Equation
(2). Figure 6C only shows the block for computing the threshold.
The same design is applied for computing the spike weights.
The spike generation is realized by comparing the input and
the generated threshold and setting the refractor period of firing
neurons as a large number, Tref . From the table, the spike
generation results in 340 NAND gates. The threshold and spike
weight generation unit amounts to 1,703 NAND gates. Since the
threshold and spike weight are shared by all the coding modules
at each time step, the equivalent gate count is not scaled with
N. Thus, when N is large, the overhead added by the threshold
and spike weight generation unit can be neglected. Burst coding
requires the conversion of the input into an ISI and Ns according
to Equation (3), and the generation of a spike burst is controlled
by the ISI and Ns. In Figure 6D, the counting spikes block
monitors the number of the generated spikes. The counting time
block records the number of time steps before generating the next
spike. A spike is generated on the condition that the number of
the generated spikes is smaller than Ns and the interval between
two consecutive spikes is ISI. The total equivalent NAND gate
count is 544. When N ≤ 8, TTFS coding causes the largest area.
Whereas, when N is larger, burst coding causes the largest area.
Phase coding has the smallest area.

Furthermore, the power consumption in each coding scheme
was estimated by implementing each coding scheme on a
Xilinx VC709 FPGA board at 100 MHz clock frequency.
For TTFS coding, the power consumption by the spike
generation unit is 0.7 mW, and the power consumption by the
threshold and spike weight generation unit is 0.93 mW for the
exponential implementation. Phase coding has the highest power
consumption because of the highest spiking activity. When N ≤

2, the power consumption of TTFS coding is higher than rate
coding. However, when N is larger, TTFS coding has the lowest
power consumption.

TABLE 5 | Comparison of classification and computational performance on
MNIST dataset among different scaling factors λ in rate coding.

Scaling factor λ 2 4 8

Effective latency
(ms)
(Training/inference)

320 / 80 320 / 150 640 / 200

Accuracy 87.77% 87.46% 86.40%

spikes (× 107)
(Training/inference)

25.101/1.0609 12.594/0.997 12.564/0.6628

SOPs (× 108)
(Training/inference)

260.941 / 10.599 130.785/9.932 131.473/6.618

FOM 1.84 5.81 3.36

TABLE 6 | Comparison of classification and computational performance on
MNIST dataset among different Nmax in burst coding.

Maximum
number of spikes
Nmax

2 5 10

Effective latency
(ms)
(Training/inference)

400 / 60 60 / 30 60 / 30

Accuracy 88.09% 88.39% 88.20%

spikes (× 107)
(Training/inference)

6.110/ 0.257 10.134/0.570 15.005 / 1.073

SOPs (× 108)
(Training/inference)

66.112 / 2.562 104.947/5.679 154.611 / 10.721

FOM 5.36 10.14 4.51

Input Noise Study
To study the impact of input noise, we have applied three types
of noisy MNIST datasets in the SNNs with different coding
schemes during training and inference. Three types of noise
were added to MNIST dataset, such as additive white Gaussian
noise (AWGN), motion blurring, and reduced-contrast AWGN
(R-AWGN) (Basu et al., 2017). The AWGN has the signal-to-
noise ratio of 9.5, emulating background clutter. The motion
blur was created with a linear motion of a camera by five pixels

Frontiers in Neuroscience | www.frontiersin.org 9 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 10

Guo et al. Neural Coding in SNNs

FIGURE 6 | Digital implementations of different neural coding schemes; (A) Rate coding, (B) Phase coding, (C) TTFS coding, and (D) Burst coding. S and P stand
for a 16-bit seed and an 8-bit input pixel. The clocks in panels (C,D) are omitted for simplicity.

with an angle of 15 degrees in the counterclockwise direction.
For R-AWGN, the contrast range was scaled down to half and
an AWGN with the signal-to-noise ratio of 12 was applied.
R-AWGN imitates the background clutter with significant change
in lighting conditions. The results of the accuracy loss are shown
in Figure 7. The accuracy loss was computed with reference to
the accuracy on the no-noise dataset for the SNN trained with
the no-noise dataset after 10 epochs of training. For each coding
scheme, the optimal training latency and inference latency were
used to process each input image. Two scenarios of the presence
of input noise were analyzed. The first scenario was to introduce
the input noise during the training phase and perform inference
with the no-noise MNIST dataset. The corresponding results are
shown in Figure 7A. The motion blur noise and R-AWGN have

the worst effect on the performance of the neural coding schemes.
TTFS coding is most sensitive to the motion blur and R-AWGN,
while phase coding has the best resilience to all the types of
input training noise. In the second scenario, the training was
performed with the no-noise MNIST dataset, and the input noise
was introduced during the inference phase. The corresponding
results are shown in Figure 7B. The overall accuracy loss for
all the coding schemes becomes much higher than that in the
first scenario, suggesting that the training could help mitigate
the negative impact of the input noise. However, for TTFS
coding, the accuracy loss caused the blurring remains the same
in both scenarios, suggesting that TTFS coding is most sensitive
to blurring noise. The accuracy loss resulting from burst coding is
the most severe for all the noisy datasets. Rate coding and phase

Frontiers in Neuroscience | www.frontiersin.org 10 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 11

Guo et al. Neural Coding in SNNs

TABLE 7 | Hardware implementation results of neural coding schemes.

Gates and power Rate TTFS Phase Burst

1b-ADD 0 12N 0 21N

1b-SUB 0 0 0 10N

8b-MUL 0 1 0 0

1b-XOR 3N 0 0 0

1b-AND 0 N 0 N

4b-Comp 4N 4N 0 4N

1b-MUX 0 6N 8N 15N

1b-Reg 16N 12N+18 8N 15N

40 × 9b-ROM 0 2 0 0

NAND 316N 340N+1703 76N 544N

Power (mW) 1.14N 0.70N+0.93 2.26N 1.27N

N is the number of coding modules.

coding have the best resilience to various types of input inference
noise. In summary, phase coding shows the highest resilience
to various input noise types during both training and inference,
while TTFS coding and burst coding show the worst resilience.

Furthermore, we studied the impact of the input noise
variation on different coding schemes. The AWGN with different
standard deviations was added to the training and inference
dataset images separately. Figure 8A shows the accuracy loss after
the noise was added to the training images. The noise has the
largest impact on burst coding and TTFS coding schemes as the
deviation increases. Phase coding shows the highest resilience. In
Figure 8B, when the noise was introduced during inference, the
impact was reduced on all the coding schemes. Phase coding still
shows the highest resilience. TTFS coding and rate coding are
the worst affected. In phase coding scheme, the noise effect was
reduced by the spike weight that decreases with the increasing
phase since most of the noise values are small, and the resulting
noisy spikes appear in the large phases. In TTFS coding scheme,
the input information is carried by the times of the first spikes,

and the noise can easily disturb the timings. Small noise values
can cause large errors in the representation. Therefore, phase
coding is the most resilient scheme to both training and inference
input noise, while TTFS coding has the worst overall resilience.

Weight Pruning
Computations in neural networks involve a massive number of
parameters that drastically scale up with the number of neurons
and layers, which imposes a huge burden on hardware resources,
limits the processing speed, and consumes a large amount of
energy. Network compression techniques were proposed to tackle
these challenges. Pruning and quantization are the most favorable
and efficient network compression techniques because of their
simple implementation and high effectiveness. In this section, we
study the impact of weight pruning on the coding schemes and
evaluate the capability of each coding scheme to achieve efficient
network compression.

In this work, we considered two weight pruning methods; an
online pruning method and a post-training pruning method. In
the online pruning method, a constant weight pruning threshold
was applied while the training was in process. The pruning
process started after a short training phase that involved 30,000
training images and continued for 10 training epochs. The pre-
pruning training phase was enforced to ensure that the network
learned major input features (Guo et al., 2020a). In the post-
training pruning method, the SNN was trained for 10 epochs, and
the pruning was performed before inference. Various thresholds
were used. Both network connectivity and accuracy decreased
with the increasing pruning threshold. The connectivity was
defined as the percentage of the unpruned weights over the
total weights. Figure 9A displays the pruning results for the
online pruning method. 10 simulations were run with different
random seeds. Error bars are plotted as the standard errors of
the data mean. Around 85% of weights can be pruned without
causing significant accuracy loss. From the inset plot, we can

FIGURE 7 | Accuracy loss on MNIST dataset with different types of noise in two noisy scenarios: (A) Training with noisy datasets and inference with the no-noise
dataset and (B) Training with the no-noise dataset and inference with noisy datasets.

Frontiers in Neuroscience | www.frontiersin.org 11 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 12

Guo et al. Neural Coding in SNNs

FIGURE 8 | Accuracy loss on MNIST dataset after adding the AWGN with different standard deviations, σ. (A) The noise was added to the training images, and
(B) the noise was added to the inference images.

FIGURE 9 | Accuracy loss on MNIST dataset changes with network connectivity resulting from weight pruning. (A) An online weight pruning method and (B) a
post-training weight pruning method were considered.

see that the largest difference exists between TTFS coding and
rate coding, ranging from 2 to 4% when the connectivity is
larger than 10%. As the connectivity drops below 10%, the largest
difference is between TTFS coding and burst coding, which
can go up to 10%. The difference between TTFS coding and
other schemes during training is distinguishable. The difference
among the other three coding schemes is mostly less than 1%
and thus can be negligible. Figure 9B shows the pruning results
for the post-training pruning method. The difference between
these coding schemes is negligible. Therefore, TTFS coding
is least capable of achieving efficient network compression by
conducting pruning while training.

Weight Quantization
Weight quantization brings in a huge benefit in the reduction
of memory size and energy consumption. However, quantization
induces numerical errors and limits the precision of arithmetic
computation. For the implementation of weight quantization,

we used stochastic rounding (SR) method because this method
ensures a non-zero probability that a small weight update will
not be rounded to 0 (Gupta et al., 2015). The SR method rounds
the number x to the fixed-point number with a probability
proportional to the difference between them, which is described
by

SR (x) =

{
bxc, w.prob. 1− x−bxc

ε
,

bxc + ε, w.prob. x−bxc
ε

where ε is the precision of the fixed-point representation, and dxe
is the largest integer multiple of ε less than or equal to x. We
applied SR method for weight quantization in the SNN during
training and post-training. The simulation results of accuracy loss
caused by quantization for different coding schemes are shown in
Figure 10. The results for the training phase were obtained after
10 epochs. Error bars were added after 10 simulations for each
scheme. From Figure 10A, severe accuracy drop happens when
the bit width is reduced below six bits for quantization during

Frontiers in Neuroscience | www.frontiersin.org 12 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 13

Guo et al. Neural Coding in SNNs

FIGURE 10 | Accuracy loss on MNIST dataset in the SNN with different coding schemes after weight quantization (A) during training and (B) post training.

training. For post-training quantization, significant accuracy loss
is observed when the bit width is less than two bits (Figure 10B).
Rate coding can be seen to have the worst accuracy loss in both
cases, while burst coding has the smallest loss when the bit is
smaller than four bit.

Impact of Synaptic Noise and Fault
Although digital implementations are widely used for
neuromorphic systems, their performance is limited in the
current machine learning applications. Analog computation
paves the way to achieve Tera operations per second per watt
efficiency which is 100x compared to digital implementations
(Gil and Green, 2020). Various types of analog devices have been
used to implement neural networks, such as CMOS transistors
(Indiveri et al., 2011), floating gate transistors (Kim et al., 2018a),
gated Schottky diode (Kwon et al., 2020), and emerging memory
devices (like PCM, RRAM, STTRAM) (Kim et al., 2018b).
Despite the potential of these devices in analog computation,
they suffer from many non-idealities which could limit the
performance, such as limited precision, programming variability,
stuck-at-fault (SAF) defects, retention and others (Fouda et al.,
2019). In this work, we study the impact of two main types of
synaptic variations, namely, synaptic noise and synaptic SAF
defects, which are induced by device non-idealities existing in
analog hardware.

Synaptic noise is mainly induced when programming synaptic
analog devices (Sheng et al., 2019). To test the noise resilience of
the coding schemes, we assume that all the synaptic weights are
stored in synaptic devices. The synaptic noise mostly results from
programming noise when weight writes are performed. During
training, we added Gaussian noise to each quantized weight
update to model the effect of programming noise on the weights
stored in synaptic devices. The model is described by

w+ = Q (1w)+ N
(
0, (σε)2)

where w are the weight, 1w is the weight change obtained
from the STDP function, Q (·) is the quantization function,

ε is the precision of the fixed-point representation, and σ

is the percentage.
In the simulation, we changed the value of σ from 0 to 100%

for four bit widths. The accuracy loss results on the MNIST
dataset were obtained after 10 training epochs and are shown in
Figure 11 for different coding schemes. In the case of 12 bits, the
noise has no adverse effect on the accuracy (Figure 11A). Due
to small precision, the added noise becomes small. When the bit
width is decreased from 12 bits to eight bits, the accuracy loss
starts to grow with the noise level, as shown in Figures 11B–D.
Particularly, with 8-bit width, the network fails to learn input
features even when a small noise was added. Phase coding
causes the most severe accuracy loss, while TTFS coding has
the best resilience. This phenomenon can be explained by the
number of weight updates resulting from the coding schemes.
Because of the highest spike activity, phase coding causes the
most updates during training. Whereas, TTFS coding has the
least updates. Since the noise comes with each update, TTFS
coding is least affected. There is a small overall performance
difference between burst coding and rate coding because they
require a similar number of updates. Moreover, the impact of
post-training programming noise was considered. In this case,
the SNN was trained offline without any synaptic noise. The well-
trained weights were quantized with the SR method and mapped
onto synaptic devices. During the mapping, the programming
noise was added to the quantized weights. Similarly, we changed
the value of σ in the noise model from 0 to 100% for different
quantization bit widths. The results of the accuracy loss on
MNIST dataset are shown in Figure 12 for different coding
schemes. Error bars were added after 10 simulations for each
scheme. Obviously, the impact of the post-training synaptic noise
is much smaller than that of the training synaptic noise. No
loss can be observed in the case of 8-bit quantization regardless
of the σ values in Figure 12A. When the bit width decreases
from eight bits to one bit, the loss increases with the noise
variation, as shown in Figures 12B–D. The error bars are helpful
to distinguish the burst coding from the other coding schemes.
We can claim that burst coding shows the best resilience to

Frontiers in Neuroscience | www.frontiersin.org 13 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 14

Guo et al. Neural Coding in SNNs

FIGURE 11 | Accuracy loss on MNIST dataset in the SNN with different coding schemes after adding programming noise to the quantized weight updates during
training. The quantized bit width was changed from (A) 12 bits, (B) 11 bits, (C) 10 bits, to (D) eight bits.

the added post-training synaptic noise. The difference among
other coding schemes is negligible. The largest loss difference
increases from 1.4 to 4.0%, with the bit width decreasing from
four bits to one bit.

Faulty devices are generally encountered in analog computing
systems, due to many reasons, such as fabrication process
variations, spot defects, aging phenomenon, mechanical stress,
heavy device testing and utilization, etc. (Lewyn et al., 2009;
Vatajelu E.I. et al., 2019; El-Sayed et al., 2020). Vatajelu E. et al.
(2019) reported and analyzed different generic fault models that
could exist in SNN hardware implementation. We chose the
synaptic SAF model in this study since it appears very often in
hardware, especially in the promising and newly emerging analog
devices, and it has a profound impact on hardware performance
(El-Sayed et al., 2020; Kwon et al., 2020; Zhang B. et al., 2020).
A SAF device has its conductance state fixed at either a high
or low conductance state. We applied the SAF defect model in
our simulation to demonstrate the degree of fault tolerance the
coding schemes can bear. Four different fault rates were used
during training, namely, 20%, 10%, 5%, and 1%. We changed the
ratio of the stuck-on devices (on ratio) over all the fault devices

from 0 to 100% at each fault rate. The resulting accuracy loss
on MNIST dataset was obtained after 10 training epochs and is
shown in Figure 13. Error bars were added after 10 simulations
for each scheme. When the fault rate is larger than 1%, the
accuracy loss increases with the on ratio, suggesting that the
network prefers stuck-off fault devices. This is mainly because
the input patterns are very sparse, filled mostly with 0 s. The
error bars are useful to distinguish rate coding from the other
coding schemes in the case of 5% fault rate. Rate coding has the
worst synaptic fault tolerance during training. When the fault
rate is larger than 5%, it can be clearly seen that rate coding has
the largest loss. The difference among these coding schemes is
diminished when the fault rate decreases to 1%. For example, the
difference between rate coding and burst coding at 50% on ratio
decreases from 6 to 1%, with the fault rate decreasing from 20
to 5%. With 1% fault rate, there is no difference since these 1%
weights have a negligible impact on the network performance.
We have also investigated the impact of SAF defect on the coding
schemes during inference. There is less than 1% difference in
the accuracy loss among them. Moreover, the network was also
tested with Fashion-MNIST dataset. Since the input patterns in

Frontiers in Neuroscience | www.frontiersin.org 14 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 15

Guo et al. Neural Coding in SNNs

FIGURE 12 | Accuracy loss on MNIST dataset in the SNN with different coding schemes after adding programming noise to the quantized weights post-training for
(A) eight bits, (B) four bits, (C) two bits, and (D) one bit.

the Fashion dataset are more complex than those in MNIST
dataset, the impact of synaptic faults on these coding schemes
becomes more obvious, and hence the difference among these
coding schemes becomes more significant, as shown in Figure 14.
The largest difference among the coding schemes at 50% on
ratio decreases from 11 to 2%, with the fault rate decreasing
from 20 to 1%. These results further confirm that rate coding
is most susceptible to the synaptic fault. This could be due to
that the SAF defect could happen to any device and hence the
SAF fault devices were randomly selected before training starts,
which induces randomness in the weights and hence adds more
uncertainty in rate coding that encodes information in stochastic
spike trains. Therefore, we can conclude that rate coding has the
worst synaptic fault tolerance during training, while the other
coding schemes have similar performance.

COMPARISON AND DISCUSSION

To provide a comprehensive comparison among different coding
schemes, we summarized their performance in 10 aspects for

both training and inference phases, as shown in Figure 15A,B.
In each dimension, the data point for each coding scheme was
obtained by normalizing the accuracy loss with the min-max
normalization method, which is given by (xmax − xi)/(xmax −

xmin), where xi is the accuracy loss of the i-th coding method,
xmax is the maximum value among the coding methods, and xmin
is the minimum value. In Figure 15A, the latency refers to the
effective training latency. In the cases of pruning, quantization,
input noise, synaptic noise, and synaptic fault, the average
accuracy loss for each coding scheme was normalized and plotted
for comparison. A greater value in each dimension leads to better
performance. For pruning and quantization, the average accuracy
loss across the whole range was computed and normalized for
each coding scheme. The average accuracy loss at the 10-bit width
was computed and normalized for synaptic noise during training.
The results for eight bits and 11 bits can also be used to compute
the loss since they showed the same performance order among
these methods. The average accuracy loss at the 1-bit width was
used for synaptic noise during inference. In the case of input
noise, both noise type and noise variations were considered. To
evaluate the overall resilience to different noise types, we used the

Frontiers in Neuroscience | www.frontiersin.org 15 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 16

Guo et al. Neural Coding in SNNs

FIGURE 13 | Accuracy loss on MNIST dataset in the SNN with different coding schemes after considering the stuck-at-fault model during training with the fault rate
of (A) 20%, (B) 10%, (C) 5%, and (D) 1%.

average accuracy loss on all the noisy datasets for each coding
scheme. For noise variations, the average loss was computed.
Then, the normalized loss for each coding scheme was obtained
by taking the average over the two normalized loss values. For
synaptic fault, the results of a 20% fault rate were used, and the
average loss was computed.

Tables 8, 9 summarize the qualitative comparisons among
different coding schemes according to the results in Figure 15.
The more the number of check marks is, the better performance
the coding scheme has in each category. During the training
phase, rate coding has good compression performance by
pruning, good resilience to input noise. But it suffers from
the lowest accuracy, the highest latency, the worst compression
performance by quantization, and the worst fault tolerance. TTFS
coding has the smallest number of SOPs and power consumption,
least susceptible to the synaptic noise. But it has large area, the
worst compression effectiveness by pruning, lowest resilience to
input noise, and bad tolerance to synaptic fault. Phase coding
shows the smallest area, good compression performance by
quantization, the highest input noise resilience, good synaptic
fault tolerance. But it has the largest number of SOPs and

power consumption, and the worst synaptic noise resilience.
Burst coding shows the shortest latency, small number of SOPs
and power consumption, the best compression performance by
pruning and quantization, and the best synaptic fault tolerance.
But it has the disadvantage of the largest area and poor
noise resilience.

During the inference phase, the difference among these
schemes in all the dimensions on the left half circle becomes less
significant. In the cases of pruning and synaptic fault, there is no
difference among these schemes. Area and power consumption
are the same as in the training phase. Rate coding has good
resilience to input noise but suffers from the highest latency
and the worst compression performance by quantization. TTFS
still holds the same advantages except for the worst synaptic
noise resilience. The resilience of phase coding to synaptic
noise becomes better than rate coding and TTFS coding. For
burst coding, the compression performance by quantization
becomes the best.

Clearly, based on the discussion above, no coding scheme
is perfect in all aspects, and each coding scheme has its
advantages and drawbacks. The choice of the neural coding

Frontiers in Neuroscience | www.frontiersin.org 16 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 17

Guo et al. Neural Coding in SNNs

FIGURE 14 | Accuracy loss on Fashion-MNIST dataset in the SNN with different coding schemes after considering the stuck-at-fault (SAF) model during training
with the rate of (A) 20%, (B) 10%, (C) 5%, and (D) 1%.

FIGURE 15 | Quantitative comparisons among different coding schemes from various aspects for (A) training and (B) inference. In each dimension, the data were
normalized with the min-max normalization method. In the cases of pruning, quantization, input noise, synaptic noise, and synaptic fault, the average accuracy loss
for each coding scheme was used. The greater value, the better.

scheme depends on the constraints and considerations in the
design. This comparative analysis of different neural coding
schemes shows how to select the best coding scheme in different

scenarios. For example, if computational performance and
hardware performance are the primary concern in the design,
the best choice would be TTFS coding. If network performance

Frontiers in Neuroscience | www.frontiersin.org 17 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 18

Guo et al. Neural Coding in SNNs

TABLE 8 | Qualitative comparisons among different coding schemes from various
aspects for training.

Rate coding TTFS coding Phase coding Burst coding

Accuracy
√ √√√√ √√ √√√

Latency
√ √√√ √√ √√√√

SOPs
√√ √√√√ √ √√√

Area
√√√ √√ √√√√ √

Power
√√√ √√√√ √ √√

Pruning
√√√ √ √√ √√√√

Quantization
√ √√√ √√ √√√

Input noise
√√√ √ √√√√ √√

Synaptic noise
√√√ √√√√ √ √√

Synaptic fault
√ √√ √√√ √√√√

is largely affected by input noise, the best choice would be phase
coding. If network compression is the main consideration, the
best choice would be burst coding. If the network performance is
largely limited by hardware non-idealities, the best choice would
be burst coding. It is worth mentioning that due to the simplicity
of the rate coding, SNNs and neuromorphic hardware have
mainly relied on rate coding without investigating other coding
techniques. Our study shows that the other coding schemes can
outperform rate coding in many aspects which prove that rate
coding is not always the best choice.

In the previous work, different neural coding schemes were
compared in terms of classification accuracy, latency, the number
of spikes, and energy during inference (Park et al., 2020). The
comparison revealed that TTFS coding won against the other
coding schemes in classification and computational performance.
The advantage of TTFS coding was expected because it used
precise timing and only one spike. Our work also demonstrated
the excellent performance of TTFS coding during inference in
terms of classification performance, computational performance,
and power consumption. Most importantly, we looked into
the real-time applications of the neural coding schemes in
neuromorphic systems and investigated their performance
in various aspects, including the hardware implementation,
effectiveness of network compression, noise resilience, and fault
tolerance. We provided a thorough comparison among these
coding schemes and clear guidelines for utilizing different neural
coding schemes in neuromorphic systems.

While the performance of the SNN is limited by the
shallow structure and unsupervised learning algorithm, the
accuracy level can be improved up to 95% by increasing
the network size (Diehl and Cook, 2015). The state-of-the-
art classification performance in SNNs is achieved through
complicated supervised backpropagation (BP) algorithms, such
as temporal coding-based methods (Mostafa, 2018; Comsa
et al., 2020; Kheradpisheh and Masquelier, 2020; Zhang M.
et al., 2020), rate coding-based methods (Lee et al., 2016; Fang
et al., 2020) and a generic approach (Neftci et al., 2019).
Although SNNs trained with BP algorithms perform closely
to ANNs in various recognition tasks, this comes at the cost
of long training time, more computation resource, and high
computational power, making BP algorithms not suitable for

TABLE 9 | Qualitative comparisons among different coding schemes from various
aspects for inference.

Rate coding TTFS coding Phase coding Burst coding

Accuracy
√ √√√√ √√ √√√

Latency
√ √√√√ √√√ √√√

SOPs
√√ √√√√ √ √√√

Area
√√√ √√ √√√√ √

Power
√√√ √√√√ √ √√

Pruning
√ √ √ √

Quantization
√ √√√ √√ √√√√

Input noise
√√√ √√ √√√√ √

Synaptic noise
√√ √ √√√ √√√√

Synaptic fault
√ √ √ √

developing neuromorphic systems. Moreover, BP algorithms are
not biologically plausible. It is more meaningful in neuroscience
to study the impact of neural coding methods with a biological
plausible learning algorithms, e.g., STDP algorithm. On the other
hand, the high accuracy achieved by STDP in the literatures
is due to multiple convolution-pooling layers and a pre-
trained supervised classifier (by SVM or reinforcement learning)
(Kheradpisheh et al., 2018; Mozafari et al., 2018). However, it is
also important to investigate the impact of neural coding methods
on deep networks trained with STDP or supervised learning
algorithms, as it would be helpful to develop a high-performance
computational system. We would like to consider the study in
our future work.

We have chosen this network structure and learning algorithm
based on the following reasons.

• In the literature, among unsupervised two-layer SNNs, this
network structure shows the best performance with an
STDP learning rule only (Shi et al., 2019; Tavanaei et al.,
2019).
• This network has been widely adopted to study the

performance of a biological SNN for different purposes,
such as studying different STDP models (Diehl and Cook,
2015), improving STDP learning (Panda et al., 2018), and
pruning (Shi et al., 2019; Guo et al., 2020b).
• The network structure uses a combination of different

biological plausible models, including the LIF neuron
model, conductance-based synaptic model, STDP
model, WTA network model, and intrinsic plasticity
model. Although the network can only produce
limited classification accuracy, it closely mimics
biological processes and provides a good platform
to study how a biological neural network performs
computations unsupervised.
• STDP relies on local information, making it easy to

be implemented in hardware and enabling scalable
online learning.

Most importantly, this study provides important
understanding of the impact of different coding schemes
on various aspects of the performance of a neuromorphic system.
With this understanding, it is beneficial for neuromorphic system

Frontiers in Neuroscience | www.frontiersin.org 18 March 2021 | Volume 15 | Article 638474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 19

Guo et al. Neural Coding in SNNs

researchers to consider and select corresponding coding schemes
to achieve specific design goals. Moreover, we studied the coding
schemes in biological SNNs with various plausible neural models.
Our results can provide insights for neuroscientists of the
interactions between spike coding schemes, neural models and
learning capability.

CONCLUSION

In this work, we investigated different neural coding schemes
in an unsupervised SNN from various aspects during training
and inference phases, including classification performance,
computational performance, hardware implementation, network
compression efficacy, noise resilience, and fault tolerance. These
coding schemes were tested on two classification tasks. The
classification and computational performance were analyzed
in terms of accuracy, latency, and SOPs. To evaluate the
impact of these coding schemes on hardware implementation,
we have analyzed the implementation for the area and power
consumption and the network compression efficacy by pruning
and quantization. Considering the presence of input noise
in real-time applications, we evaluated the sensitivity of each
coding scheme to different types of input noise and the noise
variations. Furthermore, synaptic noise and fault exist in analog
systems because of device non-idealities. The robustness of each
coding scheme to the non-idealities in the circuits was studied
and compared. With a thorough analysis of all the aspects, a

comprehensive comparison among these schemes was provided,
revealing the advantages and disadvantages of each coding
scheme. This study has laid out clear guidelines for selecting
a neural coding scheme for achieving the best performance in
neuromorphic systems.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

WG, MF, AE, and KS: conceptualization. WG, MF, AE, and KS:
methodology. WG: software, algorithms, and writing-original
draft preparation. WG and MF: investigation and validation.
MF, AE, and KS: writing-review and editing. AE and KS:
supervision. All authors contributed to the article and approved
the submitted version.

FUNDING

This research is funded by King Abdullah University of Science
and Technology (KAUST) AI Initiative.

REFERENCES
Adrian, E. D., and Zotterman, Y. (1926). The impulses produced by sensory nerve

endings: part 3. impulses set up by touch and pressure. J. Physiol. 61, 465–483.
doi: 10.1113/jphysiol.1926.sp002308

Azarfar, A., Calcini, N., Huang, C., Zeldenrust, F., and Celikel, T. (2018). Neural
coding: a single neuron’s perspective. Neurosci. Biobehav. Rev. 94, 238–247.
doi: 10.1016/j.neubiorev.2018.09.007

Basu, S., Karki, M., Ganguly, S., DiBiano, R., Mukhopadhyay, S., Gayaka, S., et al.
(2017). Learning sparse feature representations using probabilistic quadtrees
and deep belief nets. Neural Process. Lett. 45, 855–867. doi: 10.1007/s11063-
016-9556-4

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input. Biol. Cybern. 95, 1–19. doi: 10.1007/s00422-006-
0068-6

Buzsáki, G. (2012). How do neurons sense a spike burst? Neuron 73, 857–859.
doi: 10.1016/j.neuron.2012.02.013

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P.
(2011). Natural language processing (almost) from scratch. J. Mach. Learn. Res.
12, 2493–2537.

Comsa, I. M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and
Alakuijala, J. (2020). “Temporal coding in spiking neural networks with alpha
synaptic function,” in Proceedings of the ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona,
8529–8533.

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro
38, 82–99. doi: 10.1109/MM.2018.112130359

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99. doi: 10.3389/
fncom.2015.00099

El-Sayed, S. A., Spyrou, T., Pavlidis, A., Afacan, E., Camuñas-Mesa, L. A., Linares-
Barranco, B., et al. (2020). “Spiking neuron hardware-level fault modeling,” in

Proceedings of the 2020 IEEE 26th International Symposium on On-Line Testing
and Robust System Design (IOLTS), Napoli, 1–4.

Eyherabide, H., Rokem, A., Herz, A., and Samengo, I. (2009). Bursts generate a
non-reducible spike-pattern code. Front. Neurosci. 3, 8–14. doi: 10.3389/neuro.
01.002.2009

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2020).
Incorporating learnable membrane time constant to enhance learning of
spiking neural networks. arXiv [Preprint]. arXiv:abs/2007.05785

Fouda, M., Kurdahi, F., ElTawil, A., and Neftci, E. (2019). Spiking neural networks
for inference and learning: a memristor-based Design Perspective. arXiv
[Preprint]. arXiv:abs/1909.01771

Frenkel, C., Lefebvre, M., Legat, J., and Bol, D. (2019). A 0.086-mm2 12.7-
pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic
processor in 28-nm CMOS. IEEE Trans. Biomed. Circuits Syst. 13, 145–158.
doi: 10.1109/TBCAS.2018.2880425

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker
Project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gerstner, W., Kreiter, A. K., Markram, H., and Herz, A. V. M. (1997). Neural
codes: firing rates and?beyond. Proc. Natl. Acad. Sci. U.S.A. 94, 12740. doi:
10.1073/pnas.94.24.12740

Gil, D., and Green, W. M. J. (2020). “1.4 The future of computing: bits + neurons
+ qubits,” in Proceedings of the 2020 IEEE International Solid- State Circuits
Conference - (ISSCC), San Francisco, CA, 30–39.

Gollisch, T., and Meister, M. (2008). Rapid neural coding in the retina with
relative spike latencies. Science 319, 1108–1111. doi: 10.1126/science.114
9639

Graves, A., and Schmidhuber, J. (2005). Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Netw. 18,
602–610. doi: 10.1016/j.neunet.2005.06.042

Guo, W., Fouda, M. E., Yantir, H. E., Eltawil, A. M., and Salama, K. N.
(2020a). Unsupervised adaptive weight pruning for energy-efficient
neuromorphic systems. Front. Neurosci. 14:598876. doi: 10.3389/fnins.2020.59
8876

Frontiers in Neuroscience | www.frontiersin.org 19 March 2021 | Volume 15 | Article 638474

https://doi.org/10.1113/jphysiol.1926.sp002308
https://doi.org/10.1016/j.neubiorev.2018.09.007
https://doi.org/10.1007/s11063-016-9556-4
https://doi.org/10.1007/s11063-016-9556-4
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1016/j.neuron.2012.02.013
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/neuro.01.002.2009
https://doi.org/10.3389/neuro.01.002.2009
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1073/pnas.94.24.12740
https://doi.org/10.1073/pnas.94.24.12740
https://doi.org/10.1126/science.1149639
https://doi.org/10.1126/science.1149639
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.3389/fnins.2020.598876
https://doi.org/10.3389/fnins.2020.598876
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 20

Guo et al. Neural Coding in SNNs

Guo, W., Yantır, H. E., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2020b).
Towards efficient neuromorphic hardware: unsupervised adaptive neuron
pruning. Electronics 9:1059. doi: 10.3390/electronics9071059

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). “Deep
learning with limited numerical precision,” in Proceedings of the 32nd
International Conference on International Conference onMachine Learning, Vol.
37, (Lille: JMLR.org).

Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). “Learning both weights
and connections for efficient neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems, (Montreal,
QC: MIT Press).

Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Izhikevich, E. M., Desai, N. S., Walcott, E. C., and Hoppensteadt, F. C. (2003).
Bursts as a unit of neural information: selective communication via resonance.
Trends Neurosci. 26, 161–167. doi: 10.1016/S0166-2236(03)00034-1

Johansson, R. S., and Birznieks, I. (2004). First spikes in ensembles of human
tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7, 170–177.
doi: 10.1038/nn1177

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).
STDP-based spiking deep convolutional neural networks for object recognition.
Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Kheradpisheh, S. R., and Masquelier, T. (2020). Temporal backpropagation for
spiking neural networks with one spike per neuron. Int. J. Neural Syst.
30:2050027. doi: 10.1142/s0129065720500276

Kim, C.-H., Lee, S., Woo, S. Y., Kang, W., Lim, S., Bae, J., et al.
(2018a). Demonstration of unsupervised learning with spike-timing-dependent
plasticity using a TFT-type NOR flash memory array. IEEE Trans. Electron
Devices 65, 1774–1780. doi: 10.1109/TED.2018.2817266

Kim, C.-H., Lim, S., Woo, S. Y., Kang, W.-M., Seo, Y.-T., Lee, S.-T., et al. (2018b).
Emerging memory technologies for neuromorphic computing. Nanotechnology
30:032001. doi: 10.1088/1361-6528/aae975

Kim, J., Kim, H., Huh, S., Lee, J., and Choi, K. (2018c). Deep neural networks with
weighted spikes. Neurocomputing 311, 373–386. doi: 10.1016/j.neucom.2018.
05.087

Koul, S., and Horiuchi, T. K. (2019). Waypoint path planning with synaptic-
dependent spike latency. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 1544–1557.
doi: 10.1109/TCSI.2018.2882818

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 10.1145/
3065386

Kwon, D., Lim, S., Bae, J.-H., Lee, S.-T., Kim, H., Seo, Y.-T., et al. (2020). On-chip
training spiking neural networks using approximated backpropagation with
analog synaptic devices. Front. Neurosci. 14:423. doi: 10.3389/fnins.2020.00423

Laurent, G. (1996). Dynamical representation of odors by oscillating and evolving
neural assemblies. Trends Neurosci. 19, 489–496. doi: 10.1016/S0166-2236(96)
10054-0

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.
726791

Lee, C., Srinivasan, G., Panda, P., and Roy, K. (2019). Deep spiking convolutional
neural network trained with unsupervised spike-timing-dependent plasticity.
IEEE Trans. Cogn. Dev. Syst. 11, 384–394. doi: 10.1109/TCDS.2018.2833071

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural
networks using backpropagation. Front. Neurosci. 10:508. doi: 10.3389/fnins.
2016.00508

Lewyn, L. L., Ytterdal, T., Wulff, C., and Martin, K. (2009). Analog circuit design in
nanoscale CMOS technologies. Proc. IEEE 97, 1687–1714. doi: 10.1109/JPROC.
2009.2024663

Li, M., and Tsien, J. Z. (2017). Neural code—neural self-information theory on how
cell-assembly code rises from spike time and neuronal variability. Front. Cell.
Neurosci. 11:236. doi: 10.3389/fncel.2017.00236

Masquelier, T., and Horpe, S. J. T. (2007). Unsupervised learning of visual features
through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31. doi: 10.
1371/journal.pcbi.0030031

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,
F., et al. (2014). A million spiking-neuron integrated circuit with a scalable

communication network and interface. Science 345, 668–673. doi: 10.1126/
science.1254642

Mostafa, H. (2018). Supervised learning based on temporal coding in spiking
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235. doi:
10.1109/TNNLS.2017.2726060

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and
Ganjtabesh, M. (2018). First-spike-based visual categorization using reward-
modulated STDP. IEEE Trans. Neural Netw. Learn. Syst. 29, 6178–6190. doi:
10.1109/TNNLS.2018.2826721

Naveros, F., Luque, N. R., Ros, E., and Arleo, A. (2020). VOR adaptation on a
humanoid iCub robot using a spiking cerebellar model. IEEE Trans. Cybern.
50, 4744–4757. doi: 10.1109/TCYB.2019.2899246

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization
to spiking neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/
MSP.2019.2931595

Oh, S., Kwon, D., Yeom, G., Kang, W.-M., Lee, S., Woo, S. Y., et al. (2020).
Hardware implementation of spiking neural networks using time-to-first-spike
encoding. arXiv [Preprint]. arXiv:abs/2006.05033

O’Keefe, J., and Recce, M. L. (1993). Phase relationship between hippocampal place
units and the EEG theta rhythm. Hippocampus 3, 317–330. doi: 10.1002/hipo.
450030307

Panda, P., Allred, J. M., Ramanathan, S., and Roy, K. (2018). ASP: learning to forget
with adaptive synaptic plasticity in spiking neural networks. IEEE J. Emerg. Sel.
Top. Circuits Syst. 8, 51–64. doi: 10.1109/JETCAS.2017.2769684

Park, S., Kim, S., Choe, H., and Yoon, S. (2019). “Fast and efficient information
transmission with burst spikes in deep spiking neural networks,” in Proceedings
of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas,
NV, 1–6.

Park, S., Kim, S. J., Na, B., and Yoon, S. (2020). “T2FSNN: deep spiking neural
networks with time-to-first-spike coding,” in Proceedings of the 2020 57th
ACM/IEEE Design Automation Conference, San Francisco, CA.

Ponulak, F., and Kasinski, A. (2011). Introduction to spiking neural networks:
information processing, learning and applications. Acta Neurobiol. Exp. 71,
409–433.

Reich, D. S., Mechler, F., Purpura, K. P., and Victor, J. D. (2000). Interspike
intervals, receptive fields, and information encoding in primary visual cortex.
J. Neurosci. 20, 1964–1974. doi: 10.1523/jneurosci.20-05-01964.2000

Rueckauer, B., and Liu, S. (2018). “Conversion of analog to spiking neural networks
using sparse temporal coding,” in Proceedings of the 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), Florence, 1–5. doi: 10.1109/tnnls.
2017.2726060

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in spiking
neural networks: VGG and residual architectures. Front. Neurosci. 13:95. doi:
10.3389/fnins.2019.00095

Sheng, X., Graves, C. E., Kumar, S., Li, X., Buchanan, B., Zheng, L., et al.
(2019). Low-conductance and multilevel CMOS-integrated nanoscale oxide
memristors. Adv. Electron. Mater. 5:1800876. doi: 10.1002/aelm.201800876

Shi, Y., Nguyen, L., Oh, S., Liu, X., and Kuzum, D. (2019). A soft-pruning method
applied during training of spiking neural networks for in-memory computing
applications. Front. Neurosci. 13:405. doi: 10.3389/fnins.2019.00405

Srivastava, K. H., Holmes, C. M., Vellema, M., Pack, A. R., Elemans, C. P. H.,
Nemenman, I., et al. (2017). Motor control by precisely timed spike
patterns. Proc. Natl. Acad. Sci. U.S.A. 114, 1171–1176. doi: 10.1073/pnas.16117
34114

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A.
(2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Thorpe, S., and Gautrais, J. (1998). “Rank order coding,” in Computational
Neuroscience: Trends in Research, 1998, ed. J. M. Bower (Boston, MA: Springer),
113–118. doi: 10.1007/978-1-4615-4831-7_19

Vatajelu, E., Natale, G. D., and Anghel, L. (2019). “Special session: reliability of
hardware-implemented spiking neural networks (SNN),” in Proceedings of the
2019 IEEE 37th VLSI Test Symposium (VTS), Monterey, CA, 1–8.

Vatajelu, E. I., Prinetto, P., Taouil, M., and Hamdioui, S. (2019).
Challenges and solutions in emerging memory testing. IEEE Trans.
Emerg. Top. Comput. 7, 493–506. doi: 10.1109/TETC.2017.26
91263

Frontiers in Neuroscience | www.frontiersin.org 20 March 2021 | Volume 15 | Article 638474

https://doi.org/10.3390/electronics9071059
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1016/S0166-2236(03)00034-1
https://doi.org/10.1038/nn1177
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1142/s0129065720500276
https://doi.org/10.1109/TED.2018.2817266
https://doi.org/10.1088/1361-6528/aae975
https://doi.org/10.1016/j.neucom.2018.05.087
https://doi.org/10.1016/j.neucom.2018.05.087
https://doi.org/10.1109/TCSI.2018.2882818
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.3389/fnins.2020.00423
https://doi.org/10.1016/S0166-2236(96)10054-0
https://doi.org/10.1016/S0166-2236(96)10054-0
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JPROC.2009.2024663
https://doi.org/10.1109/JPROC.2009.2024663
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.1109/TCYB.2019.2899246
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1002/hipo.450030307
https://doi.org/10.1002/hipo.450030307
https://doi.org/10.1109/JETCAS.2017.2769684
https://doi.org/10.1523/jneurosci.20-05-01964.2000
https://doi.org/10.1109/tnnls.2017.2726060
https://doi.org/10.1109/tnnls.2017.2726060
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1002/aelm.201800876
https://doi.org/10.3389/fnins.2019.00405
https://doi.org/10.1073/pnas.1611734114
https://doi.org/10.1073/pnas.1611734114
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1007/978-1-4615-4831-7_19
https://doi.org/10.1109/TETC.2017.2691263
https://doi.org/10.1109/TETC.2017.2691263
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-15-638474 March 1, 2021 Time: 16:56 # 21

Guo et al. Neural Coding in SNNs

Weste, N. H., and David, H. (2015). CMOS VLSI Design: A Circuits and Systems
Perspective. Boston, MA: Pearson Education Inc.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms. arXiv [Preprint].
arXiv:abs/1708.07747

Zeldenrust, F., Wadman, W. J., and Englitz, B. (2018). Neural coding with bursts—
current state and future perspectives. Front. Comput. Neurosci. 12:48. doi: 10.
3389/fncom.2018.00048

Zhang, B., Uysal, N., Fan, D., and Ewetz, R. (2020). Handling stuck-at-fault
defects using matrix transformation for robust inference of DNNs. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 39, 2448–2460. doi: 10.1109/TCAD.
2019.2944582

Zhang, M., Wang, J., Zhang, Z., Belatreche, A., Wu, J., Chua, Y., et al. (2020). Spike-
timing-dependent back propagation in deep spiking neural networks. arXiv
[Preprint]. arXiv:abs/2003.11837

Zhou, S., Chen, Y., Li, X., and Sanyal, A. (2020). Deep SCNN-based real-
time object detection for self-driving vehicles using LiDAR temporal
data. IEEE Access 8, 76903–76912. doi: 10.1109/ACCESS.2020.29
90416

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Guo, Fouda, Eltawil and Salama. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 21 March 2021 | Volume 15 | Article 638474

https://doi.org/10.3389/fncom.2018.00048
https://doi.org/10.3389/fncom.2018.00048
https://doi.org/10.1109/TCAD.2019.2944582
https://doi.org/10.1109/TCAD.2019.2944582
https://doi.org/10.1109/ACCESS.2020.2990416
https://doi.org/10.1109/ACCESS.2020.2990416
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems
	Introduction
	Background and Methods
	Neural Models and Network Architecture
	Coding Schemes
	Rate Coding
	Time-to-First-Spike Coding
	Phase Coding
	Burst Coding

	Results and Discussion
	Input Spike Patterns
	Classification and Computational Performance
	Hardware Implementation of Coding Schemes
	Input Noise Study
	Weight Pruning
	Weight Quantization
	Impact of Synaptic Noise and Fault

	Comparison and Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

