
fnins-15-642047 July 28, 2021 Time: 12:30 # 1

ORIGINAL RESEARCH
published: 29 July 2021

doi: 10.3389/fnins.2021.642047

Edited by:
Etienne De Villers-Sidani,
McGill University, Canada

Reviewed by:
Maria Vittoria Podda,

Catholic University of the Sacred
Heart, Italy

Andrej Kral,
Hannover Medical School, Germany

*Correspondence:
Miguel A. Merchan
merchan@usal.es

Specialty section:
This article was submitted to

Auditory Cognitive Neuroscience,
a section of the journal

Frontiers in Neuroscience

Received: 15 December 2020
Accepted: 30 April 2021
Published: 29 July 2021

Citation:
Díaz I, Colmenarez-Raga AC,

Pérez-González D, Carmona VG,
Plaza Lopez I and Merchán MA (2021)

Effects of Multisession Anodal
Electrical Stimulation of the Auditory
Cortex on Temporary Noise-Induced

Hearing Loss in the Rat.
Front. Neurosci. 15:642047.

doi: 10.3389/fnins.2021.642047

Effects of Multisession Anodal
Electrical Stimulation of the Auditory
Cortex on Temporary Noise-Induced
Hearing Loss in the Rat
Iván Díaz, Ana Cecilia Colmenárez-Raga, David Pérez-González, Venezia G. Carmona,
Ignacio Plaza Lopez and Miguel A. Merchán*

Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain

The protective effect of the efferent system against acoustic trauma (AT) has been
shown by several experimental approaches, including damage to one ear, sectioning
of the olivocochlear bundle (OCB) in the floor of the IV ventricle, and knock-in mice
overexpressing outer hair cell (OHC) cholinergic receptors, among others. Such effects
have been related to changes in the regulation of the cholinergic efferent system and in
cochlear amplification, which ultimately reverse upon protective hearing suppression. In
addition to well-known circuits of the brainstem, the descending corticofugal pathway
also regulates efferent neurons of the olivary complex. In this study, we applied our
recently developed experimental paradigm of multiple sessions of electrical stimulation
(ES) to activate the efferent system in combination with noise overstimulation. ABR
thresholds increased 1 and 2 days after AT (8–16 kHz bandpass noise at 107 dB
for 90 min) recovering at AT + 14 days. However, after multiple sessions of epidural
anodal stimulation, no changes in thresholds were observed following AT. Although
an inflammatory response was also observed 1 day after AT in both groups, the
counts of reactive macrophages in both experimental conditions suggest decreased
inflammation in the epidural stimulation group. Quantitative immunocytochemistry for
choline acetyltransferase (ChAT) showed a significant decrease in the size and optical
density of the efferent terminals 1 day after AT and a rebound at 14 days, suggesting
depletion of the terminals followed by a long-term compensatory response. Such a
synthesis recovery was significantly higher upon cortical stimulation. No significant
correlation was found between ChAT optical density and size of the buttons in sham
controls (SC) and ES/AT + 1day animals; however, significant negative correlations
were shown in all other experimental conditions. Therefore, our comparative analysis
suggests that cochleotopic cholinergic neurotransmission is also better preserved after
multisession epidural stimulation.

Keywords: corti organ, auditory brainstem responses, quantitative immunocytochemistry, choline acetyl
transferase, epidural anodal direct current stimulation, cochlear inflammatory response, cochleotopy
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INTRODUCTION

The medial olivocochlear (MOC) efferent system enhances
hearing sound detection throughout cochlear amplifier
regulation (Guinan, 2006, 2010; Lopez-Poveda, 2018), in
addition to inducing hearing suppression, as shown in
the seminal study by Robert Galambos (Galambos reflex)
(Galambos, 1956). More recently, compound action potential
(CAP) amplitude suppression and cochlear microphonic (CM)
amplitude increments have been shown when applying electrical
stimulation on the floor of the IV ventricle (Elgueda et al.,
2011). In line with its role in regulating hearing sensitivity,
efferent system activation induces a protective effect against
noise overstimulation (Handrock and Zeisberg, 1982; Patuzzi
and Thompson, 1991; Zheng et al., 1997; Tong et al., 2013;
Dinh et al., 2015; Boero et al., 2018). Furthermore, after
showing an increased resistance against hearing loss in knock-in
mice (KI; Chrna9L9′TKI, carrying a positive alpha 9-receptor
point mutation), it has been suggested that MOC cholinergic
neurotransmission is directly involved in minimizing noise
trauma (Boero et al., 2018).

Electrophysiological evidence also shows that, despite the
mechanism of self-regulation of the Galambos’ reflex in the
low auditory pathway, the brain cortex also controls efferent
olivocochlear (OC) responses (Xiao and Suga, 2002; Terreros and
Delano, 2015). Accordingly, descending corticofugal regulation
of the strength of the OC reflex has been demonstrated after
pharmacological blocking, cooling, or macrostimulation of the
auditory cortex (AC) in animal models (León et al., 2012;
Dragicevic et al., 2015; Terreros and Delano, 2015). The same
effect is detected in humans after cortical epidural electrical
stimulation (Fenoy et al., 2006; Perrot et al., 2006).

Short periods of noise overexposure produce reversible
changes in hearing loss, known as temporary threshold shifts
(TTS). In recent years, the full reversibility of TTS has been
questioned after showing that long-term damage of synaptic
buttons and afferent fibers persist in overstimulated animals
which recover their hearing threshold (Kujawa and Liberman,
2009). These masked alterations, currently known as hidden
hearing loss (HHL), can evolve into auditory alterations such
as hyperacusis, tinnitus, or difficulties in sound discrimination
(Liberman et al., 2016). Thus, short acoustic overexposure with
reversible threshold shifts stands out as an overlooked silent
alteration, increasingly prevalent in our noisy world, which lacks
treatment or prevention (Delano et al., 2020).

In our previous studies, we have recently communicated
that chronic anodal epidural stimulation in rats promotes
AC activation with transient hearing threshold elevation,
as demonstrated by auditory brainstem recordings (ABRs)
(Colmenárez-Raga et al., 2019). Based on these results, we
hypothesized that a multisession stimulation protocol of the
AC may induce a sustained and reversible decrease in hearing
sensitivity. Such an effect, also explored in this study, may be used
as a potential protective intervention in hearing disorders, such as
acoustic trauma or hyperacusis.

Here, we assess the effects on the inner ear of chronic epidural
stimulation of the AC in an animal model of transient sound

overexposure. More specifically, we analyze the effects of sound
overactivation in combination with multisession AC epidural
activation in the inner ear of the rat. For this purpose, we applied
our previously tested protocol of AC anodal epidural activation
(Colmenárez-Raga et al., 2019), followed by a sound stimulation
protocol designed for TTS induction [through a single session
of 107 dB at a restricted frequency band (8–16 kHz)]. In our
experimental approach, the protocol for acoustic stimulation was
quite similar to those previously applied by other authors for TTS
induction (Kujawa and Liberman, 2009, in mice or Lobarinas
et al., 2017, in rats). Ultimately, this study aims to correlate, in
a TTS model, the effects on hearing sensitivity of multisession
epidural anodal stimulation on the AC (measured by ABR
recordings) with MOC efferent cholinergic neurotransmission
in the cochlea, analyzed by quantitative immunocytochemistry
of choline acetyltransferase (ChAT) in surface preparations of
the organ of Corti.

MATERIALS AND METHODS

This study was conducted in strict accordance with Spanish
regulations (Royal Decree 53/2013—Law 32/2007) and European
Union guidelines (Directive 2010/63/EU) on the care and use
of animals in biomedical research. All surgeries were performed
under monitored anesthesia (respiratory rate, body temperature,
and oxygen saturation), and all efforts were made to minimize
suffering. In total, 28 young male Wistar rats weighing from 250
to 300 g, with normal ABR hearing thresholds, were separated
into four groups and treated using the following protocols:
electrode implantation without any stimulation (electrical or
acoustical) (Sham controls, SC), electrically stimulated (ES),
acoustic trauma (AT), and electrically stimulated followed by AT
(ES/AT) (Figure 1). Furthermore, we assessed the short-term
effects of these protocols 1 day after acoustic stimulation (day
13th of the protocol) and the corresponding long-term effects
14 days after AT (day 26th). As shown in Figure 1, the animal
groups were organized as follows:

SC—Sham controls (n = 12).
ES—Electrical stimulation. Euthanized at day 14th of the

protocol (n = 3). One of the cases of this group was dropped
from further analysis due to damage detected in the deep
layers of the AC.

AT—Acoustic trauma. Euthanized at short term (AT + 1 day,
day 13th of the protocol) (n = 3) and long term (AT + 14 days,
day 26th of the protocol) (n = 3).

ES/AT—Electrical stimulation and acoustic trauma.
Euthanized at short term (ES/AT + 1 day, day 13th of the
protocol) (n = 3), long term (ES/AT + 14 days, day 26th of the
protocol) (n = 3).

Sham control rats were histologically processed
simultaneously with the treated animals (paired processing
of brain sections and inner ear surface preparations).

Surgery
Under gas anesthesia (2.5% isoflurane), rats were placed in
a stereotaxic frame, surgically exposing the left temporal
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FIGURE 1 | Experimental groups: Timeline of intervention protocols. Over the line of time (red lines), day 0 labels the start of the protocols at 7 days after surgery.
From day 0, AT and ES/AT groups underwent acoustic overstimulation at day 12 (green loudspeakers). In groups with electrical stimulation (ES and ES/AT), the
multisession protocol was applied from day 0 to day 12. Symbols of ABR recordings (orange circles) and euthanasia (arrows and triangles) were over the curve of
time (line in red) following the sequence of events in the protocols.

cranial surface. Following the Paxinos and Watson stereotaxic
coordinates (Paxinos and Watson, 2005), four points were
drawn on the surface of the bone delimiting the borders
of the auditory area (for details, see Lamas et al., 2017).
An approximately square window was carefully drilled on
the bone surface until exposure of the surface of the dura
mater. Cold saline (4◦C) was dripped to avoid thermal
cortical lesions. A 2.25 mm2 silver electrode (anode) was
gently encrusted into the trepans, and two screws (cathode)
were implanted in the contralateral rostral-most side of the
skull. After appropriately connecting the system, the electrodes
and screws were fully covered by dental cement before any
further intervention.

AC Epidural Stimulation
A 0.1-mA continuous current was delivered for 10 min per
session through the epidural bone-attached electrode (anode)
using an ISU 200 BIP isolation unit controlled by a CS-
20 stimulator (Cibertec, Madrid, Spain). The stability of the
voltage current was monitored along sessions. The electrical
stimulation protocol was applied in awake animals for seven
sessions on alternating days (days 0–12 of the protocol)
(Figure 1). For more details, please see Colmenárez-Raga et al.
(2019). To assess if the cortical damage after ES enables AC
to drive corticofugal responses, serial sections of brain AC
were immunostained for GAD 67 in rats from the ES group
(please see below).

ABR Recordings
Recordings were performed under gas anesthesia using a real-
time signal processing system [RZ6 Multi I/O Processor, Tucker-
Davis Technologies (TDT), Alachua, Fl, United States]. The
sound system outputs were calibrated before the recordings using
a one-quarter-inch microphone (Brüel and Kjaer). Sound stimuli
were 0.1-ms alternating polarity clicks, with a repetition rate
of 21 clicks/s delivered in 10-dB ascending steps from 10 to
90 dB. The stimulation sessions were performed in an acoustically
isolated chamber. The stimuli were delivered in a close field using
a magnetic speaker (MF1 Multi-Field Magnetic Speaker TDT)
connected to the ear through a 10-cm-long plastic tube. This
approach resulted in a total delay of 1.4 ms in stimulus arrival at
the tympanic membrane. ABRs were recorded by averaging 1000
EEG responses to 1000 click stimuli. Three subcutaneous needle
electrodes were placed at the vertex and the two mastoids. Evoked
potentials were amplified and digitized using a Medusa RA16PA
preamplifier and a RA4LI head stage (TDT). Monaural ABRs
were recorded from the vertex using the electrode on the mastoid
ipsilateral to the click-stimulated ear, as the reference electrode.
The needle in the mastoid contralateral to the stimulated ear
served as the ground electrode. Monaural ABRs were sequentially
recorded by click stimulation in the left and right ears. The
placement of the recording electrodes was changed accordingly
to record the signals from the side of the sound-stimulated ear.
ABR recordings of both sides were analyzed separately. The final
signal was filtered with a 500-Hz high-pass filter and a 3,000-Hz

Frontiers in Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 642047

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-642047 July 28, 2021 Time: 12:30 # 4

Díaz et al. Auditory Cortex Stimulation and Otoprotection

low-pass filter (for more details on the ABR recording method,
see Colmenárez-Raga et al., 2019). Wave II was first recorded
in ABRs and then used to calculate thresholds (©MatLab R-
2017 a). The ABR threshold was defined as the minimal sound
intensity that evoked a significant voltage change (in a latency
range between 1.4 and 5 ms) exceeding the mean ± 2 standard
deviations of the voltage value of background activity during the
first ms of the recording. The absolute wave latency was defined
as time, in milliseconds, from the stimulus onset to the positive
peak of the wave. The amplitudes of the ABR waveforms were
measured as the peak-to-peak amplitude between the preceding
negative trough to the subsequent positive peak of a given wave.
In AT and ES/AT groups, ABRs were recorded before and after
surgery, as well as 7 days after (day 0), right before AT (day 12)
and 1 day (day 13), 2 days (day 14), 7 days (day 19), and 14 days
(day 26) after AT (Figure 1).

Sound Stimulation for Acoustic Trauma
(AT)
Awake rats were in a non-reverberant cage with non-parallel
sides and exposed to a bandpass noise (8–16 kHz) of 107 dB
for 90 min. Noise stimuli were generated digitally (RP2.1,
TDT), filtered (RPVDS software), amplified (Audio Source AMP
ONE/A), and calibrated inside the cage before each experiment
using a one-half-inch microphone (Bruel and Kjäel Instruments,
4134) and a sound level meter with a fast Fourier transform (FFT)
analyzer (Larson Davis 831).

Histology
Animals were deeply anesthetized with an intraperitoneal
injection of 6% sodium pentobarbital (60 mg/kg BW) and
perfused transcardially with 4% p-formaldehyde in a 0.1-M
phosphate buffer (PB). Immediately, cochleae were perfused
through the round window, dissected, postfixed for 2 h at room
temperature, and decalcified in 8% EDTA for 12 days. Surface
preparation membranes were extracted and then dissected
into six pieces for whole-mounting processing of the cochlear
epithelium. Immunostaining started with a blocking buffer (PBS
with 5% normal horse serum and 0.3% Triton X-100) for 3 h,
at room temperature, followed by a 2-day incubation at 37◦C
with the primary antibody, Goat Anti-Choline Acetyltransferase
polyclonal antibody (AB144P; Merck Millipore, Temecula, CA,
United States) at 1:100. After washing three times in TBS-Tx
for 15 min, the dissected pieces were incubated with an anti-
goat biotinylated secondary antibody (biotinylated anti-goat IgG
H + L, BA-5000; Vector, Burlingame, CA, United States) at
1:200 for 24 h at room temperature. The pieces were then
washed with TBS-Tx and incubated for 24 h in avidin/biotin–
peroxidase (ABC complex, Vectastain Standard ABC Kit PK-
4000; Vector, Burlingame, CA, United States) and further washed
with TBS-Tx, followed by Tris–HCl, pH 8.0. They were then
incubated in 3,3-diaminobenzidine tetrahydrochloride (DAB; D-
9015; Sigma-Aldrich, St. Louis, MO, United States) with 0.006%
H2O2 to visualize the peroxidase reaction. The pieces were finally
dehydrated in graded alcohol solutions from 50 to 100%, followed
by clearing in xylene and coverslipping.

To locate the area of stimulation in the cortex, brains were
serially sectioned in the coronal plane into 40-µm sections
and immunostained for IBA1 and GFAP, according to our
previously published method (Colmenárez-Raga et al., 2019).
Glial reaction, both for IBA-1 and GFAP, was delimited on the
auditory cortices (data not shown) as previously described by
our group. To analyze the state of preservation of the temporal
auditory area, after multisession protocol, alternate serial sections
of brains from the ES group were stained for Nissl and for GAD
67 monoclonal mouse antibody (Merck Millipore #MAB5406
clone 1G10.2 RRID: AB_2278725) diluted at 1:1,000 TBS 0.05
M + Triton-Tx 0.3% according to the protocol previously
described in Pernia et al. (2020) (Figure 2).

Morphometry and Densitometry
For cochlear reconstruction, dissected immunostained
segments of the organ of Corti (surface preparations) were
photographed at × 5 objective and digitized using the
Neurolucida software (NL-Vs 8.0, MicroBrightField R©, Inc.,
Williston, VT, United States) under a Leica DMRX microscope
equipped with a set of plan apochromatic objectives. Pictures
from each slide were combined and ordered cochleotopically
using as reference changes in the width of the organ of Corti
and the thickness and density of the spiral bundle. Using
this approach, a single final image of the whole cochlea was
recomposed using the Canvas software (Canvas Draw 5 for
Mac). After digital reconstruction, a line was drawn along the
spiral bundle (SB) to calculate the cochlear length. These lines
were measured using the Canvas perimeter tool. The length
of the rat basilar membrane has been previously analyzed and
estimated as 9.4 mm for Wistar Rats (Burda et al., 1988). In
our samples, the mean perimeter of all cochleae measured was
8.08 mm (SD 0.79). According to previous measurements (Burda
et al., 1988), our larger cochlear reconstruction was 9.4 mm
in length. By using the “measure line” plugin of the ImageJ
software program, provided by Eaton-Peabody Laboratories,
the locations of several frequencies in the reconstructed cochlea
were labeled for subsequent topographic cochleotopic analysis
(see below). Once the frequencies were located in the cochlea,
six pictures per cochlea (×40 objective) centered on 2.8, 8, 11.3,
16, 32, and 45.2 kHz were captured using the deep focus tool
from Neurolucida 8.0 (MBF Bioscience, Williston, Vermont,
United States). To obtain the resulting deep-focus image, five
1-µm images were Z-stacked using the first surface plane of sharp
focus of immunoreactive terminals as a reference. The acquired
images were processed for morphometric and densitometric
analysis of ChAT immunostained buttons using the software
ImageJ. Both densitometric and morphometry analyses were
performed after separating (digital cutting) the entire OHC area
in the pictures with the free hand tool of the ImageJ software
program (Figure 3).

Morphometry
Size and Number of Terminals
Images (×40) with a digital resolution of 25 pixels/µm2 were
used for morphometry (Figure 3A). For segmentation of
ChAT-ir cell buttons, thresholding operations were further
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FIGURE 2 | Coronal sections at interaural 4.48 mm (Paxinos atlas coordinates) from a case from group ES euthanized at day 14 of the protocol (2 days after
multisession epidural stimulation). GAD 67 dense reaction product in the surface of the cortex defines the position of the electrode. Arrowheads indicate the limits of
the lesion in the coronal plane. The perimeter length of the reinforced area in the brain surface was 2.03 mm. Cytoarchitectural landmarks (double arrows) delimit the
auditory cortex area. Note the well-defined immunoreactive layers and the well-preserved cytoarchitectural subdivisions in the non-damaged auditory area.

FIGURE 3 | Methodology used for densitometric analysis of immunoreactive buttons. (A) Example of a × 40 deep focus picture. (B) Digital resolution. (C) Thirty
terminals per frame (highlighted in black) were manually taken by using freehand tool (ImageJ software).
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applied with ImageJ. Thresholding was applied to all images,
followed by automatic counting of all selected particles.
Terminal immunoreactive buttons were segmented using
density thresholding in the ImageJ software program. The
number of segmented buttons was normalized to N/10,000
µm2 surface area.

Densitometry
Before capturing, the illumination source of the microscope was
adjusted using a stepped density filter (11 levels) ( R©EO Edmund
industrial optics—ref 32599, Karlsruhe, Germany). In total, 30
buttons per ×40 image (equivalent to one frequency sample)
were manually segmented using the ImageJ freehand selection
tool (Figure 3). The density values of immunoreactive terminals
were determined using the ImageJ software. The mean gray level
of the neurons (a value between 0 and 255) was used as a measure
of the button immunoreactivity to ChAT. We used the values
of microscopic illumination determined using the density step
filters (see above) to translate gray values into optical density
(OD) values. In this paper, normalized gray OD levels were
used instead of direct gray-level measures. The normalized gray
levels were calculated by subtracting the mean of OD of the
field (value of the entire OHC region) from the OD level of
the immunoreactive buttons and by dividing the result by the
standard deviation of the entire field.

Statistical Analysis
Statistical analysis was performed using the IBM R© SPSS R©

software, version 25 (IBM Corp. and SPSS Inc., Chicago,
IL, United States, RRID: SCR_002865). Differences in ABR
thresholds values between different record times within each
group were analyzed using the non-parametric Friedman test
followed by Bonferroni post hoc. Comparisons between groups at
each recording time were performed using the Mann–Whitney
test. No significant differences were found when comparing
recordings of the left and right ears of SC and stimulated animals.

For quantitative immunocytochemistry, one-way ANOVA
followed by the Bonferroni and Games–Howell post hoc
tests were used to assess differences between groups in OD,
number/10,000 µm2, and size of ChAT immunoreactive terminal
buttons. Differences between groups by frequencies were assessed
by two-way ANOVA. Spearman’s rank and Pearson correlation
coefficients were used to analyze correlations between size and
OD measurements of immunoreactive terminals. Differences
were considered significant at p < 0.05.

RESULTS

ABR Recordings
SC animals showed regular, constant 10-dB ABR thresholds in
recordings at different timepoints of the protocol. In the AT
group, the thresholds significantly increased at AT + 1 day
(day 13) (30 ± 6.32 dB, p < 0.01) and AT + 2 days (day
14) (21.66 ± 4.08 dB, p < 0.05) (Figure 4A) and decreased at
AT + 7 days (day 19) (13.33 ± 5.16 dB), albeit non-significantly,
until reaching values similar to those of pretreated rats at

AT + 14 days (day 26) (Figure 4A). In the ES/AT group, during
the pretreatment period (before acoustic stimulation and after
surgery, from 0 to 12 days), the animals received seven sessions
of epidural electrical stimulation on alternating days (Figure 4B).
After this sequence of cortical stimulation, and before AT, the
mean thresholds increased to 33.33 dB (SD 5.16) (Figure 4B).
However, no significant differences in mean thresholds were
found at AT+ 1 day (day 13) (Figure 4B). The comparison of the
thresholds at the same stages of the protocol AT+ 1 day (day 13)
and AT + 2 days (day 14) between the AT and the ES/AT groups
shows that the means of the AT group are significantly higher
than those of the ES/AT group (Figure 4C). In the ES group, the
thresholds increased after the last session of epidural stimulation
(day 12), as shown in the ABR recordings. The mean threshold
values reached normal levels at ES+ 1 day (day 13) (Figure 4D).

Brain Cortex Preservation After
Multisession Stimulation
The localization and extension of the electrical stimulated area in
the brain cortex was analyzed using glial immunocytochemical
markers (GFAP and IBA-1) and Nissl staining in alternate
sections, following the approach previously applied by our group
(Colmenárez-Raga et al., 2019). In addition, to test the state
of preservation of the cortical microcircuitry in the ES animal
group, serial sections were stained for GAD 67 (Figure 2).
As observed in our previous study, all areas of glial reaction
highlighted by glial markers were restricted to the auditory
temporal area. Furthermore, the more superficial layers were
affected in varying degrees, depending on how the electrode
is encrusted into the skull [data not shown; please refer to
Colmenárez-Raga et al. (2019) for further details].

Denser GAD 67 immunoreactivity in the dura and superficial
layers of the cortex makes it possible to define the extension of
the damaged areas (Figure 2). Immunoreactive GAD neurons
and terminal fields are present virtually throughout the auditory
cortices despite a ribbon under the dura (Figure 2). Around
the area of contact of the electrode, the cytoarchitecture and
layering of the auditory temporal area can be easily differentiated
through cases, thus indicating that cortical microcircuits beyond
the damaged region are well preserved (Figure 2).

Anatomy
General Features From Sham Controls
Under the microscope, immunostained preparations showed
thick, myelinated fascicles of positive efferent fibers across
the spiral limbus of Huschke and along the floor of the
tunnel of Corti. Fascicles penetrated in, ramified at, and
meandered around the deeper section of supporting phalangeal
cells. After a short ascent, the fibers ended in terminals
and innervated the basal pole of the OHC. A dense dark-
brown reaction product sharply defined the size and shape of
efferent terminals along the cochlea (not shown). Differences
in size, density, and number of immunoreactive buttons
were observed along the frequency range (Figure 5A).
When comparing buttons between cochleotopic regions,
the higher the frequency, the more regular the distribution
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FIGURE 4 | Thresholds and waveform analysis of ABRs. (A) The AT group shows a significant threshold shift at AT + 1 day (day 13) and AT + 2 days (day 14).
(B) The ES/AT group shows a significant threshold shift before, but not after, overstimulation (the green loudspeaker labels acoustic stimulation). Waveform analysis
is shown in the middle of the panel. Lines represent averaged waves from all animals of each group. The thickest lines label averaged thresholds. (C) Statistical
comparison of the mean thresholds of groups AT vs. ES/AT. Note significant differences in threshold shifts after AT at day 13, the day after acoustic stimulation.
Please also note that, in the days after the recordings, the thresholds recover later in the AT group than in the ES/AT group. (D) ES group. Multisession epidural
stimulation induces threshold shifts immediately after the last stimulation on day 12, which recovers 1 day later (day 13).
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FIGURE 5 | (A) Comparison of changes in size and number of ChAT-immunostained terminal buttons along frequency regions of the cochlea in SCs. Images were
acquired using a deep focus tool. (B) Statistical analysis of size of buttons upon density threshold segmentation. Note that the size of the terminals increases and
decreases along the tonotopic axis of the cochlea. Significant differences were found when comparing each frequency region with the adjacent, except between
11.3 and 16 kHz regions. (C) Number of terminals measured by density threshold segmentation normalized to 10,000 µm2. The lower significant number of the
terminals was found at 2.8-kHz areas and the highest at 32-kHz areas. After comparing adjacent frequency regions, significant differences were found between 2.8
and 8 kHz and 16 and 45 kHz (*p > 0.05, **p < 0.01, ***p < 0.001).

in rows and the shape of immunoreactive buttons would
be (Figure 5A). Values in the size of the buttons increased
gradually in mid-frequency regions and decreased in
high-frequency regions (Figure 5B). Overall, normalized
numbers of segmented particles indicate a gradual increase,
along the cochlear axis, from low- to high-frequency
regions (Figure 5C).

Inflammatory Response
In both SCs and stimulated cochlea (AT and ES/AT), free
cells were more frequently found in the tunnel of Corti. These
cells were irregular in shape and variable in size (from 5 to
20 µm) (Figure 6). The largest cells (10–20 µm), which showed

intense ChAT immunoreactivity, were spherical and contained
filopodia and pseudopodia, features which identify them as
macrophages (Figure 6 arrowheads). The smallest cells (about
5–10 µm) were not immunopositive but also had filopodia and
were thus compatible with monocytes (Figures 6A,B,F white
arrows). A few of these cells were found in control cochleae.
For this reason, we considered them as a casual finding at
the beginning of the microscopic observation. Some of these
free cells have been found in our material associated with the
loss of efferent synapses and the presence of debris, which
suggest an active digestion of terminal buttons (Figures 6B–
D). In surface preparations of stimulated cases (AT and
ES/AT), the number of macrophages was extremely variable
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FIGURE 6 | Inflammatory reaction in the cochlea after acoustic trauma. (A) Panoramic view of the organ of Corti in surface preparation. Large immunoreactive
inflammatory cells (arrowheads) are interspersed with other smaller non-immunoreactive (arrows). (B) Inflammatory cells, presumably macrophages, migrating to the
OHC area. (C,D) Details of close contacts of immune cells with immunoreactive terminals. Cell debris is associated with the loss of terminals. (E) Immune cells
climbing along efferent fibers. (F) Presumably monocytes with filopodia, most frequently observed in the floor of the tunnel. Differential interference contrast
microscopy (Nomarski) (×63 PLAN APO Leica/NA 1.32-0.6 immersion oil). (G) Quantification of the immune response by counting separately the number of
immunoreactive and unstained macrophages. The number of inflammatory cells is higher after AT in the AT group and decreases at 14 days (day 26th). SB spiral
bundle.

with a random distribution along the cochlea. After separately
counting immunoreactive and non-immunoreactive cells and
normalizing the values (per 1,000 µm of cochlear length), a
higher number of cells were tallied AT + 1 day (day 13) than
ES/AT + 1 day (Figure 6G). In both experimental conditions
(AT and ES/AT), the values of number of reactive and non-
reactive inflammatory cells decreased at AT + 14 days (day
26) (Figure 6G).

Cholinergic Olivocochlear Terminal
Buttons. Quantitative
Immunocytochemistry
Morphometry
After counting immunoreactive buttons by density threshold
segmentation, a statistically significant loss of terminals was not
detected in any experimental groups when comparing with SC
(data not shown). A significant decrease in the size of terminals
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was detected only in group AT + 1 day (day 13) when analyzing
the cochlea as a whole (F = 3.639; p < 0.01) (Figure 7A).
However, in both experimental groups (AT and ES/AT) a non-
significant decrease was also observed in ES/AT + 1 day (day
13), with a recovery of the values at 14 days after AT (day
26) (Figure 7A).

Densitometry
Analysis of the whole cochlea showed a significant decrease
in normalized OD values when comparing SC with both
experimental conditions (AT and ES/AT) at 1 day after
acoustic trauma (day 13) (F = 3.548; p < 0.001) (Figure 7B).
In addition, OD values significantly rebounded in both
experimental conditions (AT or ES/AT) at 14 days after acoustic
trauma (day 26), although the ES/AT values were significantly
higher (Figure 7B).

Analysis by Frequency Regions
Six frequency regions were selected along the tonotopical axis
per cochlea (see “Materials and Methods” section) and analyzed
to assess changes in size and OD of immunoreactive terminals
(squares in cochlear reconstruction in Figure 8A). In the SC
group, the values of the size of buttons gradually increase
and then decrease across frequencies, showing a Gaussian
distribution, peaking at 11.3 kHz (Figure 8B top). In comparison,
the size of terminal buttons in AT and ES/AT animals decreased
at AT + 1 day (day 13), mostly in the middle-frequency
regions (please see Figure 8B, red lines in AT + 1 day and
ES/AT + 1 day). Changes in the shape of the lines connecting
mean size values allows a better understanding of the evolution
of the parameters along frequency areas (envelopes—red lines
in Figure 8B). Statistical comparison of the values for each
frequency region with the SC group showed a significant decrease
in the 11.3-kHz region at AT + 1 day (day 13) (Figure 8B,
arrow). In addition, at 14 days after ES (day 26), the size for
terminals increases again for the middle frequencies in both
groups (AT and ES/AT) recovering the Gaussian distribution
observed in SC (Figure 8B right). Interestingly, the largest
terminals appear now in the 16-kHz region, in contrast to peak
in the 11.3-kHz region of the SCs (Figure 8B—compare bars
highlighted in yellow).

The distribution of OD values in the SC group showed no
significant differences across frequency regions (Figure 8C—
top). However, a significant decrease in values was evident
in AT + 1 day (day 13), in the 8- and 32-kHz regions
(Figure 8C—arrows). Such decrement was not found in the
ES/AT group (Figure 8C bottom). On the other hand, at
day 26 of the protocol, the OD is increased compared to
the sham controls in group ES/AT in the 2.8- and 45.2-kHz
regions (Figure 8C bottom). After correlation test analysis of
both parameters (size and OD), all experimental groups, except
ES/AT + 1 day (day 13), showed a significant correlation
(Table 1). We suggest that this finding speaks in favor of a
better-preserved cochleotopy (more similar from controls) 1 day
after ES.

DISCUSSION

In this study, we have shown that multiple sessions of
electrical activation of the AC before sound overstimulation
preserve hearing thresholds and curtail the inflammatory
response in the cochlea without a significant loss of terminals.
Furthermore, sound overstimulation significantly reduces the
size of the immunoreactive cholinergic buttons 1 day after
acoustic overstimulation (day 13) in the AT group, but not
after cortical electric activation in the ES/AT group as shown
by ChAT quantitative immunocytochemistry in cochlear surface
preparations. The OD values of the ChAT immunoreaction
products decrease in both experimental groups (AT and ES/AT)
at 1 day after sound overstimulation (day 13). The values of
both parameters (size and OD) recover at 14 days after acoustic
overstimulation (day 26) despite OD means being significantly
higher in ES/AT than in AT.

The analysis of the normalized measurements of
immunoreactive buttons by frequency region shows statistically
significant decreases only in AT + 1 day (day 13), for both size
(at 11.3 kHz) and OD (at 8 and 32 kHz). Correlation test analysis
for both parameters (size and OD) shows no significance only in
group ES/AT+ 1 day (day 13).

Animal Model
Cortical Effects of Epidural Stimulation
Changes in GAD immunoreactivity after cortical damage were
previously analyzed by our group in a model of restricted
ablation of the AC, showing that this marker for GABA neurons
allows to define the limits of the lesion as well as the cortical
cytoarchitectural subdivisions (Lamas et al., 2013). Inhibitory
microcircuits (GAD-GABA) are crucial for neuronal network
regulation (Kawaguchi, 2017) and indirectly reflect, if well
preserved, potential effectiveness for driving responses of the
brain cortex. Both present results (Figure 2) and our previous
analysis of the effects of cortical multisession electric stimulation
(Colmenárez-Raga et al., 2019) have shown that injuries in
the cortex after electrode activation are restricted to relatively
small areas of the auditory temporal area. Moreover, descending
pathway activation of ACs can be ensured in our material, since
the deeper cortical layers (layers 5 and 6, where corticofugal
neurons are located) are not significantly affected (Figure 2).
The size and shape of the damaged temporal cortex, as shown
in reconstructions from our previous publication (please see
Figure 9 in Colmenárez-Raga et al., 2019) and the well-preserved
GAD cytoarchitecture (present results, Figure 2), indicate that
auditory cortices remain functional after the protocol of ES.
Since stimulation is unilateral in our model, excitatory callosal
connections may also contribute to drive the corticofugal
neurons of the contralateral side. Although residual plasticity
effects cannot be fully ruled out in our experimental approach,
marked increases and decreases in ABR threshold shifts also
indicate a dynamic active feedback regulation of cortical neuronal
networks over time. Notwithstanding anatomical analysis of
AC preservation after stimulation, minimal lesions should be
considered out of safety limits.
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FIGURE 7 | Area and OD statistical analysis of ChAT-immunoreactive terminals through the cochlea. (A) Size of the particles. Differences were significant between
the SC group and AT + 1 day (day 13) (red lines indicate this comparison). After comparing day 1 (day 13) and 14 (day 26) days after overstimulation, significant
differences were identified only in the AT group (black lines). No significant differences were found after any comparison in the ES/AT group. (B) OD analysis of
efferent terminals. Values are significantly lower at 1 day after overstimulation (day 13) under both experimental conditions (with or without ES). A rebound in values,
significantly higher in the ES/AT group, was found at 14 days after overstimulation (day 26). *p < 0.05, **p < 0.01, ***p < 0.001.

Sound Overstimulation
Our experimental approach to overstimulation was quite similar
to the one published by Lobarinas et al. (2017). These authors
reported (after subjecting rats to 2 h of band-pass noise of 8–
16 kHz at 106 dB) threshold shifts ranging from 20 to 25 dB,
approximately 1 day after sound overstimulation and a long-term
full recovery, as shown in our animal model. Furthermore, in
this paper, tonal ABRs show threshold elevations with a linear
increase in the values from lower to higher frequencies and with
a decrease in distortion product otoacoustic emissions (DPOAE)
amplitudes (Lobarinas et al., 2017).

In a similar overstimulation protocol in mice, threshold shifts
1 and 2 days after overstimulation recovered at 8 weeks after
applying a band noise of 8–16 kHz (100 dB, for 2 h in free
field) (Kujawa and Liberman, 2009). These authors also reported
an acute loss of synaptic ribbons in hair cells, which may have
functionally silenced neurotransmission despite the complete
recovery of hair cell function. Such an alteration, known as
hidden hearing loss (HHL), supports an underlying long-term
alteration of neurotransmission to spiral ganglion dendrites,
after which auditory thresholds resume normal values. However,
cochlear nerve responses depend not only on glutamatergic
neurotransmission of IHCs but also on efferent cholinergic
neurotransmission of outer hair cells, which indeed regulates
micromechanically its responses (Malmierca and Merchán,
2004). Our results show changes in efferent neurotransmission
with normal thresholds at 14 days after AT (day 26) (Figures 7, 8).
Following this line of thinking, we suggest that our protocol, or
other similar ones, should be explored in the future at longer
survival times together with a combined evaluation of afferent
and efferent neurotransmission.

Hearing Sensitivity (ABRs)
Multiple sessions of ES before sound overstimulation induce
hearing suppression, as shown by elevated thresholds after
ABR recordings (Figures 4B,D), thus confirming our
previously reported results using a similar stimulation protocol

(Colmenárez-Raga et al., 2019). Due to the excitatory character of
the corticofugal descending pathway (Feliciano and Potashner,
2002), anodal stimulation of the AC can drive the direct (cortico-
olivary) and indirect (via inferior colliculus IC) corticofugal
pathway (Horváth et al., 2003), which ultimately activates MOC
olivary neurons. From an anatomical point of view, direct
connections from infragranular layers of the AC and from the
IC to the olivary complex support a descending corticofugal
activation of VNTB–MOC neurons (Spangler et al., 1987; Vetter
et al., 1993; Malmierca et al., 1996; Saldaña et al., 1996; Weedman
and Ryugo, 1996; Winer et al., 1998; Schofield and Cant, 1999;
Thompson and Schofield, 2000; Senatorov and Hu, 2002; Doucet
et al., 2003; Warr and Boche, 2003; Bajo and Moore, 2005; Bajo
et al., 2007; Malmierca and Ryugo, 2011; Mellott et al., 2014;
Straka et al., 2015). Thus, in our protocol, persistent threshold
shifts, shown after the end of cortical electrical stimulation
(day 13) (Figures 4B,D), can be explained by a sustained
activation of synaptic plasticity machinery in cortical networks.
Such cortical activation has also been demonstrated after daily
anodal transcranial direct current stimulation, which induces
a persistent neural excitation and overexpression of plasticity-
associated genes in the sensorimotor cortex (Kim et al., 2017).
Moreover, after AC restricted ablation in the rat, the AC is able to
trigger plasticity in the organ of Corti, inducing stable and long-
term changes in the expression of motor proteins (Prestin and
ß Actin), as previously shown by our group (Lamas et al., 2013,
2014). Considering the roles of the efferent system in hearing
(Guinan, 2010), threshold elevation, after ES, can be explained
by sustained and persistent cortico-olivary activation followed
by MOC and/or inner ear plastic responses. Therefore, the effect
of ES in decreasing hearing sensitivity (hearing suppression),
before sound overstimulation (Figures 4B,D), is the most
plausible explanation for differences in changes in threshold
shifts over time between the AT and the ES/AT experimental
groups. In addition, in the ES/AT group, the threshold shift
occurred before AT, with normal thresholds at 1 day after AT
(day 13); hence, changes in immunoreactivity parameters are
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FIGURE 8 | (A) Image on the right shows membranous labyrinth of the cochlea after dissection. On the right, cochlear reconstruction was performed using digitally
glued images from immunostained Organ of Corti surface preparation. Total length of the cochlea in this example was 9.237.7 µm, which ensures a complete
extraction and accurately allows to define frequency regions. Squares delimit frames of the photographs taken to analyze a significant sample of six frequency
regions. (B) Quantitative analysis of size by frequency region. Each bar in the graphs corresponds to one frequency region. Red lines on the top of the bars highlight
the evolution of means of size values along cochleotopic regions. Note the changes in shape of the enveloping red lines in relation to SC at 14 days (day 26).
Asterisks indicate significant differences between the experimental groups and SC for each frequency. Yellow bars indicate frequencies of higher values in SC, AT,
and ES/AT groups at 14 days after AT (day 26). Arrows indicate significant decreases in values in the 11.3-kHz region at AT + 1 day (day 13). (C) Significant decrease
in OD values at AT + 1 day (day 13) in the 8- and 32-kHz regions and increases in 2.8 and 45.2 kHz, in the ES/AT group.
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TABLE 1 | Correlation test.

Animal groups Means/SD Means/SD Coefficient p-value

of OD of area

Control 4.30/1.25 10.00/4.63 −0.123 p > 0.05

AT + 1 day 3.37/0.84 8.14/2.51 −0.584 p < 0,001

EE/AT + 1 day 3,26/0,79 9,11/3,11 −0.269 p > 0,05

AT + 14 days 4,34/0,69 11,36/3,73 −0.578 p < 0.001

EE/AT + 14 days 5.14/1.90 11.33/4.45 −0.391 p < 0.001

most likely primarily related to cortical stimulation, rather
than to AT, under this experimental condition, as discussed
below. Synaptic plasticity activation has been demonstrated
by whole-cell patch-clamp recordings, showing that layer 5
neurons can respond through long-term potentiation (LTP) or
long-term depression (LTD), after layer 6 stimulation in AC
slices (Kotak et al., 2007). Also, tDCS stimulation increases
cortical neuronal metaplasticity in AC neuronal networks (LTP
or LTD) (Nitsche et al., 2008; Zhang, 2013). Moreover, after
repetitive stimulation of the cortex, neurons develop a sustained
increase in firing rate for hours (Nitsche and Paulus, 2000). In
our recordings, presumable increases in the excitability and firing
rate of corticofugal neurons of layers 5 or 6 after repetitive anodal
stimulation can be related to MOC neuron activation. Threshold
shifts induced by overstimulation depend primarily on reflex arc
activation in the low auditory pathway (De Venecia et al., 2005).
However, after electric stimulation of the temporal area and
acoustic overstimulation, both feedbacks (reflex arc and cortico-
olivary) involved in cochlear amplification work in combination.
Therefore, the increase in thresholds after AT may be driven
by persistent metaplasticity (LTP) of the epidurally stimulated
cortex. Indeed, the recovery of thresholds at ES/AT + 1 day (day
13) indicates a compensation net induced by an overactivated
corticofugal pathway acting on MOC olivary neurons.

Technical Limitations
The click stimulus used to record the ABRs is a broadband
stimulus covering a wide range of low frequencies (<10 kHz).
Although this click stimulus can be used to successfully measure
threshold shifts in rats (see Figure 4), it may not show
the potential contribution of high frequencies to transient
threshold shifts. Accordingly, future studies using tonal ABRs
may shed light on putative differences in threshold at low and
high frequencies.

Quantitative Immunocytochemistry
ACh is synthetized in the soma and terminals of the neurons
by the combined choline and acetyl CoA reaction catalyzed by
ChAT. ACh is delivered into the synaptic clefts and coupled by
receptors, and the remaining neurotransmitter is hydrolyzed by
the enzyme acetylcholinesterase (AChE); concurrently, choline
reuptake in the terminals enables its coupling with acetyl CoA
(Simon and Kuhar, 1976; Kuhar, 1979; Matsuo et al., 2011).
Consistently, neurotransmitter storage in terminals depends on
the rate of synaptic delivery of ACh, on balanced de novo
synthesis, and on neurotransmitter recycling. Our measurements
of the size and OD of the buttons, which quantitatively indicate

the amount of reaction product, and ultimately the rate of ACh
synthesis, reflect the state of synaptic neurotransmission. Thus,
decreases in the size and OD of efferent terminals shown by us
reflect synaptic depletion, after sound overactivation. After sound
overstimulation, AChE (the enzyme involved in ACh recycling)
immunoreactivity in the organ of Corti decreases in guinea pigs
(Mounier-Kuhn and Haguenauer, 1967) and chinchilla (Kokko-
Cunningham and Ades, 1976) according with our results. In
our samples, the size of the terminals significantly decreased in
AT + 1 day (day 13) but not in ES/AT + 1 day (day 13). Thus,
the differential values of terminal button quantitative analysis,
assessed in ES/AT, can be related to a mitigated noise effect
induced by hearing suppression. The significant rebound of OD
values in the ES/AT group 14 days after AT (day 26) suggests
a recovery in ACh synthesis after depletion by acoustic trauma.
However, significant differences in OD values in the ES/AT group
at 14 days (day 26) after AT (Figure 8C bottom), which were
not observed in the AT + 14 days (day 26) group, may also
be related to the activation of long-term cortical plasticity by
electrical stimulation. In the ES/AT group at 1 day and 14 days
after AT, quantitative analysis shows that changes in values of
quantitative immunocytochemistry result in combination with
normal thresholds (Figures 4, 7). These results suggest that
temporal windows for stabilization of efferent neurotransmission
do not match hearing sensitivity recovery. Future analysis of
correlation of efferent and afferent system alterations at long term
will be needed to shed light on this problem.

Analysis by Frequency Regions
According to a previous ultrastructural analysis of ChAT
immunoreactivity in the organ of Corti, MOC terminals in the
OHC are compact and densely filled with reaction products
(Eybalin and Pujol, 1987), as shown in our light microscopy
images. Consequently, fulfilled terminals with a homogeneous
immunoreactive product, shown in our material, ensure that our
measurements detect accurately the actual size of the buttons.
Synaptic size is affected by multiple molecular mechanisms, some
of which depend on dynamic synaptic activation, whereas others
remain unaffected (Lund and Lund, 1976; Pierce and Milner,
2001; Stanic et al., 2003; De Paola et al., 2006; Pasantes-Morales
and Tuz, 2006; Grillo et al., 2013; Petrof and Sherman, 2013;
Statman et al., 2014; Pasaoglu and Schikorski, 2016; Sammons
et al., 2018). Cochleotopic analysis of the size of immunoreactive
terminals in our control animals shows a progressive increase
from low-to-medium-frequency areas and a gradual decrease to
high-frequency ones (Figure 8B). The bell distribution of size
values in the SC group is replaced by a more homogeneous
distribution at AT + 1 day (day 13) and ES/AT + 1 day
(day 13) due to the decrease in the size of the buttons at the
middle range of frequencies (8–16 kHz). These results suggest a
more intense effect of frequencies at the noise band (8–16 kHz)
used for sound stimulation (Figure 8B). Unlike the size of the
terminals, the OD values, as assessed by frequency region, show
a flat distribution in the SC group, with slightly higher values
at the ends of the frequency range (Figure 8C). In fact, OD
measures the amount of ChAT in synaptic efferent buttons and,
indirectly, the rate of ACh synthesis. A significant decrease in
OD values of AT + 1 day (day 13) in the frequency regions
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of 8 and 32 kHz (not shown in the electrical stimulated group)
may reflect unrecovered neurotransmitter synthesis in mid-
frequency regions after depletion of terminals by overactivation
(Figure 8C). Tonotopical analysis of ABRs in rats, applying a
similar TTS protocol (107 dB—frequency band of 8–32 kHz—
90 min of sound exposure) and with a similar timeline (1 day
and 2 weeks), has shown that, although thresholds returned to
baseline, wave 1 amplitudes at 16, 24, and 32 kHz failed to return
to control levels (Lobarinas et al., 2017). Significant changes in
size and OD have been shown in our stimulated groups in similar
ranges of frequencies at 1 day post stimulus but not at 14 days
(Figures 8B,C); however, recovery was observed at 14 days after
exposure. This apparent discrepancy in tonotopic effects of AT
between our anatomical results and those of Lobarinas et al.
(2017) can be related to a delayed recovery of ACh synthesis with
respect to wave-amplitude thresholds. No significant changes
in size or OD have been shown in the ES/AT + 1 day (day
13th) group across frequency regions. Conversely, significant
differences were shown in both parameters at AT + 1 day (day
13th) (vertical arrows in Figures 8B,C). It seems relevant to
remark that all experimental groups, except ES/AT + 1 day
(day 13th), showed a significant correlation, after correlation
test analysis, which suggests better-preserved cochleotopy (more
similar from SC) induced by electric stimulation of the temporal
cortex (Table 1).

Inflammatory Response
Immune responses, primarily involving monocytes and
macrophages in the cochlea, have been shown after sound
overstimulation (Fredelius and Rask-Andersen, 1990; Hirose
et al., 2005; Wood and Zuo, 2017; Frye et al., 2019; He et al.,
2020, among others).

The cochlear immune response includes resident cells, which
can actuate by humoral liberation of inflammatory mediators
(i.e., supporting cells and lateral wall fibrocytes, among others)
(Cai et al., 2013) and mobile cells (macrophages). Such cochlear
cleaners are located in the basilar membrane, as silent monocytes,
which migrate to the sensory epithelium after activation by
cochlear damage (Fredelius and Rask-Andersen, 1990; Frye
et al., 2017). Our microscopic observations show ChAT-
immunoreactive cells, variable in size (5–20 µm in diameter)
and shape (irregular or globular), usually with filopodia, mainly
located in the tunnel of Corti, which can be anatomically
identifiable as macrophages (Figure 6). These cells have been
closely related to areas of cell debris and loss of immunoreactive
buttons (Figures 6A–D). Collateral pruning by microglial cells
is currently considered a physiological mechanism of regulation
of network connectivity and plasticity. Accordingly, microglial
amputation of buttons occurs in neurological diseases, such
as Parkinson’s disease, Alzheimer’s disease (Hong et al., 2016),
epilepsy (Andoh et al., 2019), or schizophrenia (Sellgren et al.,
2019). Whether or not macrophages, in our animal model,
effectively or extensively participate in the remodeling of efferent
terminal fields in damaged cochlea remains unknown, but this
is undoubtedly an interesting question, which merits further
research in the near future.

Considering that some ChAT immunoreactivity was
detected interstitially, cochlear macrophagic cells may also be
involved in actively removing the enzyme from the perilymph.
However, dendritic macrophages physiologically express
choline acetyltransferase (ChAT), muscarinic and nicotinic
acetylcholine (ACh) receptors, and acetylcholinesterase
(AChE) (Fujii et al., 2017). In principle, their potential
constitutive molecular profile may also explain their
immunoreactivity. Yet, small cells remained unstained,
and the immunoreaction was mainly detected in the larger
cells. This finding supports the hypothesis that reactive
macrophages may act as cleaners of ChAT, after neurotransmitter
depletion in the efferent terminals. Our normalized cell
counts showed that the number of macrophages is higher
in AT + 1 day (day 13) than in ES/AT + 1 day (day 13)
(Figure 6G), which suggests that the immunoreaction (and
presumably the cochlear damage) is lower after cortical
electrical stimulation.

CONCLUDING REMARKS AND
CLINICAL IMPLICATIONS

In this paper, we have shown that multisession ES prevents
threshold shifts and minimizes inflammatory reaction after
acoustic overstimulation in our animal model of TTS.
Consequently, auditory temporal area stimulation can be
considered a potential approach to hearing preservation
after mild sound overstimulation. ChAT quantitative
immunocytochemistry results also indicate that TTS
induces short-term neurotransmitter depletion of cholinergic
terminals apposed on OHC, which recovers in the long
term. Significant long-term increases in the amount of
neurotransmitter in terminals (OD analysis), in the electrically
stimulated experimental group, indicate persistent plastic
activation of the MOC with normal thresholds, which
should be explored in future research. Furthermore, the
widening range of sizes and differences in OD along
the cochleotopic axis suggests that chronic multisession
anodal stimulation helps also to preserve the tonotopic
neurotransmission of the efferent olivocochlear terminals
in the inner ear.

In line with its role in cochlear amplification, activation of
the efferent system induces a protective effect against noise
overstimulation (Handrock and Zeisberg, 1982; Patuzzi and
Thompson, 1991; Zheng et al., 1997; Tong et al., 2013; Dinh et al.,
2015; Boero et al., 2018). However, in this paper, we provide
data supporting new strategies based on cortical activation for
preventing repetitive TTS and eventually HHL. Our multisession
anodal stimulation protocol clearly avoids threshold shifts after
TTS. The neurological basis for such a sustained and reversible
decrease in hearing sensitivity is most likely related to the
activation of long-term potentiation of Hebbian responses of the
circuits involved in MOC activation (i.e., cortical, midbrain, or
superior olivary circuits or most probably all of them). Exploiting
neural effects of AC repetitive stimulation will enable the
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development of new strategies for treating diseases with altered
hearing sensitivity (hyperacusis) or hearing loss by acoustic
overstimulation.

Performing repetitive chronic stimulation of the temporal
cortex of patients will, nevertheless, require overcoming
two obstacles: developing a non-invasive procedure and
deeply stimulating the sulcus of cerebral cortex convolutions.
Notwithstanding the difficulties, a new electric stimulation
approach based on temporal interfering electric fields has
been recently reported (Grossman et al., 2017; Sunshine et al.,
2020). This procedure induces deep stimulation through surface
electrodes and, therefore, is a promising method for chronic
repetitive stimulation in patients, especially considering the
results from ongoing experiments in our laboratory.
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