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Friedreich’s ataxia (FRDA) is the most frequent autosomal recessive ataxia in western
countries, with a mean age of onset at 10–15 years. Patients manifest progressive
cerebellar and sensory ataxia, dysarthria, lower limb pyramidal weakness, and other
systemic manifestations. Previously, we described a family displaying two expanded
GAA alleles not only in the proband affected by late-onset FRDA but also in the two
asymptomatic family members: the mother and the younger sister. Both of them showed
a significant reduction of frataxin levels, without any disease manifestation. Here, we
analyzed if a protective mechanism might contribute to modulate the phenotype in this
family. We particularly focused on the transcription factor nuclear factor erythroid 2-
related factor 2 (NRF2), the first line of antioxidant defense in cells, and on the glutathione
(GSH) system, an index of reactive oxygen species (ROS) detoxification ability. Our
findings show a great reactivity of the GSH system to the frataxin deficiency, particularly
in the asymptomatic mother, where the genes of GSH synthesis [glutamate–cysteine
ligase (GCL)] and GSSG detoxification [GSH S-reductase (GSR)] were highly responsive.
The GSR was activated even in the asymptomatic sister and in the proband, reflecting
the need of buffering the GSSG increase. Furthermore, and contrasting the NRF2
expression documented in FRDA tissues, NRF2 was highly activated in the mother and
in the younger sister, while it was constitutively low in the proband. This suggests that,
also under frataxin depletion, the endogenous stimulation of NRF2 in asymptomatic
FRDA subjects may contribute to protect against the progressive oxidative damage,
helping to prevent the onset of neurological symptoms and highlighting an “out-brain
origin” of the disease.
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INTRODUCTION

Friedreich’s ataxia (FRDA, OMIM #229300) is the most frequent
autosomal recessive ataxia in western countries, with an
estimated prevalence of 1:80,000 among Caucasian populations
and a mean age of onset at 10–15 years (Cossée et al.,
1999; Koeppen et al., 2009). Symptoms appear between 5
and 15 years of age in FRDA, and the brain atrophy
begins early in the disease and plateaus in later stages,
indicating that the neurodegenerative profile is an early-onset
disease manifestation, with progressive mixed cerebellar and
sensory ataxia, cerebellar dysarthria, and lower limb pyramidal
weakness. However, other systemic manifestations, including
hypertrophic cardiomyopathy, diabetes mellitus, kyphoscoliosis,
pes cavus, optic atrophy, and sensory deafness can occur
(Cossée et al., 1999; Koeppen et al., 2009; Pallardó et al.,
2020). Late-onset (26–39 years) and very-late-onset (over
40 years) FRDA variants can also take place, usually presenting
with a milder phenotype and lack of systemic manifestations
(Koeppen et al., 2011). Frataxin (FXN) is a ubiquitously
expressed protein, and its deficiency results in the decrease
of mitochondrial copy number, iron accumulation, deficits of
respiratory chain complex activities, and increased sensitivity
to oxidative stress, thus affecting many different body districts
(Vaubel and Isaya, 2013; Martelli and Puccio, 2014). The
brain is the predominantly affected tissue in FRDA, but
damage to cardiac myocytes and pancreatic beta-cells has
also been evidenced (Delatycki and Corben, 2012; Loría and
Díaz-Nido, 2015; Franco et al., 2017; Koeppen et al., 2017).
Therefore, rather than a “brain disease,” FRDA can be considered
a “systemic disease,” with implications that go beyond the
brain itself.

This study moves from our previous report, where we
described a family (Figure 1A) displaying two small expanded
GAA alleles not only in the proband (II-1) affected by late-
onset FRDA (LOFA) but also in the two asymptomatic family
members: the mother (I-2) and the younger sister (II-2) (Santoro
et al., 2020). Further studies revealed that both I-2 and II-2
were actually carriers of an expanded GAA allele and of an
uncommon (GAAGGA)66−67 repeat (Santoro et al., 2020), while
the father (I-1) was a heterozygous carrier of an expanded
allele of about 206 GAA repeats. Although expression studies
showed that both the compound heterozygous carriers for
the expanded GAA and the (GAAGGA)66−67 repeat showed
a significant reduction of FXN mRNA and protein levels in
their leukocytes and fibroblasts (Santoro et al., 2020), none of
them developed any disease manifestation, supporting that this
array represents a benign variant as previously proposed by
Ohshima et al. (1999).

To go deeper and understand if a protective mechanism might
contribute to modulate the phenotype in this family, here, we
report the results of the analysis of redox gene expression profiles
in leukocytes and fibroblasts of all family members, particularly
focusing on the nuclear factor erythroid 2-related factor 2 (NRF2)
and on its glutathione (GSH)-related target genes.

Oxidative stress is a common condition in many
neurodegenerative disorders (Barnham et al., 2004), and

in FRDA, in particular, it represents one of the most
peculiar, although not completely understood, aspects of
the pathology (Lupoli et al., 2018). The GAA repeat-mediated
FXN depletion leads to mitochondrial iron accumulation in
the disease, causing reactive oxygen species (ROS) generation
and lipid peroxidation (La Rosa et al., 2020c; Turchi et al.,
2020a). As NRF2 regulates many genes directly involved in
counteracting oxidative stress and NRF2 signaling axis is
defective in FRDA (Paupe et al., 2009; Cuadrado et al., 2019;
Petrillo et al., 2019), the evaluation of NRF2 expression in
this family can help to open a window on new protective
factors potentially buffering the FRDA symptomatology.
NRF2 also modulates the cellular levels of GSH, which
previously was found impaired in FRDA patients (Piemonte
et al., 2001; Pastore et al., 2003) and whose equilibrated
ratios between GSH and its oxidized form GSSG are crucial
in maintaining the cellular redox balance (Schafer and
Buettner, 2001). Thus, we further measured the GSH and
GSSG content in family’s members, to evaluate their ROS
detoxification ability.

By this study, we ask if a differential expression of NRF2
or a dysregulated GSH homeostasis between symptomatic and
asymptomatic family’s members may represent a distinctive tract
able to confer the clinical protection.

RESULTS

The Glutathione Homeostasis Is
Dysregulated in the Family
The GSH content has been measured in blood (Figure 1B)
and in fibroblasts (Figure 1D) of FRDA family’s members
(Figure 1A). As reported in Figure 1B, the GSH balance
was dysregulated in blood, with the GSH levels surprisingly
high in the affected proband II-1, approaching the controls’
values (1,242 ± 23 vs. 1,302 ± 37 µM controls), whereas
the asymptomatic mother I-2 (539 ± 53 µM) and sister II-
2 (1,002 ± 8.2 µM) showed low GSH concentrations, as well
as father I-1 (972 ± 0.6 µM). In parallel, the GSSG, which
represents the oxidation product of GSH, was low in the proband
II-1 (3.4 ± 0.08 µM), with respect to the consistently high
GSSG levels found in the blood of the unaffected mother I-2
(13.4 ± 0.06 µM) and to the mild but significant rise in that
of the younger sister II-2 (4.04 ± 0.09 µM, vs. 2.18 ± 0.10
controls, Figure 1C). The father (I-1) showed no significant
differences with respect to the controls. This trend was confirmed
in fibroblasts (Figure 1D), with high GSH levels in II-1 (50 ± 0.88
nmol/mg prot.) and low concentrations in I-2 (25 ± 0.33
nmol/mg prot.), II-2 (36 ± 0.37 nmol/mg prot.), and I-1
(27 ± 0.35 nmol/mg prot.).

The Glutathione-Related Genes Are
Differently Expressed in the Family’s
Members
Given the different amounts of GSH and GSSG in affected
and unaffected members of the family, we asked if the
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FIGURE 1 | Glutathione homeostasis in Friedreich’s ataxia (FRDA) family’s members. (A) Family tree: father (I-1), mother (I-2), younger sister (II-2), and affected
proband (II-1) indicated by a black symbol. Reduced glutathione (GSH) (B) and oxidized GSSG (C) concentrations in the whole blood, and GSH content in
fibroblasts (D) of I-1, I-2, II-2, and proband II-1 as measured by the enzymatic re-cycling assay. Values are expressed as median ± SEM. Statistical significance was
defined as *p < 0.05, **p < 0.01, and ***p < 0.001 with respect to the controls; and #p < 0.05, ##p < 0.01, and ###p < 0.001 compared with proband II-1.

GSH-related genes, responsible for the GSH homeostasis in
cells, could be dysregulated in the family. Thus, we analyzed
the expression of glutamate–cysteine ligase (GCL), the gene
coding for the step-limiting enzyme of the GSH synthesis,
and the GSH S-reductase (GSR) gene, implicated in the
re-cycling of the GSH from its oxidized form GSSG. As
reported in Figure 2, while the GCL expression levels in I-
1, II-2, and proband II-1 were comparable with those of
the controls (Figures 2A,B), the asymptomatic mother (I-2)
showed a significant upregulation of the GCL gene, either
in leukocytes (Figure 2A) or in fibroblasts (Figure 2B),
probably as a response to the low availability of GSH
(Figures 1B,D). The expression of GSR, which reduces the
GSSG re-establishing a correct GSH/GSSG ratio, was highly
activated in I-2 and II-2, both in leukocytes (Figure 2C)
and in fibroblasts (Figure 2D), thus reflecting the need to
neutralize the GSSG overload (Figure 1). The GSR gene
was activated even in the leukocytes (Figure 2C) and in
fibroblasts of the proband II-1 (Figure 2D), who displayed
mild but nevertheless significant increase in GSSG concentration
(Figure 1). The I-1 showed no significant differences in GCL
and GSR expression neither in leukocytes (Figures 2A,C) nor
in fibroblasts (Figures 2B,D), with respect to the controls.
Overall, these findings demonstrate a strong reactivity to the FXN

deficiency of the GSH system, particularly in the I-2, where it was
greatly responsive.

Nuclear Factor Erythroid 2-Related
Factor 2 Is Activated in the
Asymptomatic Members of the Family
(I-2 and II-2)
Considering that the GSH-related genes are regulated by NRF2,
whose expression is impaired in FRDA patients and in preclinical
models of FXN deficiency (Paupe et al., 2009; D’Oria et al., 2013;
Shan et al., 2013; La Rosa et al., 2019, 2020d; Petrillo et al., 2019;
Turchi et al., 2020b), we evaluated if NRF2 might be differently
expressed in the family. Interestingly, as reported in Figure 3,
NRF2 was not induced in the fibroblasts of the proband II-1
(Figure 3B) but highly stimulated in leukocytes (Figure 3A). It is
important to note that the symptomatic proband II-1 was under
idebenone therapy at the time of blood collection, and idebenone
is a well-known NRF2 inducer (Petrillo et al., 2019).

NRF2 was also significantly activated in leukocytes
(Figure 3A) and in fibroblasts (Figure 3B) of I-2 and II-2,
while its expression in the I-1 was comparable with that of the
controls (Figures 3A,B).
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FIGURE 2 | Glutathione-related genes in Friedreich’s ataxia (FRDA) family. The expression of glutamate–cysteine ligase (GCL) and glutathione S-reductase (GSR)
was analyzed by quantitative real-time PCR (qRT-PCR), respectively, in leukocytes (A,C) and fibroblasts (B,D) of the I-1, I-2, II-2, and proband II-1. Values represent
median ± SEM. Statistical significance was defined as *p < 0.05, **p < 0.01, ***p < 0.001 with respect to the controls and ##p < 0.01 compared with proband II-1.

FIGURE 3 | Nuclear factor erythroid 2-related factor 2 (NRF2) gene expression in Friedreich’s ataxia (FRDA) family. Quantitative real-time PCR (qRT-PCR) analysis of
NRF2 transcripts in leukocytes (A) and in fibroblasts (B) of I-1, I-2, II-2, and proband II-1. Values represent median ± SEM. Statistical significance was defined as
**p < 0.01 and ***p < 0.001 with respect to the controls; and #p < 0.05, ##p < 0.01, and ###p < 0.001 compared with proband II-1.

MATERIALS AND METHODS

This study was conducted in agreement with the Declaration of
Helsinki, and its design fulfilled the guidelines of all involved
institutional ethical boards. RNA, and protein samples were
extracted from peripheral blood leukocytes or cultured fibroblasts
obtained from punch skin biopsies from all family members who
gave a written informed consent authorizing storage and use of
clinical data and biological samples for diagnostic and clinical
research purposes.

Family Description
The proband (II-1) was a 43-year-old female whose symptoms
started at the age of 35, with slowly progressive gait, balance, and

mild speech impairment. Her family history was negative
(Figure 1A). She first came to our attention at the age
of 39 years, and neurological examination documented
gaze evoked nystagmus, mild cerebellar dysarthria, gait
ataxia, limb in coordination with positive Romberg sign,
absent deep tendon reflexes, and bilateral Babinski sign;
antibodies, serum alpha-fetoprotein, vitamins B12 and E,
and lactic acid levels were all negative. Two pathological
GAA expansions of approximately 206 (GAA1) and 473
(GAA2) repeats have been documented in the proband
(Santoro et al., 2020).

The asymptomatic 36-year-old sister (II-2) displayed two
expanded alleles apparently corresponding to 146 (GAA1) and
176 (GAA2) repeats (Santoro et al., 2020). During 3 years of
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follow-up, symptoms slowly progressed in II-1, as expected;
instead, II-2 did not develop any FRDA manifestation.

Finally, the 73-year-old mother (I-2) carried two
GAA expansions of approximately 139 (GAA1) and 389
(GAA2) repeats, though detailed clinical neurological
evaluation documented the absence of symptomatology
(Santoro et al., 2020).

Blood Sample Collection
Blood samples from all family members were collected into 5%
EDTA Vacutainer tubes (Becton Dickinson, Rutherford, NY) and
fractionated as follows: 1 ml was stored at -80◦C immediately
after drawn for GSH determinations; 1 ml was destined to GSSG
measurements and stored at -80◦C, until analysis; and 5 ml of
whole blood was used for isolation of leukocytes by 10% dextran.

After 45 min at room temperature, the upper phase containing
leukocytes was centrifuged at 1,125 × g (5 min) and washed with
0.9% NaCl, until a clear pellet was obtained. Leukocytes have been
stored at −20◦C until the RNA extraction.

Cell Cultures
Skin biopsies were taken from all family members and three age-
matched controls. Fibroblasts were grown in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum, 50
units/ml of penicillin, 50 µg/ml of streptomycin, 0.4% (v/v)
amphotericin B (250 µg/ml), and 1 mM of sodium pyruvate at
37◦C in 5% CO2, as reported in Pastore et al. (2003). Fibroblasts
were grown to 70% confluence. The assays were performed in
triplicates, and cells were used at similar passage numbers.

GSH and GSSG Determination
GSH and GSSG levels have been detected using the enzymatic re-
cycling assay, as previously reported (Petrillo et al., 2019). Briefly,
samples have been de-proteinized with 5% (w/v) sulfosalycilic
acid (SSA; Sigma-Aldrich, St. Louis, MO, United States), and
the GSH content was determined after dilution of the acid-
soluble fraction in Na–phosphate buffer containing EDTA (pH
7.5). To prevent an overestimation of GSSG due to the oxidation
of thiols during sample manipulation, blood samples have been
collected in tubes prefilled with 30 mM of N-ethylmaleimide
(NEM) (Giustarini et al., 2013). GSH and GSSG concentrations
have been measured with the ThioStar R© GSH detection reagent
(Arbor Assays, Michigan, United States), using, respectively,
GSH and GSSG as standards (Sigma Chemicals, St. Louis, MO,
United States). The fluorescence has been measured using an
EnSpire R© Multimode Plate Reader (Perkin Elmer, Waltham,
MA, United States). GSH levels in fibroblasts were expressed
as nmol/mg proteins. Protein concentration was determined by
the bicinchoninic acid assay (BCA) method (Thermo Fisher
Scientific, United States).

Quantitative Real-Time PCR
Total RNA was extracted from leukocytes and fibroblasts using
TRI Reagent (Sigma-Aldrich, St. Louis, MO, United States),
according to manufacturer’s protocol. One microgram of each
RNA samples was reverse transcribed with the SuperScriptTM

First-Strand Synthesis system and random hexamers as primers
(Life Technologies, Carlsbad, CA, United States). The mRNA
of GCL, GSR, and NRF2 was measured by qRT-PCR in an
ABI PRISM 7500 Sequence Detection System (Life Technologies,
Carlsbad, CA, United States) using Power SYBR Green I dye
chemistry. Data were analyzed using the 2−11Ct method with
TATA box binding protein (TBP) as a housekeeping gene and
expressed as fold change relative to the controls. Primers used for
qRT-PCR are reported in Table 1.

Statistical Analysis
Statistical analysis was performed using the GraphPad/Prism 5.0
Software (San Diego, CA, United States). Statistically significant
differences between the controls and family’s members were
analyzed using Student’s t-test for normally distributed variables.
All data are presented as mean ± standard error. Statistical
significance was defined as ∗p < 0.05, ∗∗p < 0.001, and
∗∗∗p < 0.001 compared with the controls, and #p < 0.05,
##p < 0.01, and ###p < 0.001 compared with proband II-1.

DISCUSSION

This study moves from our previous paper focused on a peculiar
family characterized by the presence in two first-degree relatives
of the proband, affected by LOFA, of a compound heterozygosity
for an expanded (GAA) repeat and a (GAAGGA) repeat at
FXN locus; both compound heterozygotes are asymptomatic,
supporting that the (GAAGGA) repeat would be indeed a benign
variant. Yet FRDA studies (Santoro et al., 2020) showed that
FXN mRNA and protein levels were markedly reduced not only
in tissues of the proband but also in the two asymptomatic
compound heterozygotes. This led us to hypothesize that some
protective factors may mitigate detrimental effects of FXN
deficiency in both subjects; thus, we decided to assess the status
of the antioxidant response in that family.

A consequence of the FXN depletion in FRDA is the increase
of oxidative stress, and the most credited pathogenic hypothesis
is that the FXN-mediated impairment of the mitochondrial
iron–sulfur cluster (ISC)-containing enzymes (respiratory chain
complexes I–III and aconitase) contributes to the Fenton-
mediated overproduction of ROS (Armstrong et al., 2010; Gomes
and Santos, 2013; Vaubel and Isaya, 2013; Abeti et al., 2016;
Lupoli et al., 2018).

TABLE 1 | Primers used for qRT-PCR.

Human genes Sequence 5′>3′

NRF2 Fw-ACACGGTCCACAGCTCATC

Rv-TGTCAATCAAATCCATGTCCTG

GCL Fw-TTGCCTCCTGCTGTGTGATG

Rv-ATCATTGTGAGTCAACAGCTGTATGTC

GSR Fw-CACTTGCGTGAATGTTGGATG

Rv-GATTTCTATATGGGACTTGGTG

TBP Fw-CCGAAACGCCGAATATAATCC

Rv-AAATCAGTGCCGTGGTTCGT
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High susceptibility to oxidative stress has been demonstrated
in FRDA patients’ fibroblasts in early studies (Wong et al., 1999),
and ROS overload was found in yeast (Bulteau et al., 2007;
Irazusta et al., 2008), drosophila (Llorens et al., 2007; Anderson
et al., 2008; Soriano et al., 2013), and mouse (Al-Mahdawi et al.,
2006; Lupoli et al., 2018) disease models. In addition, elevated
levels of oxidative stress markers have been found in the blood
(Emond et al., 2000; Schulz et al., 2000; Bradley et al., 2004) and
cells (Cotticelli et al., 2013; Abeti et al., 2015, 2016, 2018; Petrillo
et al., 2019) of FRDA patients.

However, unlike the expected activation of the NRF2-
mediated antioxidant defense, the NRF2 signaling pathway is
defective in FRDA patients and in preclinical models of FXN
deficiency (Paupe et al., 2009; Shan et al., 2013; La Rosa et al.,
2020a,b), thus further exacerbating the susceptibility to oxidative
stress and its induced defects in the disease (Abeti et al., 2018; La
Rosa et al., 2020c,d).

In this family, we analyzed the antioxidant response in
all members, particularly focusing on the GSH metabolism
and NRF2 expression, both pathways representing the first
antioxidant defense lines in tissues. GSH is the main redox
indicator in cells, and previous studies reported decreased levels
of this molecule in the blood of FRDA patients.

NRF2 is the principal regulator of the GSH homeostasis by
upstream modulating the GSH synthesis (GCL gene) and the
GSH recycling from its oxidized form GSSG (GSR gene). All
these actions may actively contribute to counteract the oxidative
stress-mediated injury and, potentially, to slow down the onset of
symptoms in FRDA.

Our findings demonstrate that the GSH homeostasis was
dysregulated in the family (Figure 1), yet with unexpected
significantly low GSH concentration in the asymptomatic
compound heterozygous I-2 and high levels in the proband II-
1. The amount of GSSG was also consistently high in I-2, and
a moderate increase was even found in the other compound
heterozygous II-2 and in the proband II-1, likely indicating a

general activation of the GSH-mediated response. Also, the GSH-
related genes were differently expressed in the family members
(Figure 2), showing a great reactivity of the GSH system to
the FXN deficiency, particularly in the I-2, where the genes of
GSH synthesis (GCL) and of GSSG detoxification (GSR) were
highly responsive. The GSR gene was activated even in the other
compound heterozygous II-2, as well as in the proband II-1,
reflecting the need of buffering the increase in GSSG.

However, as the imbalance of GSH levels did not allow
explaining the lack of symptoms in the FXN-deficient compound
heterozygous I-2 and II-2, we focused our attention on NRF2,
the upstream regulator of GSH homeostasis, which is usually
depleted under conditions of FXN deficiency.

Contrasting the reduced NRF2 expression documented
in FRDA tissues, NRF2 was significantly activated in both
leukocytes and fibroblasts of the two asymptomatic compound
heterozygous I-2 and II-2 (Figure 3), suggesting that the
occurrence of an endogenous stimulation of this transcription
factor in these subjects might translate into protective and
preventive effects on the symptomatology.

Instead, NRF2 was downregulated in the fibroblasts of the
LOFA proband II-1, yet it was activated in her leukocytes
(Figure 3), where it might be related to the effects of the
idebenone treatment. Indeed, the proband was under idebenone
therapy at the time of blood collection, and idebenone is known
to activate NRF2 expression in FRDA patients (Petrillo et al.,
2019; La Rosa et al., 2020a).

Thus, in the LOFA proband, NRF2 is, as expected,
constitutively low in fibroblasts, whereas it is exogenously
activated in leukocytes by idebenone, but in both the
asymptomatic compound heterozygous carriers, NRF2 is
constitutively upregulated, although both of them would also
show decreased FXN expression. So we hypothesize that the
occurrence of a widespread upregulation of NRF2 expression in
such individuals might contribute to protect the most susceptible
tissues against the progressive oxidative damage and the onset of

FIGURE 4 | Hypothesis on the role of nuclear factor erythroid 2-related factor 2 (NRF2) as a protective factor antagonizing the insurgence of Friedreich’s ataxia
(FRDA) symptomatology.
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symptoms. Importantly, we suggest that the early administration
of NRF2 inducers in patients, particularly in FRDA children,
at the first onset of the disease could slow the progression of
neurological damage, thus being of great therapeutic help.

Overall, by this study, we extend the spectrum of possible
effectors responsible for the development of clinical symptoms,
thus moving the origin of the disease outside the brain. In
this regard, the family we analyzed is paradigmatic since,
although all members displayed FXN deficiency, nonetheless
some individuals appeared free of symptoms. Such as for
Parkinson’s (PD) and Alzheimer’s diseases (AD), also for FRDA,
alternative mechanisms, beyond the brain, can be hypothesized
to contribute to the pathogenesis of the disease. In particular,
our findings support the role of NRF2 as a protective factor
whose constitutive upregulation can keep the antioxidant defense
above a threshold, able to prevent the appearance of clinical
manifestations (Figure 4). Future studies will be needed to
expand the panel of NRF2 activities, in order to identify which
pathways are more involved in clinical FRDA protection. It
is important to note that NRF2 regulates the transcription of
approximately 1% of the human genome (Cuadrado et al., 2019)
and that beside maintaining the cellular redox homeostasis,
multiple cellular processes, including regulation of inflammation,
differentiation, proliferation, cell survival, protein homeostasis,
and metabolism, are among the functions influenced by its
activity (Corenblum et al., 2016; Robledinos-Antón et al., 2017;
Cuadrado et al., 2019; Dodson et al., 2019; La Rosa et al., 2019;
Turchi et al., 2020b). Two processes were recently shown to be
deeply connected to FRDA pathogenesis: (i) ferroptosis, an iron-
dependent cell death caused by impaired GSH metabolism, lipid
peroxidation, and mitochondrial failure (Cotticelli et al., 2019; La
Rosa et al., 2020d; Turchi et al., 2020b); and (ii) inflammation,
a mechanism not yet fully understood in FRDA, but potentially
involved, as demonstrated in fibroblasts of patients, where the
anti-inflammatory heme-oxygenase 1 (HO-1) gene was found to
be reduced (Petrillo et al., 2019) and in patients who showed
beneficial effects upon treatment with an NF-kB suppressor
(Lynch et al., 2019). Although it is undeniable that the NRF2
activation can ameliorate FRDA pathogenesis rescuing, at least in

part, the detrimental effects generated by these processes, deeper
and more complex regulations could be responsible for the
NRF2-mediated protection observed in asymptomatic members
of the family. Elucidating these defense mechanisms will be
crucial not only in a mitochondrial and systemic disease such
as FRDA but also in other oxidative stress-mediated disorders
characterized by an out-brain origin (i.e., PD and AD).
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