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Aims/hypothesis: Diabetes mellitus (DM) is associated with comorbid brain disorders.
Neuroimaging studies in DM revealed neuronal degeneration in several cortical and
subcortical brain regions. Previous studies indicate more pronounced brain alterations
in type 2 diabetes mellitus (T2DM) than in type 1 diabetes mellitus (T1DM). However,
a comparison of both types of DM in a single analysis has not been done so far.
The aim of this meta-analysis was to conduct an unbiased objective investigation
of neuroanatomical differences in DM by combining voxel-based morphometry (VBM)
studies of TIDM and T2DM using dual disorder anatomical likelihood estimation
(ALE) quantification.

Methods: PubMed, Web of Science and Medline were systematically searched for
publications until June 15, 2020. VBM studies comparing gray matter volume (GMV)
differences between DM patients and controls at the whole-brain level were included.
Study coordinates were entered into the ALE meta-analysis to investigate the extent to
which T1DM, T2DM, or both conditions contribute to gray matter volume differences
compared to controls.

Results: Twenty studies (comprising of 1,175 patients matched with 1,013 controls)
were included, with seven studies on GMV alterations in T1DM and 13 studies on GMV
alterations in T2DM. ALE analysis revealed seven clusters of significantly lower GMV
in TIDM and T2DM patients relative to controls across studies. Both DM subtypes
showed GMV reductions in the left caudate, right superior temporal lobe, and left cuneus.
Conversely, GMV reductions associated exclusively with T2DM (>99% contribution) were
found in the left cingulate, right posterior lobe, right caudate and left occipital lobe.
Meta-regression revealed no significant influence of study size, disease duration, and
HbA1c values.
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Conclusions/interpretation: Our findings suggest a more pronounced gray matter
atrophy in T2DM compared to T1DM. The increased risk of microvascular or
macrovascular complications, as well as the disease-specific pathology of T2DM may
contribute to observed GMV reductions.

Systematic Review Registration: [PROSPERQ], identifier CRD42020142525].

Keywords: anatomical likelihood estimation, diabetes mellitus, voxel-based morphometry, meta-analysis,

systematic review

INTRODUCTION

Diabetes mellitus (DM) is a common disease affecting more
than 451 million people worldwide, and its prevalence may
increase to 693 million cases by 2,045 (Cho et al.,, 2018). DM
is divided into two subtypes, type 1 diabetes (T1IDM) and
type 2 diabetes (T2DM). Both subtypes are associated with
persistent hyperglycemia, but have distinct causes, a different
age at onset and different pathophysiologies (Leslie et al., 2016).
T1DM has an onset in childhood and young adulthood and is
characterized by insulin deficiency due to an autoimmune attack
of insulin producing pancreatic beta cells. Conversely, with its
onset in adulthood, T2DM is a chronic condition characterized
by the body’s increasing inability to either respond to functional
insulin effectively and/or produce sufficient insulin for normal
glucose regulation. Because of impaired glucose metabolism,
it is widely accepted that both types of DM share increased
risk in similar clinical features and complications, primarily
vascular disease such as retinopathy, neuropathy, nephropathy,
and cardiovascular disease.

Growing attention has been paid to the effect of DM on central
nervous system because proper glucose regulation is essential
for optimal brain functioning. Cognitive decrement has been
observed in neuropsychological tests among diabetic patients;
in particular, information processing speed and psychomotor
efficiency were more affected than other cognitive functioning
domains by the disease (Ryan et al, 2003; Brands et al,
2006). Furthermore, DM has been found to be associated
with increased risk of Alzheimer disease. Quantitative meta-
analysis of longitudinal studies identified higher relative risk
of Alzheimer disease of 1.5 (95% CI 1.2-1.8) and vascular
dementia of 2.5 (95% CI 2.1-3.0) among diabetic patients when
compared with their nondiabetic counterparts (Cheng et al.,
2012). Collectively, both types of DM have been shown to be
associated with reduced cognitive function. While several studies
indicated more pronounced dysfunctions in T2DM compared to
T1DM, direct comparisons showed no systematic differences in
cognitive abilities such as abstract reasoning, memory, attention
and executive function, visuoconstruction, and information
processing speed (Brands et al., 2007).

Brain imaging such as magnetic resonance imaging (MRI)
is an ideal means to explore the neural correlates of cognitive
dysfunction in DM. Altered cerebral metabolism has been
observed in T1DM and T2DM (Sarac et al., 2005; Sinha et al,,
2014). In addition, structural neuroimaging revealed reduced

gray matter volume (GMV) in both types of DM. However,
results were inconsistent, which may be attributed to numerous
variables including differences in sample size, imaging devices
and protocols used (Gold et al., 2007; Chen et al., 2012; Moran
et al., 2013; Zhang et al, 2014). Direct comparisons of MRI
ratings of white matter lesions and cortical atrophy by Brands
etal. (2007) revealed more pronounced deep white matter lesions
and cortical atrophy in T2DM compared to TIDM (Brands
et al, 2007). A more recent study by Moulton et al. (2015)
attempted to review neuroimaging research including voxel-
based morphometry (VBM) data and volumetric data using
meta-analysis (Moulton et al., 2015). The authors performed
separate meta-analyses for TIDM and T2DM and found reduced
bilateral thalamus in T1DM whereas reduced global brain volume
and regional atrophy in the hippocampi, basal ganglia, and
orbitofrontal and occipital lobes were seen in T2DM. However, a
comparison of VBM data of both types of DM in a single analysis
has not been done so far. Yet, such an analysis would be needed
in order to investigate the distinctiveness or similarities of TIDM
and T2DM directly in an unbiased objective comparison.

VBM is an automated whole-brain based analysis method
that has several advantages over a region-of-interest (ROI)-based
approach. VBM measures local volume or concentration of gray
matter voxel-wise across the whole brain. Thus, in order to
conduct an unbiased objective investigation of neuroanatomical
differences in DM, the aim of this study was to conduct a meta-
analysis combining VBM studies of TIDM and T2DM using the
anatomical likelihood estimation (ALE) technique.

METHODS

Literature Search

Our meta-analysis was registered with PROSPERO (registration
number CRD42020142525) and was conducted according to
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Moher et al., 2009). The
studies were selected from PubMed (https://pubmed.ncbi.nlm.
nih.gov/), Web of Science (https://www.webotknowledge.com/)
and Google Scholar (https://scholar.google.com.hk/) databases
and were limited to publications before October 1, 2020.
The keywords used were “diabetes” or “diabetes mellitus” or
“DM” plus “VBM,” “voxel-based,” “voxel-wise,” “morphometry;’
or “VBM.” In addition, review articles and reference lists of
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identified articles were manually checked. Individual articles had
to meet the following inclusion criteria:

(1) Gray matter differences between patients with DM and non-
DM controls were compared

(2) Comparison was performed at the whole-brain level

(3) The gray matter differences between patients and controls
were reported in a stereotactic space in three coordinates
(%, y, 2), either in Montreal Neurological Institute (MNI) or
Talairach space.

(4) Coordinates were included as separate studies if they
contained multiple independent patient samples.

(5) Studies wusing ROI or seed voxel-based
were excluded.

(6) For studies lacking the Talairach or MNI coordinates, study
authors were contacted in order to minimize the possibility
of a biased sample set.

(7) Studies considered for inclusion had to be published in
English in a peer-reviewed journal

(8) Subjects included had to have formal diagnosis of either type
1 or type 2 diabetes. Moreover, voxel-based imaging methods
and co-ordinates reported in 3D stereotactic space had to
be used.

analysis

Studies restricted to males/females or children/adults were
included. Studies presenting overlapping or identical samples
were identified, and only the study presenting the largest number
of subjects was retained. If there was possible overlapping but
different results were presented, e.g., hippocampus presented in
one study while frontal lobe in another, all data were included.

Quality Assessment

A customized checklist was used to assess the quality of included
studies, as done by others (Katon et al., 2010) (Table 1). The
checklist contained 12 items, and was based on previous meta-
analytic studies (Shepherd et al, 2012; Du et al., 2014) with
additional parameters including the diagnostic procedures, the
demographic and clinical characterization, the sample size, the
MRI acquisition parameters, the analysis technique and the
quality of the reported results. Due to the rapid changing of
data-processing methods, we included a new item “included
modern MRI processing methods of past 10 years” in the
checklist (item 8). The checklist provided objective information
about the quality of included studies. Each study was reviewed
by two authors (KK.K.Y, G.SK), and a completeness rating
was independently determined. If ratings disagreements arose,
the papers were discussed, after which a consensus score was
obtained. Only studies with quality score of 8 or above were
included in the analysis.

ALE Procedure

ALE treats each foci reported in VBM as a probability
distribution in order to test for agreement across studies
(Turkeltaub et al, 2002; Laird et al, 2005; Ellison-Wright
et al., 2008). Typically, ALE is applied on a single disorder to
identify volumetric differences consistently reported across VBM
studies. The result of this approach is an ALE map showing
the same regions that are consistently reported across studies.

TABLE 1 | Customized checklist for study quality assessment (adopted from Du
et al., 2014).

Category 1: Subjects

1 Patients were evaluated prospectively, specific diagnostic criteria were
applied, and demographic data was reported

2 Healthy comparison subjects were evaluated prospectively, psychiatric and
medical ilnesses were excluded and demographic data was reported

3 Important variables (e.g., age, gender, intelligence quotient, i.e., 1Q,
handedness, socio-economic status, height, or total brain measures) were
checked, either by stratification or statistically

4 Sample size per group > 10

Category 2: Methods for image acquisition and analysis
Magnet strength at least 1.5 T

MR slice-thickness < 3 mm

Whole brain analysis was automated with no a priori regional selection
Modern MRI processing methods of past 10 years

© 00w N o O,

The imaging technique used was clearly described so that it could be
reproduced

10  Measurements were clearly described so that they could be reproduced
Category 3: Results and conclusions

1 Statistical parameters for significant, and important non-significant,
differences were provided

12 Conclusions were consistent with the results obtained and the limitations
were discussed

In the present study, we adopted the “Dual Disorder ALE
Quantification.” We have previously applied this method to study
similarities across different disorders such as schizophrenia and
bipolar disorder, and schizophrenia and autism (Cheung et al,,
2010; Yu et al.,, 2010; McAlonan et al., 2011). In brief, a map of
gray matter difference compared to controls was generated for
each study. These “gray matter difference” maps were categorized
based on their disorder type, and averaged into a mean map.
As a result, a mean map of T1DM and a mean map of T2DM
were created. The mean maps were combined to form a total
gray matter difference map, after which whole brain permutation
testing (Turkeltaub et al., 2002), and controlled false discovery
rate (FDR) thresholding was conducted (Laird et al., 2005).
These procedures were conducted using an ALE kernel (Leung
et al., 2009) available from the open source software available
at http://csl.georgetown.edu/software/ (Turkeltaub et al., 2002).
The intensity of the mean disorder maps and the intensity of
the final ALE result were divided such that the intensity ratio for
each resultant cluster was calculated (ALE kernel and customized
scripts for Matlab and SPM12).

The first stage of ALE is to generate a Gaussian distribution
surrounding the central coordinates for each significant focus
reported in studies. The probability that any given voxel is linked
to the disorder(s) in question can be quantitatively estimated
from this whole brain likelihood map. ALE eliminates unlikely
foci and only points to likely foci that are close in proximity, in
effect outlining regions which were reported most often across
studies, to generate resultant three-dimensional clusters. It is
emphasized that the approach of this study was to combine
datasets from both disorders into the same entry for a single
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analysis. In order to do so, individual “likelihood” maps that
reflect the probability of finding gray matter differences, were
generated for each of the included studies. A study with no
findings across subjects and controls were represented by an
empty map. Each of the likelihood maps were grouped based
on the type of DM (T1 or T2), and averaged together into a
mean likelihood map of conditions. The purpose for generating
the mean maps was to avoid bias toward the condition with
more reported foci. The mean maps were summated together
to a joint likelihood map and 10,000 permutations were used to
sample the null distribution. The result was thresholded by FDR
(p < 0.05) and clusters smaller than 100 mm? were filtered. The
resultant ALE map then contained clusters consisting of foci from
T1DM, or T2DM, or both conditions. The contribution of each
disorder to every resultant cluster was calculable. Two separate
ALE analyses were performed for reductions and elevated gray
matter volumes.

Finally, for each of the included studies, a “gray matter
difference” map was generated to determine how much each
study contributes toward the resultant ALE clusters. This
contribution score was then used for meta-regression to test
whether demographics or clinical measures including the study
size, disease duration, and % glycated hemoglobin (HbA1c) have
any influences toward the ALE result.

RESULTS

Studies Demographics

Figure 1 shows the detailed selection process of included studies.
After screening through title and abstract and removal of
duplicates, a total of 94 studies were checked for eligibility.
Among which, 32 studies were excluded as the VBM method
was not adopted, and 42 studies were not included because
the coordinates representing gray matter differences were not
reported. A total of 20 studies were included in this analysis, with
seven studies and 13 studies describing gray matter alterations
in T1IDM and T2DM respectively (see Table 2). A total of 1,175
patients matched with 1,013 controls were included. The TIDM
group was significantly younger than the T2DM group (with a
mean age of 23.7 compared to 49.8 years, respectively). However,
there were no significant differences in age and sex between
patient groups and their respective control groups. A total of 509
patients in the TIDM group were matched with 351 controls,
whereas a total of 666 patients constituted the T2DM group
that was matched with 662 control participants. TIDM had
diabetes for an average of 14.7 years which was double than the
average 7.3 years of T2DM, although this difference did not reach
significance given the considerable variance between studies (see
Table 2). Both groups had comparable HbAlc levels (TIDM: 8.6;
T2DM: 8.3).

Results of Gray Matter Alterations From
ALE

ALE analysis for GMV reductions revealed seven clusters of lower
GMV in T1DM and T2DM patients relative to controls across
studies (see Table 3 and Figure 2). Both DM subtypes showed
GMYV reductions in the left caudate, right middle temporal lobe

and left cuneus (BA 19). Whereas reductions in left cuneus
and right middle temporal lobe were more driven by T1DM,
left caudate reductions were stronger in T2DM. Conversely,
GMV reductions associated exclusively with T2DM (>99%
contribution) were found in the left cingulate (BA 31), right
inferior temporal lobe, right caudate and left occipital lobe. GMV
reductions associated mainly with TIDM were not present (for
the exact % of contribution for each cluster, see Table 2). The
ALE analysis for GMV increases revealed no significant clusters
for any DM subtype.

Finally, a meta-regression to investigate the potential
influence of study size (number of included participants), disease
duration, and % glycated hemoglobin (HbAlc) revealed no
significant influence of these covariates, neither when tested
individually, nor when combined in one regression model.

DISCUSSION

This ALE meta-analysis made use of 20 VBM studies including
seven studies of T1DM patients and 13 studies of T2DM patients
to reveal overlaps and differences in GMV alterations between
both conditions. Our analysis showed only GMV reductions in
diabetic patients compared to controls, but no GMV increases. At
first glance, this is not surprising given that hyperglycemia leads
to cellular damage, as seen in rodent studies (Sadeghi et al., 2016;
Hamed, 2017). More specifically, our results can be explained
by insulin resistance, the principal characteristics in DM, which
lowers glucose metabolism in the brain, resulting in enhanced
amount of plasma glucose in DM patients (Baker et al., 2011).
Chronic hyperglycemia is a potential determinant for diabetes-
induced problems in the brain, as it could cause metabolic and
molecular alterations, leading to neuron dysfunction or death in
the brain (Tomlinson and Gardiner, 2008). Similar to Alzheimer’s
disease (AD), tau phosphorylation and activation of advanced
glycation end products (AGE) have been known to contribute
to multiple proinflammatory cytokine release that eventually
leads to synapse reduction and neuronal loss in diabetic brain
(Zhao et al., 2018). Consequently, the resulting neuronal loss and
gray matter atrophy that accounted for the frequently observed
cognitive dysfunctions in DM are observable by brain MRI as
GMYV reductions (Brands et al., 2005).

Our meta-analysis shows a preponderance of GMV reductions
in T2DM compared to T1DM, although T2DM appears to be
better as compared to that of TIDM from the perspective of
disease duration of patients as well as the glycemic control.
Our meta-regression analysis revealed no influence of study size,
disease duration, or HbAlc values on GMYV, further suggesting
that the involvement of other contributing factors to the GMV
reductions. It is, in fact, not entirely out of our expectation
considering that the etiologies of the two types are quite different.
A recent review from Tamarai et al. (2019) have indicated obvious
differences in the known genetic variants associated with the
two types of DM (Tamarai et al., 2019). TIDM is a result of
insufficient insulin secreting p-cells, and the genetic variations
associated with T1DM are mainly related to alterations in insulin
synthesis. While T2DM demonstrates impaired mechanisms of
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FIGURE 1 | Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram of search strategy.

insulin release in response to hyperglycemia in addition to B-cells
deficiency. The complexity of T2DM pathophysiology can be
comprehended by interaction between multiple genes scattered
all across the genome, as well as the interaction between genetic
factors and environmental factors (e.g., life style; Tamarai et al.,
2019).

Lower GMV in T2DM compared to TIDM is in accordance
with a comparative study by Brands et al. (2007) who showed
that MRI ratings of cortical atrophy are worse in T2DM
compared to TIDM (Brands et al., 2007). Microvascular or
macrovascular complications and comorbidities are more likely
in T2DM than TIDM even when investigating youth-onset
DM and adjusting for age (Luk et al, 2014; Dabelea et al,
2017). While it is possible that comorbid conditions, such as
hypoglycaemia, hypercholestrolaemia, and hypertension may
explain the difference, cognitive dysfunctions may also explain
the differences in GMV reductions between DM types. Cognitive
impairments seem to be stronger in T2DM compared to TIDM
(Awad et al., 2004; Brands et al., 2005; Zilliox et al., 2016), but a

direct comparison of the two DM types revealed no significant
differences in cognitive dysfunctions (Brands et al., 2007).

GMV reductions in our study were confined to seven
clusters in specified brain regions including left and right
caudate, temporal, occipital lobes, and cingulate cortex. GMV
reductions in caudate, cingulate, inferior temporal, occipital
lobe were exclusively driven by T2DM. These results partly
concur with a volumetric meta-analysis by Moulton et al
(2015) who also observed occipital and caudate GMV reductions
in T2DM (Moulton et al, 2015). The caudate exhibits
a high insulin receptor density, so GMV in this region
may be especially vulnerable to diabetes-associated atrophy
(Schulingkamp et al., 2000). Interestingly, a recent transcriptomic
analysis conducted with over 300 T2DM samples found that
the T2DM-associated genes are expressed in the caudate
significantly more than other brain regions (Zhou et al,
2019). Functional analysis revealed that these T2DM-associated
genes affects synaptic functions and are related to other
neurodegenerative diseases.
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TABLE 2 | Papers included in the current meta-analysis.

References Number Number Mean age of Mean age of Diabetes Diabetes HbA1c (%)* Number MRI Quality
of of patients controls type duration receiving preprocessing score
patients controls (years) anti-diabetic methods
therapy
Kaufmann et al. 30 19 14.3+4.0 13+3.2 T1DM 56+3.8 8.4 +0.9 30 SPM 9.5
(2012)
Liu et al. (2019) 21 21 9.3+21 9.4+ 1.1 T1DM 0.6 +0.1 11.2+22 21 FSL 9
Marzelli et al. 142 68 7.0+17 7+1.8 T1DM 29+20 7.9+0.9 142 SPM 10
(2014)
Musen et al. 82 36 32.6 £3.2 31.3+ 5.1 T1DM 20.3+ 3.6 78+13 82 Analyze 10
(2006)
Nunley et al. 95 135 491+ 6.7 487 +7.3 TIiDM 40.9 £ 6.2 n/a 95 FSL 10
(2017)
Perantie et al. 108 51 126+27 123+27 TiDM 57+29 84+1.0 108 SPM 10
(2007)
Wessels et al. 31 21 40.8+£5.9 36.3+7.9 TIDM 26.8+8.3 8.0+ 1.1 31 SPM 10
(2006)
509 351 23.7 + 3.8 22.6 +4.2 14.7 + 3.8 8.6 +1.2 509
Chen et al. (2012) 16 16 61.2+7.8 59.6 + 6.1 T2DM 13.2+5.6 84+17 n/a SPM 10
Chen et al. (2017) 23 24 60.8 £8.3 57.0+75 T2DM 9.0+48 8.6+22 12 SPM 10
Cui et al. (2017) 40 41 60.5 £ 6.9 579+6.,5 T2DM 89+50 7.7+16 8 SPM 9
Fang et al. (2019) 35 32 32.1+53 341 +48 T2DM 1 104 £ 2.4 33 SPM 1
Ferreira et al. 24 27 58.6 + 8.6 59.9+59 T2DM 80+79 10.0+2.8 n/a SPM 8.5
(2017)
Garcia-Casares 25 25 60.0 £ 4.6 57.8+54 T2DM 11.25+79 6.7+0.8 25 SPM 10
et al. (2014)
Moran et al. (2013) 350 363 67.8+£6.9 721+ 7.2 T2DM 7 (median) 72+12 72 SPM 10
Nouwen et al. 14 19 161 +15 16.4+1.7 T2DM 27+25 81+23 12 SPM 10
(2017)
Redel et al. (2018) 20 20 16.7+£2.0 16.7+£2.6 T2DM 28+2.1 79+22 18 SPM 9
Wang et al. (2014) 23 23 53.1+£9.6 539+9.2 T2DM 7 83+14 n/a SPM 9.5
Wang et al. (2017) 17 17 54.8 +£8.3 544 +79 T2DM n/a n/a n/a SPM 12
Zhang et al. (2014) 53 29 542 +8.5 55.48 T2DM 73+5.7 76+15 n/a SPM 10
Zhang et al. (2019) 26 26 51.9+10.7 482 +£6.7 T2DM 92+71 n/a 21 SPM 10
666 662 49.8 + 6.8**  49.5 + 6.0** 7.3 +£54™ 8.3 + 1.8™ 201

Values represent mean + SD if not stated otherwise.

Bold rows depict sum scores for number of patients, number of controls and number receiving anti-diabetic therapy, and average scores for mean age of patients and controls, diabetes

duration and HbATc values.
“Indicates a significant difference (p < 0.01) between T1DM and T2DM.

"SIndicates no significant difference between T1DM and T2DM (independent samples T-test).

T1DM, type-1 diabetes mellitus; T2DM, type-2 diabetes mellitus; HbATc (%), Hemoglobin A1C (*provided for the DM group).

TABLE 3 | ALE clusters of lower gray matter volumes in TIDM and T2DM
compared to controls.

Cluster MNI coordinates Location T1DM % T2DM %

1 (=1, =31, 41) Left cingulate (BA 31) 0 100

2 (89, —67, —4) Right inferior temporal lobe 0 100

3 (14,12, =9) Right caudate 0.01 99.99

4 (=37, —84, —3)  Left occipital lobe 0.02 99.98

5 (=7,17,9) Left caudate 24.22 75.78

6 (64, —49, 15) Right middle temporal lobe 64.76 35.24

7 (—6, —81,42)  Left cuneus (BA 19) 78.41 21.59
Co-occurrence of DM and depression was observed

previously (Katon et al., 2010; Balhara, 2011; Roy and Lloyd,
2012; Badescu et al.,, 2016), and the prevalence of developing

depression is three times higher in TIDM patients and two times
higher in T2DM patients as compared to general population
(Roy and Lloyd, 2012). Moreover, those with depression are 60%
more likely to develop T2DM (Mezuk et al., 2008). Consistent
with our result, in structural and functional connectivity studies
of depression disorder, it was reported that there is lower gray
matter in the bilateral caudates (Shah et al., 2002; Kim et al.,
2008; Ma et al., 2012) and right middle temporal gyrus (Peng
et al., 2011; Ma et al., 2012; Kandilarova et al., 2019), and altered
functional connectivity in the right caudate and right middle
temporal gyrus (Ma et al.,, 2012). Deficits of these regions may
suggest shared pathways that contribute to DM and depression.
GMYV reductions in the cingulate cortex observed in our
study were confined to a cluster in the posterior cingulate cortex
(PCC). The PCC is considered as one of the “key hub” of the
DMN, and is associated with functions such as memory retrieval
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FIGURE 2 | ALE clusters of lower gray matter volumes in T1DM and T2DM compared to controls. Depicted are seven significant clusters, overlaid onto axial structural
MRI planes Numbers depict z-coordinates in MNI space. Blue clusters are driven by T2DM whereas both disorders contribute to green-yellow clusters. Percent
contribution is signaled by the color bar, with red indicating 100% contribution by T1DM and blue indicating 100% contribution by T2DM. Left is left.

(Gusnard et al., 2001a) and regulating attention (Gusnard et al.,
2001b). It has been reported that T2DM subjects have poorer
memory and attention impairments as compared to matched
controls (Gregg et al., 2000; Kanaya et al.,, 2004; van den Berg
et al,, 2010). Also, resting-states fMRI meta-analysis using ALE
demonstrates that the PCC is affected in T2DM patients (Xia
et al,, 2017). Other quantitative fMRI studies using functional
connectivity also show that resting-states is altered in the PCC
(Cui et al,, 2015; Ishibashi et al.,, 2018). These studies suggest
that T2DM may have a disrupted DMN. Furthermore, Chen et al.
found reduced functional activity in the PCC in T2DM patients
when performing an encoding task related episodic memory,
suggesting that DMN is affected in T2DM (Chen et al., 2016).
It has also been observed that fractional anisotropy (FA) of the
cingulum bundle are correlated to PCC and the medial frontal
gyrus, which are important regions of the DMN (Hoogenboom
etal., 2014). A previous meta-analysis speculated that gray matter
volume differences in the DMN regions including PCC may be
the reason why brain activation is affected in the DMN of T2DM
patients, in terms of functional connectivity and activity, and
ultimately leading to reduced cognitive performance (Liu et al.,
2017).

DM (especially T2DM) and AD both shared some common
neurocognitive functional deficits, one of which is the impaired
memory (Karvani et al., 2019; Backestrom et al., 2021). Most
research, especially using animal model, places hippocampus
as the center of focus on memory loss. While hippocampal
atrophy has been observed in T2DM, enlarged hippocampus was
reported in TIDM (Hershey et al., 2010; Heyden et al., 2011),
further indicating the mechanistic differences between T1DM
and T2DM. Hippocampus, located deep within the temporal
lobe, is not the only region responsible for memory function.
Middle and Inferior temporal gyri, which are relatively superficial
as compared to hippocampus, also play critical role in memory.
Our data has revealed GMV reductions in right middle temporal
gyrus and right inferior temporal gyrus. Middle and inferior
temporal gyri (Musen et al., 2006; Chen et al., 2012; Wang
et al., 2014; Redel et al., 2018; Zhang et al., 2019) have been

associated with semantic memory and semantic priming, in
which semantically related stimuli resulted in faster or more
effective activation. Early study has already shown a reduced
cerebral blood flow in temporal lobe (Jimenez-Bonilla et al.,
1996), which is believed to induce neuronal cell loss that resulted
in temporal gyri atrophy that accounts for the reduced GMV of
the respective regions.

Our data also indicated that left occipital lobe, and left
cuneus which is also located in occipital lobe, demonstrated
differential GMV in T2DM as compared to control. Occipital
lobe is the center for visual processing, and it is possible that
differential GMV could be a consequence of early sign of diabetic
retinopathy. For example, glaucoma induced retinal damages
has been shown to correlate with atrophy in occipital lobe,
in particular the BA19 (Jiang et al, 2017). BA19 is located in
parts of the cuneus and lingual gyrus. While lingual gyrus is
associated with visual memory, cuneus is known to relate to
inhibitory control (Haldane et al,, 2008; Wang et al., 2018),
the ability to inhibit or control impulsive responses by using
attention and reasoning. Dysfunction in inhibition, although
best known in people with attention deficits and hyperactivity
disorder (ADHD), is also observed in T2DM (Cooke et al., 2020).
In addition, strong correlation was observed between impaired
cognitive performance in T2DM patients and reduced blood flow
in cerebral regions, one of which was the occipital lobe (Cui et al.,
2017). Therefore, GMV reduction in occipital lobe and cuneus
may represent not only visual but also cognitive deficits.

Schizophrenia has long been found to link with increased
risk of T2DM, as the prevalence of type 2 diabetes is 2-5-
fold higher in patients with schizophrenia when compared with
those without DM (Mamakou et al., 2018). While this may due
to the impact of antipsychotic treatment and also the disease
progression, the fact that drug native patients of schizophrenia
were still at 1.27-1.63-fold of risk of having T2DM than general
population (Cohen and De Hert, 2011) may suggested that
there is uniquely shared risk factor between the two diseases. A
review of the genetic databases found 37 common susceptibility
genes between schizophrenia and T2DM (Mamakou et al., 2018).
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Association studies of the TCF7L2 gene in diabetes suggested
increased risk of schizophrenia (Hansen et al., 2011; Alkelai et al.,
2012).

Contrast to the suggested linkage between T2DM and
schizophrenia, a large population study of over 800k
individuals in Finland suggested the reverse between T1DM
and schizophrenia (Juvonen et al, 2007). The study found
an incidence of 0.21/10,000 schizophrenia in type 1 diabetes,
while it was 0.56 /1,000 schizophrenia in the general public,
an over 60% reduction in risk of schizophrenia in type 1
diabetes. Our findings in predominantly larger contribution of
T2DM in bilateral caudate deficit in gray matter echoes with
the contradictive difference in linkage between T1DM and
T2DM with schizophrenia. Bilateral caudate deficit was found
in drug naive patients of schizophrenia (Chua et al., 2007)
but not with treated patients (Leung et al., 2009), suggesting
caudate’s role in the early stage and also in the treatment stage
of schizophrenia.

In addition to focus given to the contribution of diabetes on
cognitive dysfunction, association of antidiabetic treatment
on cognitive performance on diabetic patients has also
gained attention. A recent meta-analysis (Zhang et al., 2020)
summarized 10 studies comprising 254,679 participants
to determine the relationship between metformin therapy
and cognitive function in T2DM patients, and compared
metformin treatment with other antidiabetic drugs, including
sulfonylureas, thiazolidinediones, and insulin. Despite all
the treatments targeting T2DM, only metformin exhibited
significant improvement in cognitive dysfunction, while insulin,
suprisingly, aggravated cognitive dysfunction. Furthermore, such
improvement was only significant in Americans and Europeans
but not in Asian patients, indicating perhaps glycemic control
alone might not be as effective in improving DM-induced
cognitive dysfunction as expected. In addition to its primary
antidiabetic action on reduction of glucose production in
liver, metformin has also been shown to prevent neuronal cell
death (El-Mir et al., 2008) and inhibited the molecular and
pathological development of AD in cell culture model (Gupta
et al, 2011). Metformin has been demonstrated to improve
cognitive performance in AD patients (Cao et al., 2018) as
well as in SAMP8 mice, one of the commonly used animal AD
model, without altering blood glucose level (Farr et al., 2019),
suggesting that this antidiabetic drug may improve cognitive
function by acting on pathways other than glycemic control
but the exact mechanism remained unclear. Although cognitive
impairment in DM may arise from hyperglycemia, it is believed
that a combinatorial effect of inflammation, oxidative stress,
impaired cerebrovasculature, increase B-amyloid deposition,
cerebral insulin resistance and formation of AGE all contribute
to the progressive development of cognitive dysfunction in
DM patients.

We acknowledge that there are a number of limitations
to this study. First is the “file-drawer” problem which means
that studies reporting null results are under-represented in the
literature. This is a problem which all meta-analyses suffer. In this
study, we tried to minimize this error by generating an empty

ALE map for studies that reported no gray matter differences
between patient groups and controls. However, such studies
demonstrating no differences are uncommon and not likely to
be published. Second, MRI methodology is continually being
improved, and the data extracted from various studies were pre-
processed and analyzed in different ways. It is unfortunate that
there were not enough studies to control for confounding factors
including modulation and smoothing. To reduce the difference
in methodologies affecting the outcome of our present study,
we made use of a customized checklist to assess the quality of
each study. The quality scores (mean: 9.9; s.d: 0.7) provide an
overview of rigorous of each study. Without checking for quality
scores, it is possible that lower quality studies (ex: outdated
MRI acquisition or data processing methods, and low sample
size) could influence the results. Lastly, while all TIDM patients
were medicated, only about one third of T2DM patients received
medication, hence we cannot rule out that our results could partly
reflect an effect of medication.

CONCLUSIONS

Our meta-analysis using the ALE methodology indicated GMV
reductions in seven brain regions in T1IDM and T2DM relative
to controls. Clusters of lower GMV associated with both diabetes
types were found in left caudate, right middle temporal lobe
and left cuneus, whereas clusters exclusively found in T2DM
were located in left cingulate, right inferior temporal lobe,
right caudate and left occipital lobe. Our results indicate a
more pronounced gray matter atrophy in T2DM compared to
T1DM. We interpret this finding in terms of microvascular or
macrovascular complications and disease-specific pathology of
T2DM. To our knowledge, this study is the first meta-analysis of
VBM studies in patients with DM which highlights overlapping
and distinct brain atrophy found in T1DM and T2DM. The
results of our study will aid understanding of the underlying
neurodegenerative process in TIDM and T2DM.
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