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Neurochemistry of Visual Attention
Denise Elfriede Liesa Lockhofen* and Christoph Mulert

Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany

Visual attention is the cognitive process that mediates the selection of important
information from the environment. This selection is usually controlled by bottom-up and
top-down attentional biasing. Since for most humans vision is the dominant sense, visual
attention is critically important for higher-order cognitive functions and related deficits
are a core symptom of many neuropsychiatric and neurological disorders. Here, we
summarize the importance and relative contributions of different neuromodulators and
neurotransmitters to the neural mechanisms of top-down and bottom-up attentional
control. We will not only review the roles of widely accepted neuromodulators, such
as acetylcholine, dopamine and noradrenaline, but also the contributions of other
modulatory substances. In doing so, we hope to shed some light on the current
understanding of the role of neurochemistry in shaping neuron properties contributing
to the allocation of attention in the visual field.
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INTRODUCTION

Definition of Visual Attention
The term “visual attention” refers to cognitive processes that allow us to selectively process
the vast amount of information we are confronted with every day. Since the capacities of the
perceptual system are limited, focusing on a certain aspect of the visual field enables us to prioritize
relevant information and ignore irrelevant information. Even though there are many definitions of
attention, the following review will mainly be concerned with visuospatial selective attention.

Bottom-Up and Top-Down Attention
This biasing of input is implemented through different types of attention. One of the most common
distinctions is made between top-down and bottom-up attention (Corbetta and Shulman, 2002).
Top-down refers to the voluntary guidance of attention by internal goals, whereas bottom-up
attention refers to the involuntarily capture of attention by salient events in the environment.

Abbreviations: 5-HT, 5-hydroxytryptamine (serotonin); ACh, acetylcholine; ADHD, attention-deficit-hyperactivity-
disorder; BG, basal ganglia; BOLD, blood-oxygen-level-dependent; CHT, choline transporter; COMT, catechyl-O-
methyltransferase; DA, dopamine; DAN, dorsal attention network; DAT, DA transporter; DBH, dopamine-beta-hydroxylase;
DMN, default mode network; FCPN, fronto-parietal control network; FEF, frontal eye field; fMRI, functional magnetic
resonance imaging; GABA, gamma-aminobutric acid; IPS, intraparietal sulcus; LC, locus coeruleus; mAChR, muscarinic ACh
receptor; MRS, magnetic resonance spectroscopy; NA, noradrenaline; nAChR, nicotinic ACh receptor; NMDA, N-methyl-
D-aspartate; PET, positron-emission-tomography; PFC, prefrontal cortex; SNR, signal-to-noise-ratio; SOA, stimulus-onset-
asynchrony; tDCS, transcranial direct current stimulation; TMS, transcranial magnetic stimulation.
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These terms describe if attention is allocated based on
events in the sensory periphery (bottom-up) or from higher
cortical areas (top-down). Both attention modes have been
associated with distinct neural processes, but seem to be
closely connected (Katsuki and Constantinidis, 2014). For
example, it was found that top-down beta band influences
causally increased bottom-up gamma-band influences from
early visual areas (Richter et al., 2017). However, the apparant
dichotomy of top-down and bottom-up attention has been
challenged recently, since evidence suggests that there
might be other factors controlling visual selection, such as
reward-based history effects (Awh et al., 2012; Failing and
Theeuwes, 2018). Together, these processes modulate neural
activity within the visual system and thus shape how we
perceive our environment. It has to be kept in mind though
that visual attention and working memory processes are
difficult to separate and highly interactive (Awh et al., 2006;
Theeuwes et al., 2009).

Focus and Motivation of Review
Visual attention is an important component of higher-level
cognition, particularly in humans for whom vision is the
dominant sense. Thus, deficits in visual attentional processing
are a core symptom of many neurological and neuropsychiatric
disorders. In recent years, there has been an ever-growing
number of studies dedicated to the field of visual attention
processing, especially to the important question of underlying
mechanisms. This increasing interest is supported by recent
advances in technology. Electrophysiological and neuroimaging
methods have provided new insights into the human brain while
it is engaged in cognitive work (He et al., 2011). Non-invasive
stimulation methods, like transcranial magnetic stimulation
(TMS) and transcranial direct current stimulation (tDCS), have
been used to influence the excitability of cortical tissues and to
investigate the cognitive functions of brain regions (Sparing and
Mottaghy, 2008). In addition, magnetic resonance spectroscopy
(MRS) measures the concentration of metabolites in different
tissues and allows for the in vivo study of biochemical processes
in the brain (Tognarelli et al., 2015). However, despite the
growing interest in the topic and the development of new
techniques, there are still many open questions concerning
the mechanistic basis of visual attention (Moore and Zirnsak,
2017). Until now, studies targeting the neurophysiology or
neurochemistry behind attentional processing have focused
on top-down attentional processes. It can be assumed that
bottom-up attention also modulates neural activity within the
visual system, but this mechanism is comparably less well
understood (Noudoost et al., 2010; Moore and Zirnsak, 2017;
Thiele and Bellgrove, 2018). This is unfortunate, because
several neuropsychiatric disorders have been linked to deficits
in bottom-up attentional processing, such as schizophrenia
(Javitt, 2009; Neuhaus et al., 2011) and ADHD (Schneidt et al.,
2018). In contrast to earlier works, we want to give a more
complete overview of the neurochemical influences on both
aspects of visual attention. Furthermore, we aim to include
neuromodulators and neurotransmitters that other reviews have
so far neglected. In doing so, we hope to shed some light on

aspects of visual attentional processing that have not yet been
thoroughly investigated.

NEURAL BASIS OF ATTENTIONAL
PROCESSING

Brain Regions Involved in (Top-Down and
Bottom-Up) Visual Attention
Visual attention is by definition a selective process. It facilitates
the processing of information based on their visual saliency
or inherent goals, while irrelevant stimuli are filtered out.
Neurophysiological and neuroimaging studies have provided
valuable information about the brain regions involved in this
filtering process. Generally, it is believed that the influence
of attention increases along a cortical hierarchy, characterized
by expanding size and complexity of receptive fields (Serences
and Yantis, 2006). However, early attentional effects are already
detectable at V1 (Katsuki and Constantinidis, 2014). From
there, bottom-up processing of visual information ascends to
higher cortical areas through two major pathways. The ventral
pathway, comprising posterior visual areas (V1–V4), the inferior
temporal cortex and the ventral prefrontal cortex, is assumed
to deal with object- and feature-based visual processes. The
dorsal pathway on the other hand is supposed to deal with
spatial- and movement-related processes and includes V1,
V2, and V3, middle temporal regions, the posterior parietal
cortex and the dorsolateral prefrontal cortex (Mishkin and
Ungerleider, 1982; Ungerleider and Haxby, 1994; Katsuki and
Constantinidis, 2014). By contrast, the top-down selection of
visual information is supported by prefrontal and parietal areas
and exerts its influence primarily through feedback connections.
Particularly brain regions associated with oculomotor or
gaze function, such as the frontal eye fields (FEF) and the
intraparietal sulcus (IPS), seem to be involved in voluntary
attentional control (Noudoost et al., 2010; Meehan et al., 2017;
Thiele and Bellgrove, 2018).

Computational Theories of Visual
Attention
Computational theories of attention provide a closer look at
the neural mechanisms by which relevant information are
filtered from the environment (Koch and Ullman, 1985; Itti
and Koch, 2001). They propose that bottom-up attention is
implemented through a mechanism, which directs attention
to the most salient stimulus in the visual field. Therefore,
it is assumed that the basic visual features supporting the
selection of a certain stimulus (e.g., orientation, luminance
or color) are represented in separate feature maps, which
are then combined into a topographically oriented global
saliency map. Based on a winner-take-all-mechanism attention
increases neuronal activity for the winning neuron population
and suppresses all competing populations. Thus, attention is
directed to the spot on the salience map which shows the
most activation (Katsuki and Constantinidis, 2014). However,
attention allocation is not only determined by stimulus salience
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but also by internal goals. This led to the postulation of a priority
map, which is supposed to integrate top-down and bottom-
up factors (Serences and Yantis, 2006; Bisley and Goldberg,
2010). The idea of a priority map simultaneously modulated by
both processes is supported by functional magnetic resonance
imaging (fMRI) research showing that bottom-up and top-down
attention increase activation in an overlapping frontoparietal
brain network (Corbetta and Shulman, 2002; Katsuki and
Constantinidis, 2012, 2014).

Attentional Effects on Neuronal Activity
On the neural level, attention modulates the acitivity of neurons
or neuron populations representing an attended location or
feature by increasing their signal-to-noise-ratio (SNR; Noudoost
et al., 2010; Paneri and Gregoriou, 2017; Sapountzis and
Gregoriou, 2018). One way in which attention strengthens the
selected signals is by modulation of the neuron’s firing rate.
Another important effect of attention is a decrease in the
correlated variability of visual neurons, which might be an even
more significant factor with respect to general reductions in
SNR than the modulation of firing rates (Cohen and Maunsell,
2009; Mitchell et al., 2009; Deco and Hugues, 2012; Paneri
and Gregoriou, 2017). Additionally, attention might lead to
frequency specific modulations of local oscillatory activity at
different stages of visual processing (Gregoriou et al., 2015).
These modulations include rhythmic synchronizations in the
gamma band range (30–60 Hz) which might result in a more
effective processing (Murthy and Fetz, 1994; Fries, 2005, 2009;
Deco and Thiele, 2009; van Es and Schoffelen, 2019). Support
for this assumption comes from neurophysiological studies that
demonstrate long-range gamma coupling between visual neurons
processing an attended stimulus (Gregoriou et al., 2009; Bosman
et al., 2012; Grothe et al., 2012). Thus, competition between
representations during attentional selection might be resolved
by modulations of firing rate and inter-neuronal variability, but
also by coordinated oscillatory activity (Paneri and Gregoriou,
2017). How these changes are brought about is still not
completely clear. One option would be the involvement of
neuromodulators.

NEUROMODULATION

General Information
Neuromodulation describes the alteration of neuronal and
synaptic properties by neurons or substances released by neurons
(Katz and Calin-Jageman, 2008). A wide variety of substances,
including neurotransmitters, biogenic amines and neuropeptides
can act as neuromodulators (Noudoost and Moore, 2012; Nadim
and Bucher, 2014; Moore and Zirnsak, 2017). While there is
no exact definition of the term “neuromodulator,” Picciotto
et al. (2012) describe them as “any kind of neurotranmission
that is not directly excitatory [. . .] or inhibitory [. . .]” (p.1,
refering to Siggins, 1979; Ito and Schuman, 2008). The human
neuromodulatory system includes noradrenergic, serotonergic,
dopaminergic and cholinergic projections, which are thought
to provide a foundation for many higher cognitive functions,

such as attention, decision-making, emotion and goal-directed
behavior (Avery and Krichmar, 2017). Neuromodulatory actions
are generally mediated by G-protein-coupled receptors and
affect ion channels or other membrane proteins. Thereby,
neuromodulators can change intrinsic firing properties and alter
the synaptic strength of neurons, as well as modify short-term and
long-term plasticity (Gu, 2003; Sakurai and Katz, 2009; Picciotto
et al., 2012; Nadim and Bucher, 2014). It has to be kept in
mind though, that because of the complexity of neuromodulatory
effects, the non-linear dynamics of neuromodulators and the
simultaneous synaptic presence of several neuromodulators, the
consequences for specific cortical processes, like visual attention,
are difficult to comprehend (Nadim and Bucher, 2014).

Neuromodulation of Visual Attention
Shifts in behavioral states (from sleep to wakefulness or from
inattentive to vigilant) are connected to changes in global
brain activity. These changes are at least partly controlled
by neuromodulators (Lee and Dan, 2012). However, since
attentional processes, such as top-down attention, were
considered to be highly specific, whereas the actions and
projections of most neuromodulators were not, their involvement
in regulating selective attention remained controversal (Mesulam
et al., 1986; Sarter et al., 2009). Only recently, it has been assumed
that the global mechanisms governing cortical states may also
operate on a local scale, for example during visual selective
attention (Harris and Thiele, 2012; Rabinowitz et al., 2015;
Engel et al., 2016). This assumption was supported by studies
demonstrating that the same neuromodulators known to
act on a brain-wide scale also modulate attentional effects
(Zaborszky and Duque, 2003; Herrero et al., 2008; Harris and
Thiele, 2012; Noudoost and Moore, 2012). For example, the
neurotransmitter acetylcholine (ACh) has been implicated in
vigilance and attention, as well as in the regulation of global
brain states (Lee et al., 2005). Applying ACh to cells in primate
V1, as well as enhancing ACh activity with cholinesterase
inhibitors (donezepil) in humans seems to evoke neuronal effects
similar to those of attention (Roberts et al., 2007; Gratton et al.,
2017). Furthermore, attention can stabilize network states and
decrease interneuronal correlation (Deco and Hugues, 2012).
Interestingly, a decrease in neural variability is also found
when stimulating the basal forebrain in rats, assumed to be
associated with a local activation of ACh receptors (Goard and
Dan, 2009). These and other similarities between attention
and cholinergic activation have led to the suggestion that
the neuromodulator ACh might be involved in attentional
processing (Lee and Dan, 2012).

NEUROMODULATORS

Neuromodulators most often implicated in attentional processes
include ACh and dopamine (Noudoost and Moore, 2011;
Froemke, 2015; Thiele and Bellgrove, 2018). However, in
the following section we will also review other important
neuromodulators and their influence on voluntary and
involuntary visual attention.
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Acetylcholine
General
ACh is an important neurotransmitter at the neuromuscular
junction. In the brain its actions are primarily neuromodulatory
(Picciotto et al., 2012). While ACh is synthesized in several
different nuclei, its most important source is the basal forebrain.
From there cholinergic projections innervate neocortex,
hippocampus and amygdala (Mesulam et al., 1983; Woolf, 1991;
Thiele, 2013). ACh receptors are typically categorized based
on their binding capacity for muscarine and nicotine and thus
divided into metabotropic muscarinic receptors (mAchRs) and
ionotropic nicotinic receptors (nAChRs). Both receptor types
show a widespread distribution within the nervous system (Gotti
et al., 2006; Thiele, 2013) and there is evidence that they are
both involved in attentional control (Noudoost and Moore,
2011). ACh has been implicated in attentional processes for
quite a long time (Bartus et al., 1982; Zaborszky et al., 2002;
Weinberger, 2007; Sarter et al., 2009; Newman et al., 2012;
Carcea and Froemke, 2013; Ballinger et al., 2016). It is assumed
to enhance attentional effects in the visual cortex by improving
neuronal tuning (Sajedin et al., 2019) and modulating the spatial
properties of receptive fields (Roberts et al., 2007; Gratton et al.,
2017). Additionally, ACh seems to alter the covariance structure
of cortical networks and to increase their coding capacity
(Minces et al., 2017; Thiele and Bellgrove, 2018). Whereas
earlier studies assumed that the cholinergic system would lack
spatial and functional specificity (Mesulam et al., 1986; Sarter
et al., 2009), recent findings argue that the spatial specificity of
cholinergic projections is better than previously believed (Thiele,
2013; Wu et al., 2014; Unal et al., 2015; Zaborszky et al., 2015,
2018; Jiang et al., 2016; Gielow and Zaborszky, 2017). In this
context, it was demonstrated that ACh not only shows slow tonic
activity (Manns et al., 2000; Lee et al., 2005), but also precise
phasic activities, associated with cue detection performance
in attention tasks (Parikh and Sarter, 2008; Sarter et al., 2009;
Gritton et al., 2016).

Effects of ACh Modulation on Visual Attention
Most earlier studies examined rodents and non-human primates
to establish that attention allocation leads to changes in
neuronal activity throughout the visual system. In monkeys, the
application of ACh augmented their responses to attended
stimuli, while the application of an mAchR antagonist
(scopolamine) reduced the modulatory effect of attention
(Herrero et al., 2008). In humans, the acute cognitive effects
of nAChR agonist nicotine on attention but also on sensory
processing and memory are well established (Heishman et al.,
2010; Hahn, 2015; Hahn et al., 2020). Evidence for ACh
involvement in attentional modulation comes from a variety of
studies using different methodologies. Using magnetic resonance
spectroscopy, Lindner et al. (2017) measured choline as an
indirect marker of ACh availability in the brain. By measuring
choline levels in the parietal cortex during a visuospatial
attention task, they found direct evidence for the involvement
of cholinergic systems in human visual attention. In a double-
blind, placebo-controlled crossover fMRI study Ricciardi
et al. (2013) assessed cholinergic effects on brain connectivity

and blood-oxygen-level-dependent (BOLD) signal variability
during a visual selective attention task (matching task with
superimposed faces and houses). They found that cholinergic
enhancement by physostigmine (acetylcholinesterase inhibitor)
improved task performance as well as reduced BOLD signal
variability and functional connectivity between ventral visual
processing areas and task-relevant regions. These findings were
concluded to be in line with the assumption that cholinergic
modulation enhances neural efficiency reflected by less BOLD
signal variability in visual regions (Ricciardi et al., 2013).
Research targeting the genetics of cholinergic influence on
visual attention investigated the choline transporter (CHT),
which is important for the synthesis and release of ACh (Sarter
et al., 2016). The authors found that genetically reduced CHT
activity leads to poorer top-down attentional control and
more attentional distraction, whereas elevated levels of CHT
may increase resistance to distraction. Moreover, it was found
that ACh modulates neural oscillations during attentional
processing (Bauer et al., 2012; Howe et al., 2017). In rats, for
example, detection of visual cues was associated with phasic
ACh release and increases in high and low frequency power.
In addition, nAChR and mAChR antagonists (mecamylamine,
telencepine) reduced power in the high gamma frequency,
most likely related to cue-triggered reorienting effects (Howe
et al., 2017). In humans, the cholinergic agonist physostigmine
has been shown to enhance visual attention effects on low-
level alpha and beta oscillations (Bauer et al., 2012). After
establishing that ACh plays a major role in modulating
attentional processes, the following section will try to dissociate
the contributions of nicotinic and muscarinic receptor types to
this modulatory effect.

Dissociable Effects of nAChR and mAChR
Both, the nACh and the mACh receptor allow ACh to modulate
electrical activity of cortical neurons and to affect intracellular
signaling (Thiele, 2013; Yakel, 2013). In addition, both have
been implicated in higher cognition, particularly in attention and
memory (Friedman, 2004; Green et al., 2005; Sarter and Parikh,
2005; Ellis et al., 2006).

Concerning nicotinic involvement in visual attention, it was
found that in human participants nicotine (administered as
NICORETTE polacrilex gum) improved attentional reorienting
in a visuospatial cued detection task by a reduction of
neural activity in parietal brain regions of non-smoking
participants, measured by fMRI (Thiel et al., 2005). In
another fMRI study, Hahn et al. (2009) found that nicotine
(administered as transdermal patch) reduced reaction times
specifically for selective attention tasks (compared with a
divided attention task), while also reducing BOLD activity
in several cortical and subcortical regions and increasing
deactivations within the default mode network. Thus, the effects
of nicotine on attention seem to be task-dependent with a
stronger impact on simple detection tasks, probably induced
by an enhanced functional efficiency and a downregulation
of task-independent default activity (Hahn et al., 2009).
Furthermore, applying a nicotine antagonist (Mecamylamine)
led to disturbances in visual attention and fine motor
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tasks, which could be reversed by the administration of
transdermal nicotine (Alvarez-Jimenez et al., 2018). Using a
CombiTVA paradigm, Vangkilde et al. (2011) showed that
nicotine (administered as Nicotinelle polacrilex gum) lowers
the perceptual threshold, speeding up short-term memory
transfer, but slowing down subsequent information processing
and weakening top-down selective attention. In addition, it
was demonstrated that normal variation in a nicotinic receptor
gene modulated visuospatial attention, but dopamine gene
variability did not (Greenwood et al., 2005; Parasuraman
et al., 2005). However, low doses of an nAChR antagonist
(mecamylamine) did not seem to affect spatial selective
attention, stimulus detection or visual information processing
(Yuille et al., 2017).

Besides, there is also evidence of muscarinic involvement
in attentional modulation. In rodents, mACh transmission
influences visual processing in V1 (Kang et al., 2014), improving
neural sensitivity and increasing long-term responsiveness
(Gu, 2003; Kang and Vaucher, 2009; Kang et al., 2014).
Using iontophoretic pharmacological analysis and single-cell
recordings in V1 neurons of macaque monkeys performing a
top-down spatial attention task, it was found that low doses
of ACh enhanced attentional modulation in V1 neurons, while
applying scopolamine (mACh antagonist) reduced attentional
modulation and mecamylamine (nACh antagonist) had no
effect (Herrero et al., 2008). In humans, Laube et al. (2017)
found that the mAChR antagonist scopolamine modulated
top-down attentional control processes during a contingent
capture task by reducing an EEG component associated with
active suppression of irrelevant distractors. Additionally, Ellis
et al. (2006) showed that muscarinic (scopolamine), but not
nicotinic (mecamylamine) blockade reduced performance in
sustained attention measured by digit vigilance and rapid visual
information processing tasks.

However, there is also the idea that nicotinic and muscarinic
influences might have differential effects, but work synergistically
to shape attentional processing (Hasselmo, 2005; Ellis et al.,
2006; Greenwood et al., 2009; Dasilva et al., 2019). For example,
it was proposed that ACh would enhance thalamocortical
transmissions through nicotinic receptors, boosting bottom-
up inputs. Top-down attentional effects, on the other hand,
would be reduced by muscarinic inhibition (Hasselmo, 2005;
Greenwood et al., 2009). These differences in cholinergic actions
across brain regions might be supported by the different
expression profiles of nicotinic and muscarinic receptors from
primary sensory to higher cortical areas (Galvin et al., 2018).
For example, it was found that in macaque early visual
areas (V1) mACh receptors were predominantly expressed by
gamma-aminobutric acid (GABA) ergic cells while in higher
regions they also occured on pyramidal cells. In V1 nicotinic
β2 receptors are expressed presynaptically on thalamocortical
cells (Disney et al., 2007; Galvin et al., 2018), whereas in
higher cortical regions, nACh receptors are expressed on
glutamatergic inputs to layer V cells as well as on layer
V interneurons and pyramidal neurons (Poorthuis et al.,
2013). Furthermore, mACh and nACh receptors showed cell-
type specific activity by promoting attentional control signals

through muscarinic receptors in broad spiking cells and
through muscarinic and nicotinic cells in narrow spiking cells
(Dasilva et al., 2019).

ACh Effects on Bottom-Up and Top-Down Visual
Attention
It is believed that ACh has a greater effect on top-down
attentional modulation than on bottom-up cue detection (Rokem
et al., 2010; Galvin et al., 2018). The cholinesterase inhibitor
donezepil selectively improved performance in long SOA trials
of a spatial cueing task, thus, enhancing voluntary attention,
without affecting involuntary attention. Therefore, it seems
likely that top-down and bottom-up attention rely on “different
neurochemical mechanisms” (Rokem et al., 2010). A recent study
used a contingent capture paradigm and the muscarinic receptor
antagonist scopolamine to test the involvement of muscarinic
receptor activation in the modulation of top-down attentional
control. While scopolamine did not affect early visual feature-
enhancement or attentional capture by task-relevant features,
it did reduce a measure associated with active suppression of
distractors, pointing toward a cholinergic modulation of top-
down attentional control (Laube et al., 2017). Other studies
found that an increase in ACh seems to augment visual
attention through an increase of activity in visual regions and
a reduced top-down biasing of sensory information (Bentley
et al., 2004; Vangkilde et al., 2011). Thus, apart from the
influence of ACh on voluntary attentional control, there is
also some evidence of cholinergic influence on bottom-up
attention. Studies examining Parkinson’s disease patients have
demonstrated the importance of thalamic cholinergic integrity
for bottom-up attentional mechanisms (Kim K. et al., 2017).
Animal and human studies on bottom-up attention show
that attentional orienting to peripheral cues is supported by
cholinergic activity in the basal ganglia (Voytko et al., 1994;
Witte et al., 1997; Murphy and Klein, 1998). A study with non-
human primates indicates that covert attentional orienting might
rely on muscarinic cholinergic activity in the intraparietal cortex
(Davidson and Marrocco, 2000). Furthermore, it was found that
ACh enhances the response to external sensory information while
reducing background noise (Hasselmo and McGaughy, 2004;
Hasselmo, 2005). This sharpening of visuospatial representations
might favor bottom-up attentional processes. Interestingly, it
seems that cholinergic effects on top-down and bottom-up
attention are not incompatible. As already mentioned, top-down
and bottom-up effects of ACh might rely on the interplay
between muscarinic (top-down) and nicotinic (bottom-up)
ACh receptors (Hasselmo, 2005; Greenwood et al., 2009). In
addition, there is evidence that the two attentional processes
might be dissociated by temporal ACh release properties.
Whereas bottom-up attention involves phasic ACh release in
interaction with thalamocortical circuits (Gritton et al., 2016;
Sarter and Lustig, 2019), top-down attention is supported by
longer-timescale cholinergic modulation of right fronto-parietal
circuity (Paolone et al., 2010; St. Peters et al., 2011; Sarter
et al., 2016; Sarter and Lustig, 2019). This is in line with the
assumption that cholinergic activity establishes biases based
on the interaction of top-down and bottom-up processes that
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synergistically modulate stimulus representation. Furey et al.
(2008) for example demonstrated that ACh alters the salience
of the attended stimulus and its competing stimuli, influencing
top-down as well as bottom-up processing. The finding that one
neuromodulator might influence voluntary as well as involuntary
attentional processes is consistent with the idea that both
processes are closely connected (Katsuki and Constantinidis,
2014). In this context, Kanamaru and Aihara (2019) proposed
a network in which top-down ACh can modulate and support
bottom-up inputs by increasing the firing rate and changing
the response function of visual neurons, further emphasizing
the idea that ACh enhances the processing of attended stimuli
(Gratton et al., 2017).

Summary
ACh is the neuromodulator that has been most often implicated
in attention. It also plays an important role in the processing
of visual attention (Ricciardi et al., 2013; Sarter et al., 2016;
Lindner et al., 2017; Galvin et al., 2018) and might be involved
in the modulation of related brain oscillations (Bauer et al., 2012;
Howe et al., 2017). Both, nicotinic and muscarinic receptor types,
influence attentional processing (Ellis et al., 2006; Thiele, 2013;
Laube et al., 2017; Alvarez-Jimenez et al., 2018; Hahn et al.,
2020). However, the specific roles of nicotinic and muscarinic
activation are not yet fully understood. It is hypothesized that
they have differential effects on attentional processes, but work
synergistically (Hasselmo, 2005; Greenwood et al., 2009) by
implementing the influences generated by top-down and bottom-
up signals (Furey et al., 2008; Sarter et al., 2016; Gratton et al.,
2017; Kanamaru and Aihara, 2019).

Dopamine
General
Dopamine (DA) is a monoamine neurotransmitter, synthesized
in the ventral tegmental area and the substantia nigra of the brain
(Juárez Olguín et al., 2016). Unlike ACh and other substances,
DA does not act as a fast ionotropic neurotransmitter, but
seems to mainly influence other receptor channels (Yang and
Seamans, 1996; Seamans and Yang, 2004; Vitay and Hamker,
2007). There exist five subtypes of DA receptors: D1, D2,
D3, D4, and D5, which are divided into two subclasses,
D1-like receptors (D1 and D5) and D2-like receptors (D2,
D3, D4; Ayano, 2016). Dopaminergic neurons are widely
distributed, in the central nervous system and in the periphery,
where they are necessary for the maintenance of many
physiological processes. In the brain, the dopaminergic
systems play an important role in the neuromodulation
of cognitive functions, motor control, motivation, reward,
attention and learning. However, DA seems to be especially
relevant when it comes to cognitive control and executive
function (Floresco and Magyar, 2006; Cools, 2016). Thus,
unbalanced activity or dopaminergic dysfunction has been
associated to the pathophysiology of several psychiatric and
neurodegenerative disesases, such as schizophrenia, mood
disorders, obsessive compulsive behavior, autism spectrum
disorders, attention deficit-hyperactivity disorder, Tourette’s

syncrome, substance dependency and Parkinson’s disease
(Ayano, 2016).

Effects of DA Modulation on Visual Attention
A dopaminergic role in reward anticipation, reward prediction
and learning is already well established (Schultz, 1998; Schott
et al., 2008; Steinberg et al., 2013; Thiele and Bellgrove, 2018).
Therefore, it is not surprising that the effect of DA on visual
attention has been connected to reward processing. For example,
it was suggested that visual processing is influenced by the
amount of reward associated to a stimulus and that this
association is modulated by dopaminergic signals (for review see:
Vitay and Hamker, 2007). According to the “incentive salience”
hypothesis of Berridge and Robinson (1998) DA influences the
visual representations of reward-associated stimuli and makes
them more salient. In line with this finding, it was shown that
DA is involved in reward-driven modulations of attentional
control. For example, incentive reward enhances activity in
a network closely associated with DA release and attention
(Engelmann et al., 2009). Consistently, it was found that DA
improves the signal-to-noise-ratio of neurons at downstream
processing sites (Kroener et al., 2009; Pessoa, 2015; Vander
Weele et al., 2018), indicating that dopaminergic modulation
provides a mechanism by which reward “sharpens” attentional
control, thereby enhancing the processing efficiency in cortical
and subcortical regions (Failing and Theeuwes, 2017). However,
attention and reward are difficult to dissociate (Maunsell, 2004;
Peck et al., 2009; Noudoost and Moore, 2012) and there is also
evidence that DA signals salient stimuli in absence of reward
(Horvitz, 2000).

Possibly independent from its role in reward, DA seems to
be central for the processing of attention (Nieoullon, 2002).
Prefrontal cortex (PFC) projections of DA-producing neurons in
the ventral tegmental area and in the substantia nigra seem to
be closely related to several aspects of attention, from inhibitory
control to sustained and selective attention (Briand et al., 2007;
Noudoost and Moore, 2011; Chandler et al., 2014; Clark and
Noudoost, 2014; Ranganath and Jacob, 2016; Shalev et al.,
2019). Moreover, it is assumed that the PFC represents the
main source of top-down signals biasing attentional selection in
early visual areas (Paneri and Gregoriou, 2017; Mueller et al.,
2020). Interestingly, optimal PFC functioning seems to rely on
moderate D1 receptor stimulation, as well as on the stimulation
of noradrenergic α2A receptors (Arnsten and Pliszka, 2011).

However, the PFC is not the only brain region associated with
dopaminergic modulation of attention. DA is also an important
determinant of basal ganglia (BG) function—a brain region
that is known for its involvement in eye movement generation
and attentional control (Hikosaka et al., 2000). Striatal DA has
been implicated in reward processing (Berridge and Robinson,
1998; Haber, 2011; Deserno et al., 2016; Katthagen et al., 2020),
voluntary motor behavior (Albin et al., 1989; Joshua et al.,
2009; Klaus et al., 2019), learning and motivation (Berridge and
Robinson, 1998; Waelti et al., 2001; Graybiel, 2008) as well as in
the involuntary attention orienting toward reward-related cues
(Anderson et al., 2016). For example, Cameron et al. (2018) orally
administered tolcapone capsules (Catechyl-O-Methyltransferase
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(COMT) inhibitor) and bromocriptine capsules (D2 agonist)
to human participants performing a visual attention task, that
required switching between pro- and anti-saccade responses.
Greater prefrontal DA tone led to a reduced performance in
the visual task. The authors concluded that DA might facilitate
inhibitory control, which could have resulted in an excessive
focusing of attention and might have been sub-optimal for
the task at hand.

Dopaminergic activity has also been associated with several
attention networks: the dorsal attention network (DAN,
externally controlled attention; Corbetta and Shulman, 2002),
the default mode network (DMN, internal cognitive processes;
Raichle et al., 2001; Raichle, 2015) and the fronto-parietal
control network, which is assumed to mediate the allocation
of attentional resources between the two other networks
(FCPN; Spreng et al., 2010). It was found that blocking DA
reuptake increases DAN activation during visual attention
tasks (Müller et al., 2005; Tomasi et al., 2011) and alters DMN
activation (Tomasi et al., 2011). Additionally, Dang et al. (2012)
demonstrated that DA influenced the interaction between
DAN, DMN and FPCN.

Further evidence for the role of DA in attention comes from
studies focusing on inattention. As it was shown, inattention
can be attributed to disruptions of DA activity. Gorgoraptis
et al. (2012), for example, demonstrated that a dopaminergic
agonist (transdermal rotigotine) had beneficial effects on visual
search and selective attention in patients with hemispatial
neglect following stroke. Some stimulant medications used
in the treatment of inattention, like methylphenidate and
amphetamine, enhance dopaminergic activity by targeting DA
transporters (DAT; Seeman and Madras, 1998; Wang et al., 2013;
Robison et al., 2017). In line with this mode of action, Tomasi
et al. (2009) found that lower DAT (higher DA activity) facilitated
visual attention by modulating brain deactivations in default
mode regions, such as the precuneus.

On a side note, DA also seems to have a direct influence on
retinal vision by tuning visual processing through cellular and
circuit-level mechanisms within the retina (Witkovsky, 2004; Roy
and Field, 2019). For instance, DA signaling has been shown to
impact spatial and temporal receptive fields of retinal neurons
(Chaffiol et al., 2017; Mazade et al., 2019).

DA Effects on Bottom-Up and Top-Down Visual
Attention
Dopaminergic activity in the PFC is important for a variety
of cognitive processes, such as working memory, motivation
and action planning (Ayano, 2016). At the same time, the
PFC is assumed to be essential for the top-down regulation
of attention through long-range projections upon visual areas
(Baluch and Itti, 2011; Noudoost and Moore, 2011; Paneri
and Gregoriou, 2017). Recently, it was demonstrated that DA
modulation in the PFC operates through phasic activation of
dopaminergic neurons that modify PFC activity and gamma
oscillations (Lohani et al., 2019). Some evidence for the role
of DA in top-down attentional control comes from Prinzmetal
et al. (2010). The authors investigated the effect of D2 receptor
agonist bromocriptine in a visual cueing task targeting spatial

attention. Bromocriptine enhanced the effect of spatial cueing
for long Stimulus-Onset-Asynchrony (SOA), but not for short
SOA trials. Thus, dopaminergic modulation seems to affect
voluntary but not involuntary spatial attention. One region of
the PFC, the frontal eye field (FEF), is believed to be particularly
important in attentional control and seems to be modulated
by dopaminergic activity (Noudoost and Moore, 2011, 2012;
Chandler et al., 2014; Mueller et al., 2020). Noudoost and
Moore (2011) examined the effect of D1 receptor blockade
on FEF activity in macaques. They used microinjections to
applicate D1 receptor antagonists (SCH23390) into sites within
the FEFs while simultaneously recording activity from matching
sites in V4. The authors found that manipulating FEF activity
increased target selection, but also magnitude, selectivity and
reliability of V4 responses. These effects were concluded to be
similar to those of covert attention in absence of a behavioral
task (Noudoost and Moore, 2011). In another experiment,
the authors used a D2 receptor agonist (quinpirole), which
also led to an increase in target selection. However, only
D1 receptor manipulation affected V4 responses (Chudasama
and Robbins, 2004; Noudoost and Moore, 2011; Yousif et al.,
2016). To explain these discrepant results, it was suggested
that D1 receptors are more involved in generating top-down
attention signals than D2 receptors. Thiele and Bellgrove
(2018) concluded that this functional dissociation might be
explained by the differing amounts of D1 and D2 receptors
in supragranular and infragranular layers of the FEF (with
D1 receptors being expressed in both layers and D2 receptors
being expressed only in infragranular layers; Lidow et al.,
1991). While dopaminergic input derived from the substantia
nigra preferentially terminates in supragranular layers and could
be more involved in increasing attentional feedback signals,
dopaminergic input derived from the ventral tegmental area
preferentially terminates in infragranular layers and could be
more involved in reward and error processing.

However, the FEFs have not only been associated with top-
down control but also with bottom-up processing. Based on
visual search experiments in non-human primates it is assumed
that the FEFs might contain the neural correlate of a salience
map or be part of a distributed network representing visual
salience (Thompson and Bichot, 2005). As such, the FEFs would
process top-down as well as bottom-up factors (Thompson and
Bichot, 2005; Katsuki and Constantinidis, 2012, 2014; Joiner
et al., 2017). In line with this assumption, there is some evidence
of dopaminergic involvement in bottom-up visual attention.
Lundwall et al. (2012), for example, demonstrated that exogenous
orienting was associated with dopaminergic markers on COMT
and DAT1. Anderson et al. (2016) explored the contribution of
DA to value-based attention in a positron-emission-tomography
(PET) study. They found that DA signaling in the striatum was
linked to involuntary attention orienting—particularly to the
exogenous attraction of attention by reward cues. Enhanced levels
of DA were associated with reward-related attentional capture,
while suppression of DA release was associated with the ability to
ignore reward-related stimuli. Contrary to these results, Rokem
et al. (2012) reported no effect of DAT1 genotype or D2 receptor
agonist bromocriptine on involuntary attention.
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Summary
Dopaminergic neurons contribute to a variety of cognitive
functions and disruptions of dopaminergic activity are associated
with several psychiatric and neurodegenerative dieseases. With
regard to visual attention, DA seems to exert its influence
primarily through dopaminergic activity in the PFC/FEF and
related brain networks (DAN). These regions have been shown
to modulate attention via top-down projections upon the visual
cortex (Noudoost and Moore, 2011). A recurring finding is that
the effect of DA is dependent on receptor type and localization.
D1 and D2 receptors have been found to be differentially
expressed within different layers of the primate frontal cortex
and while DA acts on both receptor types, its main actions
related to top-down attention occur at the D1 receptor, which
is found in superficial and deeper layers of the PFC (Lidow
et al., 1991; Arnsten and Pliszka, 2011; Soltani et al., 2013;
Mueller et al., 2020).

Noradrenaline
General
The Locus Coeruleus (LC) is known as the main source of
noradrenaline (NA) in the brain. In this region, NA is synthesized
directly from DA by the dopamine-β-hydroxylase (Loizou, 1969;
Bari et al., 2020). There exist several subtypes of adrenergic
receptors, most often classified in α and β families, which can
again be subdivided into α1 and α2 or β1, β2 and β3 receptor
categories (Strosberg, 1993; Xing et al., 2016). NA has the highest
affinity for α2-receptors (Arnsten, 2000) and the α2A subtype is
most prevalent within the PFC. NA seems to be broadly released
in the brain (Levitt and Moore, 1978), in tonic and phasic firing
modes. These two modes have been associated with arousal and
wakefulness on the one hand and novelty and behaviorally driven
exploration on the other hand (Vankov et al., 1995; Berridge
and Waterhouse, 2003; O’Donnell et al., 2012; Aston-Jones and
Waterhouse, 2016; Thiele and Bellgrove, 2018).

Effects of NA on Top-Down and Bottom-Up Visual
Attention
DA and NA show overlapping effects on learning, brain
state and reward processing (Ranjbar-Slamloo and Fazlali,
2020). They are also implicated in modulating attention (Clark
et al., 1989; Ward and Brown, 1996; Coull et al., 2001; De
Martino et al., 2008; Borodovitsyna et al., 2017). In addition,
both catecholamines are assumed to synergistically modulate
PFC functioning (Xing et al., 2016), which might imply that
they are both involved in top-down processing of attention
(Arnsten and Pliszka, 2011). However, Shalev et al. (2019)
demonstrated that the effects of DA and NA on visual attention
can be dissociated. They found that attentional selection
was associated with the COMT genotype, while sustained
attention was linked to the dopamine-beta-hydroxylase (DBH)
genotype. NA also shares similarities with ACh concerning
its role in attentional processing (Thiele and Bellgrove, 2018).
For example, using a Bayesian statistical framework, it was
suggested that NA and ACh control selective attention,
flexible information processing and learning by forming an
interactive, partly synergistic, partly antagonistic relationship

in the representation of expected (ACh) and unexpected (NA)
uncertainty (Yu and Dayan, 2005).

In general, noradrenergic activity has been found to influence
attentional orienting (Coull et al., 2001; Sara and Bouret, 2012),
disengagement of attention (Clark et al., 1989) and attentional
shifting (Snyder et al., 2012). Specifically, NA seems to be
involved in salience detection (Foote et al., 1980; Aston-Jones
and Bloom, 1981; Servan-Schreiber et al., 1990; Berridge and
Waterhouse, 2003; De Martino et al., 2008; Markovic et al., 2014;
Mather et al., 2016; Gelbard-Sagiv et al., 2018). In addition,
noradrenergic signaling is supposed to enhance the ability
to discriminate between relevant and irrelevant information
(Aston-Jones and Cohen, 2005) and thus bias attentional tuning
(Ehlers and Todd, 2017). For example, Gelbard-Sagiv et al.
(2018) manipulated noradrenergic activity using clonidine (an
α2 agonist, should reduce NA activity and task performance)
and reboxetine (selective NA reuptake inhibitor, should increase
NA signaling) and examined their effect on visual perception,
EEG and fMRI responses. They found that visual detection
and stimulus discrimination were affected by NA manipulations
as expected, while decision bias and sustained attention were
not. Moreover, they found that the reduction of NA signaling
affected ERP components and brain regions associated with
visual awareness. These results indicate that NA influences
primarily the later stages of perceptual processing and not
attentional function per se (Gelbard-Sagiv et al., 2018; see also
Nieuwenhuis et al., 2007). However, in the study by Gelbard-
Sagiv et al. (2018) reboxetine did show a trend toward an
increased performance in the sustained attention task. If so,
the authors conclued, bottom-up attentional processes might be
more in line with noradrenergic influences on sensory processing.
Underlining the role of NA in stimulus-associated processing,
several studies found that NA as well as ACh suppressed top-
down information in favor of bottom-up sensory information
(Hasselmo et al., 1996; Kimura et al., 1999; Kobayashi et al.,
2000; Yu and Dayan, 2005). Contrary to this, Dockree et al.
(2017) demonstrated that methylphenidate, a mixed DA and NA
reuptake inhibitor, improved sustained attention by acting on
top-down attentional control with no effect on stimulus-driven,
sensory processes.

Interestingly, as with dopaminergic D1 receptor stimulation,
it was demonstrated that insufficient as well as extreme
catecholaminergic activity can have negative effects on attention
performance (Berridge and Waterhouse, 2003; Aston-Jones and
Cohen, 2005; Arnsten and Pliszka, 2011; Shalev et al., 2019).
While moderate levels of NA have been shown to improve PFC
function by acting on α2 receptors, high levels of NA might
decrease PFC function through α1 or β receptors (Arnsten,
2000; Lapiz and Morilak, 2006; Arnsten and Pliszka, 2011). The
opposing effects of high and low NA concentration on distinct
adrenoceptors with different affinities could also be the reason
for the discrepant results concerning bottom-up and top-down
attentional control. This conflict might be resolved by assuming
that α2 receptors in the PFC regulate top-down attention (Coull
et al., 2001; Robbins and Arnsten, 2009; Mather et al., 2016) and
α1 receptors in the sensory cortex modulate bottom-up processes
(Thiele and Bellgrove, 2018).
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Summary
There is evidence that NA primarily influences visual perception
(Gelbard-Sagiv et al., 2018) and salience detection (Markovic
et al., 2014; Mather et al., 2016). However, the role of
moderate noradrenergic levels in enhancing PFC functions
seem to imply an additional effect on top-down attention,
working memory, decision-making and emotional regulation
(Berridge and Waterhouse, 2003; Arnsten, 2009; Ehlers and
Todd, 2017). The heterogeneous role of NA in biasing attentional
processes could be explained by taking into account the different
localizations, affinities and effects of adrenergic receptors. While
top-down effects might depend on moderate levels of NA
enhancing PFC function, acting on α2 receptors; bottom-up
effects might be associated with higher levels of NA, decreasing
PFC function by acting on α1 or β receptors (Arnsten and Pliszka,
2011; Thiele and Bellgrove, 2018).

Serotonin
General
Serotonin (5-hydroxytryptamine, 5-HT) is synthesized from
L-tryptophan and released by serotonergic neurons in the
Raphe nuclei of the brainstem (Mohammad-Zadeh et al., 2008;
Walker and Tadi, 2020). There exist at least fourteen 5-HT
receptor subtypes (Hoyer et al., 1994), which regulate distinct
physiological processes (Hoyer and Martin, 1997; Stiedl et al.,
2015). The most prevalent and extensively researched receptor
types are the 5-HT1A and the 5-HT2A receptors (Carhart-Harris
and Nutt, 2017). 5HT is mostly found outside the central nervous
system, where it regulates biological processes associated with
cardiovascular, pulmonary or gastrointestinal functions (Berger
et al., 2009). However, 5-HT is also important within the central
nervous system and seems to regulate almost all brain functions.
Accordingly, it has been implicated in the pathogenesis of several
psychiatric and neurological disorders (Berger et al., 2009).

Effects of 5-HT Modulation on Top-Down and
Bottom-Up Visual Attention
5-HT receptors, especially 5-HT2A receptors, are highly
expressed in the PFC (Puig and Gulledge, 2011). Consequently,
5-HT has been implicated in executive functions, emotion and
motivation, learning and memory (Meneses and Liy-Salmeron,
2012). While serotonin activity seems to play an especially
important role in prepotent response inhibition and impulsivity
with less impact on attentional processing (Robbins, 2002;
Brown et al., 2012; Worbe et al., 2014), it also seems to have
some influence on attentional processing (Carter et al., 2005;
Scholes et al., 2007; Wingen et al., 2008; Enge et al., 2014; Li
et al., 2018). Carter et al. (2005) found that treatment with
psyilocybin, a mixed 5-HT1A and 5-HT2A agonist, impaired
the ability to suppress distractors and subsequently reduced
attentional performance. Since a pretreatment with the 5-HT2A
agonist ketanserin did not modulate the effect of psilocybin, the
authors assumed that attentional processes primarily rely on 5-
HT1A receptors. Even so, genetical manipulation of neurons
expressing 5-HT2C receptors in the hippocampus exclusively
modulated performance in a visual attention task (Li et al.,
2018). Application of a selective serotonin reuptake inhibitor

(escitalopram) led to a reduced activation in areas concerned
with sustained attention (frontal regions, the thalamus and
nucleus caudate, measured by fMRI; Wingen et al., 2008).
Behaviorally, participants reported decreased alertness, but
there was no effect of escitalopram on the performance of a
sustained attention task (Mackworth Clock Test). Concerning
attentional selection, an investigation of genetic variations in key
regulators of serotonergic and noradrenergic systems comes to
the conclusion that 5-HT is involved in top-down attentional
control (Enge et al., 2014). In addition, dopamine and 5HT
depletion (acute tryptophan or tyrosine/phenylalanin depletion)
decreased performance in a Stroop interference task, indicating
an increase in attentional control (Scholes et al., 2007).

Summary
5-HT has diverse functions in brain and body. Serotonergic
signaling is also indicated in attention (Carter et al., 2005;
Wingen et al., 2008), mainly in the processing of top-down
attentional control (Scholes et al., 2007; Enge et al., 2011, 2014).
However, information on how 5-HT influences voluntary and
involuntary attentional mechanisms is limited and might demand
further investigation.

Oxytocin
General
Oxytocin is a nine amino acid neuropeptide, acting as a hormone
and a neurotransmitter. It is synthesized in several nuclei of the
hypothalamus (Mirtre et al., 2018). In the periphery, oxytocin
has long been associated with lactation, osmoregulation and the
regulation of energy balance (Ho and Blevins, 2013). However,
oxytocin also plays an important role within the central nervous
system, where it is implicated in social approach and maternal
care behaviors, as well as in emotion processing (Yuan and Hou,
2015). Accordingly, oxytocin receptors appear to be more densely
expressed in areas associated with emotion and social behaviors
(e.g., amygdala, nucleus accumbens; Huber et al., 2005; Lee et al.,
2009; Mirtre et al., 2018).

Effects of Oxytocin Modulation on Top-Down and
Bottom-Up Visual Attention
A great amount of research has described oxytocin as an
important neuromodulator of social and emotional processing
(Yuan and Hou, 2015). In addition, it has been associated with
cognitive functions such as the processing of sensory stimuli,
social recognition, social memory and fear regulation (Ross and
Young, 2009; Choe et al., 2015; Oettl et al., 2016; Jones et al., 2017;
Grinevich and Stoop, 2018). Furthermore, oxytocin was found to
influence selective attention when social stimuli were involved.
Therefore, we have included it in this review.

For example, oxytocin modulated involuntary attention
orienting to social stimuli (Puglia et al., 2018) and attentional
allocation to social cues by influencing the interactions between
brain networks associated with internal or external attentional
control (Xin et al., 2018). These results are in line with other
studies showing that oxytocin regulates visual attention and eye
movements to external social stimuli (Domes et al., 2012, 2013;
Clark-Elford et al., 2014). It was also hypothesized that oxytocin
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plays a prominent role in alerntness. Stoop (2012) proposed that
vasopressin—a substance closely related to oxytocin—increases
alert for external stimuli, while oxytocin decreases alert by
modulating amygdala activity. Several studies indeed found a
normalization of amygdala responses and attentional bias toward
threat related cues after oxytocin application (Labuschagne et al.,
2012; Clark-Elford et al., 2014). On the contrary, other studies
have found an increase in attention toward emotional stimuli
under oxytocin (Domes et al., 2013; Tollenaar et al., 2013; Clark-
Elford et al., 2014; Xin et al., 2018). These discrepant results might
be associated with natural variability in the DNA methylation
of the oxytocin receptor gene, which has been linked to social
attention capabilities (Puglia et al., 2018).

Summary
While ACh and DA are already established neuromodulators of
attentional control, research has only recently begun to target the
attentional effects of oxytocin. While the exact nature of these
effects and their neural basis are not yet completely clear, it seems
that oxytocin modulates visual selective attention to external
social events (Domes et al., 2012, 2013; Clark-Elford et al., 2014).

Glutamate
General
Although the neurotransmitters glutamate and gamma-
aminobutyric acid (GABA) cannot be counted among
brain neuromodulators, they fulfill important roles in brain
functioning and cognitive processing. Together, these substances
modulate the inhibitory-excitatory balance, which is crucial
for cortical excitability and thus for normal brain functioning
(Hampe et al., 2018). While the effects of GABA are mainly
inhibitory, glutamate is the most important excitatory
neurotransmitter in the brain. It exerts its influence on G
protein-coupled metabotropic and ionotropic receptors that
can be diveded into several subtypes (Vyklicky et al., 2014; Uno
and Coyle, 2019). From these receptors, the ionotropic NMDA
(N-Methyl-D-Aspartate) receptor type has been most extensively
studied and is known to have important functions in synaptic
transmission, plasticity and cogition (Collingridge et al., 2013;
Kocsis et al., 2013; Vyklicky et al., 2014; Dauvermann et al., 2017;
Valtcheva and Venance, 2019).

Effects of Glutamate on Top-Down and Bottom-Up
Visual Attention
Several studies have found that subanesthetic doses of the
NMDA receptor antagonist ketamine induce psychoses-like
symptoms in healthy volunteers (Krystal et al., 1994; Malhotra
et al., 1996). Ketamine influences memory (Malhotra et al.,
1996; Morgan and Curran, 2006) and modulates attentional
processes (Oranje et al., 2000; Watson et al., 2009; Gunduz-
Bruce et al., 2012; Fuchs et al., 2015; von Düring et al., 2019;
but see Morgan et al., 2004; van Wageningen et al., 2010).
For example, Fuchs et al. (2015) investigated the influence
of ketamine on top-down attentional control using a visual
cueing paradigm. They found ketamine-induced impairments
in voluntary attentional shifts to peripheral cues, but no drug
effects on involuntary attentional cueing. Studies that examined

the effect of ketamine on EEG data during visual or auditory
attentional tasks generally demonstrate altered ERP amplitudes
(P3: Oranje et al., 2000; Watson et al., 2009; Gunduz-Bruce
et al., 2012; N2: Watson et al., 2009; N1: Oranje et al., 2000;
MMN: Gunduz-Bruce et al., 2012). One study investigated the
effect of low doses of ketamine on performance in a visual
oddball task during simultaneous measuring of EEG, fMRI and
electrodermal activity (Musso et al., 2011). The authors found
decreased P3 amplitudes and BOLD responses under ketamine
in regions commonly associated with selective attention. Thus,
NMDA blockade affects early attentional processes as well as later
voluntary control mechanisms (Watson et al., 2009). Schwertner
et al. (2018) assumed that ketamine modulates EEG components
by influencing stimulus discriminability (but see Rosburg and
Schmidt (2018) for a different interpretation). This is in line with
other research demonstrating that ketamine impairs the ability to
both effectively gate the processing of sensory stimuli and process
salient stimuli (Krystal et al., 1999; Umbricht et al., 2002). Thus,
NMDA receptor functioning might play an important role in
detecting changes in the environment, which is assumed to be
central for the ability to orient toward salient novel stimuli. In this
context, it is also regularly reported that ketamine has a strong
influence on gamma-band oscillations (Thiebes et al., 2018; Curic
et al., 2019), which seem to have an important role in bottom-
up processing, perception and selective attention (Richter et al.,
2017; Thiebes et al., 2018; Riddle et al., 2019).

Summary
The role of neurotransmitters in attention processing is
less extensively studied than the roles of neuromodulators.
However, there is increasing evidence that manipulation of
the NMDA receptor with ketamine might have an effect
on top-down (van Wageningen et al., 2010; Fuchs et al.,
2015) and bottom-up attentional processing (Gunduz-Bruce
et al., 2012). Most of this evidence comes from EEG studies
demonstrating ketamine effects on several attention-related EEG
components. In contrast to previous interpretations (Schwertner
et al., 2018), Rosburg and Schmidt (2018) suggested that the
reduced P3 amplitudes found after ketamine treatment are
better explained by working memory impairments than by a
drug-related increase in task difficulty due to alterations of
perceived stimulus salience. On the other hand, the influence
of ketamine on high frequency oscillations does suggest a
connection between glutamate, bottom-up attentional processing
and selective attention (Thiebes et al., 2018).

GABA
General
While glutamate is the brain’s main excitatory neurotransmitter,
the role of GABA in the mature brain appears to be mostly
inhibitory. As with ACh, there are two main types of GABA
receptors: an ionotropic GABA-A receptor and a metabotropic
GABA-B receptor (Wu et al., 2016). While 20–30% of cortical
neurons are GABAergic interneurons (Schmidt-Wilcke et al.,
2018), the effects of GABA are not limited to inhibitory synaptic
modulation. It is assumed to be involved in numerous cognitive
functions (Schmidt-Wilcke et al., 2018; Kim et al., 2019).
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For example, GABA was found to influence working memory
(Duncan et al., 2014; Yoon et al., 2016), impulsivity (Boy et al.,
2011; Yoon et al., 2016), action selection (Steenbergen et al.,
2015) and motor function (Stinear and Byblow, 2003; Zoghi
et al., 2003; Duncan et al., 2014). On the other hand, GABA
dysfunctions have been associated with several brain diseases
(Schür et al., 2016; Kim Y.S. et al., 2017) and psychiatric
disorders, such as schizophrenia (de Jonge et al., 2017), OCD (Li
et al., 2019) or attention-deficit-hyperactiviy-disorder (ADHD;
Edden et al., 2012).

Effects of GABA on Top-Down and Bottom-Up Visual
Attention
Animal studies have found GABA to be involved in the regulation
of attentional resources (Katzner et al., 2011; Paine et al., 2011;
McGarrity et al., 2017) and to shape performance in visuo-spatial
attention tasks (Petersen et al., 1987; Pezze et al., 2014). In
humans, GABA seems to improve attentional selectivity in the
visual cortex (van Loon et al., 2013; Sandberg et al., 2014), either
by inhibiting irrelevant sensory information or by increasing the
specifity of neural representation (Sandberg et al., 2014; Frangou
et al., 2019). There is some evidence indicating that GABA might
affect temporal aspects of attentional control more than spatial
aspects (Kihara et al., 2016; Leonte et al., 2018). Furthermore,
GABA can influence attentional processing through modulating
cholinergic inputs. In rats, the infusion of positive and negative
GABA modulators into the basal forebrain augments and
decreases (respectively) the excitability of cholinergic projections,
affecting performance in sustained attention tasks in both
directions (Sarter, 1994; Moore et al., 1995; Sarter et al., 2001).
This is in line with recent assumptions of GABA/ACh co-
transmission (Saunders et al., 2015; Ma et al., 2018). In the
study of Sandberg et al. (2014) participants with high GABA
concentration in occipital areas (quantified by MR spectroscopy)
reported to be better able to ignore irrelevant information. The
authors speculated that a high GABA level does not automatically
lead to more inhibition of bottom-up signals but that this
GABAergic suppression can be influenced by top-down signals
to match relevant behavioral goals. As such, high GABA levels
would indicate the “potential strength of suppression between
competing visual stimuli” (Sandberg et al., 2014).

Summary
In contrast to some neuromodulators, the evidence for GABA
involvement in attentional processing seems to be quite solid.
GABA was shown to shape visual attention by suppression of
bottom-up signals and improving attentional selectivity in early
visual areas (van Loon et al., 2013; Sandberg et al., 2014). These
effects might be influenced by top-down signals (Sandberg et al.,
2014) and implemented at least partly through modulation of
cholinergic inputs (Saunders et al., 2015).

CONCLUSION

In this review, we have discussed the importance and relative
contributions of different neuromodulators to voluntary and

involuntary visual attention. However, while the central roles
of cholinergic, dopaminergic and noradrenergic systems
in selective attention are widely accepted, there is less
evidence concerning other neuromodulators, like serotonin
or oxytocin. The same can be said about top-down and
bottom-up attention. Whereas top-down processes are already
subject to comprehensive investigations, the neuromodulatory
mechanisms underlying bottom-up attention are less clear,
as well as the neurochemical processes supporting a possible
interaction of bottom-up and top-down systems. In general,
dopamine and serotonin seem to be more closely associated
with top-down attentional mechanisms, whereas acetylcholine,
noradrenaline and oxytocin might also subserve specific roles in
visual detection, salience processing and exogenous attentional
orienting. The situation is complicated by the circumstance
that the effects of neuromodulators in attentional processing
seem to change depending on brain region, receptor subtype,
level, task or release mode. For example, top-down and bottom-
up effects might be driven by an interplay of cholinergic
activity at muscarinic and nicotinic receptor types, with nACh
receptors being more involved in modulating bottom-up
attention and muscarinic receptor types being more involved
in top-down attention. At the same time, the effects of most
neuromodulators seem to vary across different brain regions.
ACh might influence visual processing in primary visual cortex
(via mACh receptors) and attention in higher cortical areas (via
nACh receptors). Furthermore, the effect of NA was shown to
increase or decrease PFC function depending on the different
affinities of its adrenergic receptors for moderate or high
neuromodulator levels. In addition, it was found that several
neuromodulators show tonic and phasic firing modes, which
might also influence their effects on attentional processing.
Since bottom-up and top-down attention appear to be closely
connected and neuromodulators have been shown to directly and
indirectly interact (Avery and Krichmar, 2017), it is imaginable
that some or even all of these processes work synergistically to
shape human selective attention.

FUTURE DIRECTIONS

Research about neuromodulatory effects on visual attention
are complicated by the fact that attentional processes are
hard to discriminate from working memory. Attention and
working memory are closely intertwined and appear to be
supported by overlapping mechanisms and brain regions (LaBar
et al., 1999; Awh et al., 2006; Theeuwes et al., 2009; Gazzaley
and Nobre, 2012). Therefore, it is not suprising that some
neuromodulators have been shown to influence both processes
(Arnsten and Goldman-Rakic, 1990; Sawaguchi and Goldman-
Rakic, 1994; Gamo et al., 2010). Thus, future studies should
be mindful of this interaction and try to include paradigms
which are able to seperate working memory and attentional
processes. Furthermore, including neuromodulators that are
not yet extensively studied, such as oxytocin, might help
gaining valuable insights about specific subcomponents of visual
attention (in this case: social attention) and putting together a
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more complete picture of how visual attention is represented,
modulated and expressed in the human brain. Another issue for
future research might be the dissociation of attentional processes.
It is still not sufficiently clear how different neuromodulators,
their specific properties (e.g., receptor affinities, firing mode)
or their neuronal interactions influence bottom-up and top-
down control or the interplay of both processes. On top of
that, recent studies have reported that the dichotomy of top-
down and bottom-up attention seems to be obsolete and should
be replaced by a more comprehensive model, that includes
other factors such as reward and past selection history (Awh
et al., 2012). For example, Hickey et al. (2010) showed that
reward automatically triggered a selection bias toward a reward-
associated feature, even when attending to that feature was
opposed to the goals of the participant. Thus, there appear
to be other influences on attentional selection than stimulus
salience or voluntary intentions. In spite of these findings, there
are still many open questions about the way reward affects the
coordination of visual salience and voluntary attentional control
(Feldmann-Wüstefeld et al., 2016), as well as concerning the
underlying neurophysiological and neurobiological mechanisms.
Since dopamine was shown to play a prominent role in
reward processing, as well as in voluntary attention, this
interaction might be an interesting starting point for future
studies. Another promising area seems to be the investigation
of brain oscillations. Several neuromodulators were found to
influence brain oscillations during attentional processing. For
example, ACh was shown to modulate gamma synchrony in rats
(Howe et al., 2017) or alpha and beta oscillations in humans
(Bauer et al., 2012). Additionally, DA could modulate PFC
activity through phasic activiation of dopaminergic neurons that
modify PFC activity and gamma oscillations (Lohani et al.,
2019). This is important because neuronal communication is
not just determined by anatomical connectivity and activity-
dependent changes to the anatomical structure of the connection,
but also by neuronal synchronization. Dynamic changes in
synchronization might even be a core feature of cognition
(Fries, 2015). Consequently, high-frequency gamma oscillations

(30–100 Hz) were found to accompany various cognitive and
psychological processes (Uhlhaas et al., 2011), coordinating
activity within local circuits and between distant brain regions
(Fries, 2015). It is assumed that oscillations in different frequency
bands might subserve specific roles in selective attention. For
example, gamma band oscillations seem to primarily carry
out influences mediated by bottom-up projections, whereas
influences mediated by top-down projections are carried out
by alpha-beta band synchronization (Bastos et al., 2012).
Interestingly, these top-down beta band influences are assumed
to directly modulate bottom-up gamma band via cross-frequency
interaction (Richter et al., 2017). In accordance with the
development of new non-invasive stimulation methods (TMS,
tDCS), that are specifically designed to target neural oscillations
and the associated cognitive processes, the investigation of
brain oscillations and their task-specific frequency profiles
in connection with neurochemical modulation of different
attentional processes (top-down, bottom-up, reward) seems to be
a promising field for future research.
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