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“Neural inertia” is the brain’s tendency to resist changes in its arousal state: it is
manifested as emergence from anaesthesia occurring at lower drug doses than those
required for anaesthetic induction, a phenomenon observed across very different
species, from invertebrates to mammals. However, the brain is also subject to another
form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion
and impaired performance that typically follows awakening. Here, we propose a novel
account of neural inertia, as the result of sleep inertia taking place after the artificial sleep
induced by anaesthetics. We argue that the orexinergic and noradrenergic systems
may be key mechanisms for the control of these transition states, with the orexinergic
system exerting a stabilising effect through the noradrenergic system. This effect may
be reflected at the macroscale in terms of altered functional anticorrelations between
default mode and executive control networks of the human brain. The hypothesised
link between neural inertia and sleep inertia could explain why different anaesthetic
drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic
patients are more susceptible to neural inertia. This novel hypothesis also enables us
to generate several empirically testable predictions at both the behavioural and neural
levels, with potential implications for clinical practice.

Keywords: neural inertia, sleep inertia, anaesthesia, orexin, noradrenaline, anticorrelations, aging

INTRODUCTION

Anaesthesia and Sleep
General anaesthesia refers to a pharmacological intervention designed to produce a state of
controlled and reversible unconsciousness and unresponsiveness to sensory stimulation. Its
discovery is among the greatest in medical history: it allows surgeons to perform millions of
life-saving interventions every year, which would be otherwise impossible or extremely distressing.

However, the mechanisms of anaesthetic action in the brain remain incompletely understood—
especially since multiple anaesthetic drugs exist, with different pharmacological profiles (Scharf and
Kelz, 2013). Nevertheless, anaesthesia is not the only way in which one can become unconscious:
the brain exhibits a strong need for periodic unconsciousness in the form of sleep, with the average
human spending about a third of their life in this state. A sleep-like state of rapidly reversible
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physical quiescence, with elevated thresholds to sensory
stimulation, has been identified in most species, including even
insects (Shaw, 2000) and nematodes (Raizen et al., 2008).

In addition to behavioural similarities with sleep, several
anaesthetic drugs generate EEG rhythms that resemble those
observed during different stages of sleep: halothane and
isoflurane produce a theta rhythm (5–9 Hz) reminiscent of
rapid eye movement (REM) sleep (Pang et al., 2009), whereas
the GABA-ergic agent propofol and the α2-adrenoreceptor
agonist dexmedetomidine induce slow-wave activity (<4 Hz)
analogous to what is observed during non-REM (NREM) sleep
(Gent and Adamantidis, 2017). Given the behavioural and
electrophysiological similarities between sleep and the effects
of several anaesthetic agents, the neuronal circuitry underlying
sleep may provide critical insights into the mechanisms of
anaesthetic action (Karan et al., 2007), with evidence that at least
some anaesthetics do in fact intervene on sleep-wake regulating
neurons, especially in hypothalamic areas (Franks, 2008; Zecharia
et al., 2009; Zhang et al., 2015; Gent and Adamantidis, 2017)—
although it should be noted that this similarity is not universal:
some other anaesthetics produce desynchronised EEG with little
resemblance to sleep EEG, e.g., ketamine, benzodiazepines (Gent
and Adamantidis, 2017). The function of sleep is only partly
understood, and several different theories have been put forward
to explain the existence of this peculiar state (Vyazovskiy, 2015;
Joiner, 2016; Krueger et al., 2016), including energy restoration
(Berger and Phillips, 1995; Schmidt, 2014) memory consolidation
(Abel et al., 2013) and synaptic homeostasis (Tononi and Cirelli,
2014, 2016). Nevertheless, the brain circuits that control sleep
are relatively well understood: a wake-promoting and a sleep-
promoting system interact in the brain (Figure 1; Saper et al.,
2005; Luppi, 2010; Weber and Dan, 2016).

The ascending reticular activating system (Moruzzi and
Magoun, 1949) comprises cholinergic, monoaminergic
(serotonin, noradrenaline, histamine) and orexinergic nuclei
in the brainstem, basal forebrain, and hypothalamus—with
wide-ranging projections throughout the entire brain (Luppi,
2010). The hypothalamus also contains key sleep-promoting
neuronal populations; in particular, the ventrolateral preoptic
area (VLPO) and median preoptic area (MNPO) primarily
express the inhibitory neurotransmitters γ-aminobutyric acid
(GABA) and galanin, and project to all major hypothalamic
and brainstem nuclei of the wake-promoting system (Sherin
et al., 1996). Homeostatically arranged, the sleep-active neurons
of the preoptic hypothalamus are in turn inhibited by the
wake-active nuclei they target, especially those of predominantly
noradrenergic and serotonergic transmitter phenotype (Gallopin
et al., 2000; Chou et al., 2002). This architecture of mutually
inhibitory wake-promoting and sleep-promoting circuits
constitutes what is known as a “flip-flop switch” (Saper et al.,
2001, 2005, 2010): a bistable system characterised by sharp
transitions between its two possible states. Damage to the wake-
promoting system causes excessive sleep, while insomnia results
from damage to the VLPO (Economo, 1930; Lu et al., 2000). In
addition to their sleep-promoting effects, VLPO neurons have
also been implicated in the mechanisms of action of anaesthetic
drugs (Moore et al., 2012; Zhang et al., 2015). Of note, recent

evidence also indicates a common role of hypothalamic
neuroendocrine cells of the mouse in sleep generation and
general anaesthesia induced by several different anaesthetics,
with opto- or chemo-genetic activation of these cells promoting
both slow-wave sleep and anaesthesia, and the opposite result
obtained by inhibiting them (Jiang-Xie et al., 2019).

Current theories propose that at least some anaesthetic drugs
may exert their effect by recruiting the brain’s endogenous
mechanisms for the production of unconsciousness (Franks,
2008; Alkire et al., 2009; Scharf and Kelz, 2013; Van Swinderen
and Kottler, 2014; but see Vanini et al., 2020, for a recent
suggestion that this may not be the case, for isoflurane). This
may occur through activation of the sleep-promoting pathways,
inhibition of the wake-promoting ones, or both [especially since,
given their mutually inhibitory nature, activating one will also
result in inhibition of the other (Pace-Schott and Hobson, 2002)].

Neural Inertia and Sleep Inertia
Neural Inertia
“Neural inertia” refers to the brain’s tendency to resist changes
in its arousal state: it is manifested as emergence from
anaesthesia (recovery of responsiveness, ROR) occurring at
lower drug doses than those required for anaesthetic induction
(loss of responsiveness, LOR) (Friedman et al., 2010). Thus,
for intermediate dosages between those required for ROR
and LOR, a given individual may be anaesthetised or awake,
depending on their previous state. This “path dependence”
(referred to as hysteresis in physics; Figure 2) is in contrast with
pharmacokinetic-pharmacodynamic accounts, which assume
that anaesthetic state is fully determined by current effect-site
concentration of anaesthetic (McKay et al., 2006).

Rather, evidence of hysteresis between anaesthetic induction
and emergence obtained in mice and Drosophila led to the
proposal that the brain has a tendency to resist transitions in
its arousal state, called “neural inertia” (Friedman et al., 2010).
Indeed, bistable systems—of which the brain appears to be one,
with respect to its sleep-wake states (Saper et al., 2001)—tend
to show distinct non-overlapping paths between their states,
indicating hysteresis (Chatterjee et al., 2008). Consistent with
theoretical work on anaesthesia (Steyn-Ross et al., 2004), this is
precisely what Friedman and colleagues observed with regard
to anaesthetic induction and emergence in both mammals and
invertebrates (Friedman et al., 2010). However, evidence for
neural inertia in humans is less clear-cut (Sepúlveda et al., 2019)
since it is not possible to measure anaesthetic concentration in the
brain in the same way this is commonly done in animal models.
Sepulveda and colleagues (Sepúlveda et al., 2018) found that LOR
occurred at greater propofol concentrations than ROR, but noted
that this result may be alternatively explained by incomplete
equilibration between plasma and effect-site concentrations.
A different team of researchers (Kuizenga et al., 2018) did not
find evidence of neural inertia with propofol, whereas they did
observe it with sevoflurane, when combined with the opioid
remifentanil. These authors also observed that the choice of
marker (behavioural endpoint) with respect to which to compute
differences in drug concentration at induction and emergence
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FIGURE 1 | Schematic drawing of some key components of the ascending arousal system, highlighting projections of the ventrolateral preoptic area. This comprises
cortical projection neurons originating from the basal forebrain (BF); the recently characterised orexin/hypocretin neurons in the lateral hypothalamus (LH); perifornical
orexin neurons (PeF); and several monoaminergic nuclei: the noradrenergic locus coeruleus (LC), the histaminergic tuberomammillary nucleus (TMN) and the
ventrolateral preoptic area (VLPO) and median preoptic area (MNPO). Serotonergic and dopaminergic components are not shown. MCH, melanin-concentrating
hormone; Gal, galanin; Ach, acetylcholine; ORX, orexin; His, histamine; NA, noradrenaline.

(e.g., loss and recovery of responsiveness, or EEG features) may
also make a difference in investigators’ ability to detect evidence
of neural inertia (Kuizenga et al., 2018).

In line with this observation, Warnaby et al. (2017) reported
hysteresis for the prevalence of slow-wave EEG activity for both
propofol and sevoflurane, with or without addition of opioids;
slow-wave persistence was therefore proposed as a marker of
neural inertia in humans. While some authors (Colin et al., 2018)
criticised this study by arguing that the hysteresis observed by
Warnaby and colleagues can be collapsed if a different effect-
site equilibration model is assumed, recent modelling work
by Proekt and Kelz (2020) demonstrated that—since effect-site
concentration is a theoretical construct that cannot be measured
directly—it is experimentally impossible to distinguish between
an equilibration model that collapses hysteresis and one that
does not, even when hysteresis is in part attributable to genuine
neuronal dynamics. Therefore, although it is clear that improved
methodologies will be required (Proekt and Kelz, 2020), there
is reason to believe that humans may also be subject to neural
inertia—a postulation consistent with the unequivocal evidence
that neural inertia is a widespread phenomenon observed in
species as diverse as fruit flies, zebrafish, and rodents (Sepúlveda
et al., 2019; Wasilczuk et al., 2020). As Proekt and Kelz observe:
“whereas going from the structured to the unstructured state is
trivial, the restoration of structure is not generically expected

after a dramatic perturbation” (Proekt and Kelz, 2020). Thus,
emergence may be an active rather than passive phenomenon,
the understanding of which will likely need to invoke specific and
distinct neurobiological mechanisms beyond a mere reversal of
the induction process.

Sleep Inertia
Transitions in the brain’s arousal state do not occur only after
anaesthesia, but also after sleep. Familiar to many people, this
state of transition between sleep and wakefulness, characterised
by low levels of arousal and vigilance, sleepiness, confusion, and
a temporary reduction in performance, is called sleep inertia
(SI) (Tassi and Muzet, 2000; Voss, 2010; Trotti, 2017). Sleep
inertia dissipates with time awake, with estimates of its typical
duration ranging from 20 to 30 min (Dinges et al., 1987; Tassi
et al., 1992) to 1–2 h post-awakening (Jewett et al., 1999).
Although sleep inertia occurs even in the absence of sleep debt
(Akerstedt and Folkard, 1997), its effects are more profound
and long-lasting after a period of sleep deprivation (Ferrara
and De Gennaro, 2000). Finally, waking up from slow-wave
sleep appears to have the most profound negative impact on
subsequent vigilance and performance (Dinges, 1990; Bonnet,
1993; Matchock and Mordkoff, 2014).

From a behavioural perspective, sleep inertia
affects performance in the same way as sleepiness
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FIGURE 2 | Schematic of neural inertia. As anaesthetic dose is increased,
responsiveness is diminished. However, the dose at which a certain
proportion of responses is observed is not the same for induction (downward
arrow, in red) and emergence (upward arrow, in blue), indicating
path-dependence (hysteresis). Between the two curves, subjects may be
awake or anaesthetised, depending on whether the drug concentration is
being increased or decreased. The wider the gap between the two curves, the
greater the hysteresis.

(Balkin and Badia, 1988). The human electroencephalographic
(EEG) signatures of sleep inertia are also analogous to what
is observed at increased levels of sleepiness (Voss, 2010). For
approximately 10 min post-awakening, EEG is characterised
by elevated low-frequency (1–9 Hz) and reduced beta (18–
25 Hz) power (Ogilvie and Simons, 1992; Ferrara et al., 2006;
Marzano et al., 2011). Analogous results have been obtained in
rodents using intracranial recordings during the first 10 min
post-sleep: neuronal activity was low upon awakening, with brief
periods of neuronal silence (Vyazovskiy et al., 2014). Crucially,
such population OFF periods are typically observed not only
during sleep, but also after prolonged wake, as revealed by
intracranial recordings in rats (Vyazovskiy et al., 2011). Likewise,
recordings in monkeys transitioning from wake to sleep show
sleep-like patterns of activity in their visual cortex, even while
performing a visual task (Pigarev et al., 1997). Thus, across
species sleep inertia appears to be the post-sleep counterpart of
pre-sleep sleepiness, with both states characterised by similar
behavioural changes and EEG signatures, as well as local
sleep-like OFF periods.

Neural Inertia as the Effect of Sleep Inertia
Single-gene mutations that increase or decrease neural inertia
also affect the sleep-wake cycle, pointing to a connection between
anaesthesia, neural inertia and sleep in both invertebrates and
mammals (Friedman et al., 2010; Joiner et al., 2013). Here,
we propose that neural inertia—the reduction in anaesthetic
dose required for emergence compared to induction—may be
an effect of the sleep inertia that follows anaesthetic-induced
sleep. Specifically, GABA-ergic anaesthetics such as propofol and
the inhalational agents sevoflurane, isoflurane, and halothane

are believed to induce a state of artificial sleep (Brown et al.,
2010; Van Swinderen and Kottler, 2014; but see Vanini et al.,
2020). Like natural sleep, this artificial sleep should then be
followed by sleep inertia—especially for intravenous drugs such
as propofol that induce an artificial sleep characterised by high
levels of slow-wave activity (SWA) (Brown et al., 2011; Murphy
et al., 2011; Gent and Adamantidis, 2017), since sleep inertia is
particularly pronounced upon awakening from slow-wave sleep
(Dinges, 1990).

Thus, in the process of emerging from anaesthesia the
brain would find itself in the state of sleep inertia, which
is behaviourally and neurally equivalent to sleepiness. Since
sleepiness is known to increase susceptibility to anaesthesia with
propofol, isoflurane, and sevoflurane by lowering the dose that
is required for induction, as indicated by rodent studies (Tung
et al., 2002; Pal et al., 2011; Scharf and Kelz, 2013), this could
explain neural inertia: due to being in a state equivalent to
sleepiness, the brain during emergence is more susceptible to
anaesthetics than it was at induction, and a smaller dose is
sufficient to maintain unconsciousness—producing the hysteresis
characteristic of neural inertia.

If this hypothesis is correct, then we predict that neural
inertia should be larger when awakening from “recovery sleep”
after sleep deprivation, since sleep deprivation increases the
sleep inertia that is observed after awakening (Ferrara and De
Gennaro, 2000). This is precisely what is observed empirically,
with higher neural inertia in previously sleep-deprived animals
(Joiner et al., 2013). Moreover, this hypothesis could explain
why Friedman and colleagues (Friedman et al., 2010) observed
greater neural inertia with halothane than with isoflurane—a
result that was recently replicated in mice exposed to equipotent
doses of isoflurane, sevoflurane, and halothane, demonstrating
that different anaesthetics have different effects on neural inertia,
distinct from their potency (Wasilczuk et al., 2020). Specifically,
to explain these results we note that unlike isoflurane, halothane
does not reduce NREM sleep-debt in rodents (Pick et al., 2011;
Scharf and Kelz, 2013). Thus, higher levels of NREM sleep
debt would be present upon emergence from halothane than
isoflurane, leading to stronger sleep inertia, and hence stronger
neural inertia, as observed.

Thus, we have proposed that anaesthesia causes artificial,
SWA-rich sleep, which in turn induces sleep inertia. The latter’s
effects resemble those of sleepiness, which increases sensitivity to
anaesthetics. Therefore, a lower dose of anaesthetic will suffice
to keep the brain anaesthetised, resulting in neural inertia at
emergence (Figure 3). This hypothesis for the origin of neural
inertia could be tested by inducing anaesthesia during the state of
sleep inertia, and assessing the prediction that the induction dose
will be lower than usual and comparable to the drug level at which
emergence typically occurs.

Furthermore, our hypothesis predicts that in the presence of
neural inertia, neural activity during emergence should resemble
the patterns of sleep-like activity characteristic of sleepiness
and sleep inertia—and indeed, there is evidence that slow-
wave activity reminiscent of sleep dominates human EEG at the
beginning of emergence from anaesthesia, before most patients
transition to non-slow-wave activity and subsequent waking
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FIGURE 3 | Schematic of our hypothesis equating neural inertia with
post-anaesthetic sleep inertia. (A) Sleep inertia (represented by the depleted
battery icon over the brain) is neurally and behaviourally equivalent to
sleepiness. (B) Sleepiness reduces the need for anaesthetic, and increases
post-anaesthetic neural inertia. Therefore, (C) neural inertia may be seen as
the manifestation of sleep inertia occurring after anaesthesia, reducing the
amount of anaesthetic that is needed for the brain to be unresponsive.

(Chander et al., 2014). Additionally, individual measures of
susceptibility to sleep inertia could be used to predict individual
susceptibility to neural inertia, such as the recently developed
Sleep Inertia Questionnaire (Kanady and Harvey, 2015). Indeed,
there is already evidence that state-dependent EEG markers
at baseline can predict individual susceptibility to anaesthetic
induction with propofol (Chennu et al., 2016; Zhang et al., 2020),
and future research may seek to determine whether such markers
are related to sleep inertia.

We also note that our hypothesis would likely not apply to the
dissociative anaesthesia induced by ketamine, whose molecular
mechanisms of action and neurophysiological effects at the
micro- and macroscale are very different from other known
anaesthetics, and do not appear to resemble sleep (Hemmings
et al., 2019). Although we are not aware of tests of neural
inertia with ketamine, our hypothesis leads us to predict that
little should be observed, since sleep does not seem to be
involved in the context of dissociative anaesthesia. Testing this
prediction in humans is not straightforward, for the same reason
that complicates existing attempts to identify neural inertia
in humans (Sepúlveda et al., 2019): namely Proekt and Kelz
(2020) demonstrated that since effect-site concentration cannot
be measured directly, effect-site models could be constructed to
collapse hysteresis even when it would actually be attributable
to genuine neuronal dynamics. However, the hypothesis is
not specific to humans and could be tested in other species

for which neural inertia has already been demonstrated with
other anaesthetics (Friedman et al., 2010; Joiner et al., 2013;
McKinstry-Wu et al., 2019; Wasilczuk et al., 2020), with
the prediction being that little hysteresis should be observed.
Additionally, we reported above that if neural inertia is due to the
increased susceptibility to anaesthetics that occurs during post-
anaesthetic sleep inertia, then our hypothesis predicts that higher
susceptibility to anaesthesia should be observed during sleep
inertia (e.g., as induced by awakening from slow-wave sleep).
We expect that ketamine would constitute an exception to this
general prediction—which should be testable in humans.

Recently, a modelling study observed that neural inertia
is compatible with an account of the brain as a bistable
system, stochastically switching between two states (Proekt and
Hudson, 2018). If the states are seen as wells in an energy
landscape, the system can be conceptualised as transitioning
between them whenever noise-driven (stochastic) fluctuations
are large enough to overcome the energy differential between
the wells. Under conditions of low noise, the system is therefore
more likely to remain trapped in whatever state it is currently
occupying, and therefore inertia (resistance to state transitions)
will be observed (Proekt and Hudson, 2018). It is important
to note that our hypothesis of neural inertia as the effects of
sleep inertia arising from anaesthetic-induced “artificial sleep”
is not incompatible with this account of neural inertia: the
two operate at different levels of explanation (Marr, 2010).
In fact, if our hypothesis is correct, then it suggests that the
account of Proekt and Hudson (2018) could also be invoked to
understand sleep inertia.

If corroborated, the hypothesis presented here could have
direct relevance for clinical practice: anaesthetists could use
tools such as the recently developed Sleep Inertia Questionnaire
(Kanady and Harvey, 2015) to evaluate each patient’s individual
susceptibility to sleep inertia, which we expect should predict
(together with their current amount of sleep debt) their
individual likelihood of experiencing neural inertia.

Neuroimaging Evidence: Diminished Anticorrelations
in the Inert Human Brain
At the macroscale, there is additional recent evidence to suggest
that anaesthesia resembles the state of sleep inertia. Under
conditions of normal restfulness, it is well known from functional
MRI that the human brain self-organises into distinct sets of
brain regions, known as resting-state networks (Yeo et al., 2011;
Smith et al., 2012). In particular, a “default mode” network
(DMN) of medial frontal and parietal regions, and a set of “task-
positive” networks such as the “executive control” network of
lateral fronto-parietal regions (FPN) and the “dorsal attention
network” (DAN) tend to exhibit anticorrelated patterns of
activation (Raichle et al., 2001; Fox et al., 2005) (but note that
the DMN can also be recruited by tasks, especially pertaining
to self-referential cognition, “mental time travel,” or automated
processing (Vatansever et al., 2015a,b, 2017; Buckner and
DiNicola, 2019) (Figure 4).

Intriguingly, recent EEG-fMRI evidence indicates that loss of
DMN-FPN/DAN anticorrelations is a neural correlate of sleep
inertia itself in humans (Vallat et al., 2018; but see Chen et al.,
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FIGURE 4 | Anticorrelations in the human brain. (A) Surface projection of the
default mode network (red) and fronto-parietal (blue)/dorsal attention networks
(cyan) onto medial and lateral surfaces of a standard brain (left hemisphere).
(B) The timecourses of default mode and fronto-parietal networks are
anti-correlated during quiet wakefulness. (C) Anticorrelations are reduced or
even abolished in the anaesthetised brain. Data from one representative
subject, before and during propofol anaesthesia; for experimental details, see
Stamatakis et al. (2010) and Varley et al. (2020).

2020). Indeed, earlier work had also demonstrated, by employing
positron emission tomography (PET) that for a short period of
time after awakening (5–20 min, compatible with the duration of
sleep inertia; Trotti, 2017), there is a gradual increase of cerebral
blood flow in heteromodal areas, especially lateral prefrontal
cortex (lPFC), a core component of the executive control network
(Balkin et al., 2002). Additionally, as previously mentioned,
both awakening from deep sleep and previous sleep deprivation
intensify subsequent sleep inertia upon awakening. And indeed, a
loss of DMN-FPN/DAN anticorrelations is also observed during
sleep in humans (Sämann et al., 2011), as well as in the awake
but sleep-deprived human brain (De Havas et al., 2012). Thus,
sleep inertia and conditions that favour it, share a common neural
substrate in the reduction of DMN-FPN/DAN anticorrelations.

Conversely, caffeine consumption, perhaps the most widely
adopted countermeasure to sleep inertia (Van Dongen et al.,
2001) is known to have the opposite effect: it increases the
anticorrelations between DMN and FPN/DAN in the human
brain (Wong et al., 2012).

This suggests that sleep inertia, at least in the human brain,
may correspond to a carry-over of diminished DMN-FPN/DAN
anticorrelations. Remarkably, perturbed DMN-FPN/DAN
interactions are also one of the most robustly observed neural
markers of human loss of consciousness induced by a variety
of anaesthetics (Boveroux et al., 2010; Guldenmund et al., 2013;
Golkowski et al., 2019; Luppi et al., 2019, 2020; Huang et al.,
2020) (Figure 4), and the anticorrelations are even diminished
one hour after emergence from sevoflurane anaesthesia (Nir
et al., 2020). Thus, we propose that neural inertia may be the
effect of anaesthetic-induced sleep inertia, which corresponds
to a carry-over of diminished anticorrelations between DMN
and FPN/DAN. In other words, we propose that the inert
brain is a brain that has lost its characteristic anticorrelations.
This specific hypothesis could be empirically tested, since
it predicts that humans experiencing higher neural inertia
after anaesthesia should exhibit more prominent loss of
anticorrelations.

Inertia in the Aging Brain
Intriguingly, the hypothesis presented here may also explain why
older adults are more susceptible to neural inertia (Warnaby et al.,
2017). Namely, according to the present view, this is because they
are more susceptible to sleep inertia. Reduced and fragmented
sleep is common among the elderly, and especially patients with
Alzheimer’s disease (Bonanni et al., 2005; Guarnieri et al., 2012).
Since fragmented sleep tends to increase subsequent slow-wave
activity (Bonnet, 1987), awakening from which causes higher
levels of sleep inertia (Dinges, 1990), as does sleep deprivation,
the elderly should show higher levels of sleep inertia. This is
indeed the case (Silva and Duffy, 2008).

Additionally, if the hypothesis proposed here about the
link between sleep inertia and neural inertia is correct, these
populations should also suffer from higher levels of neural
inertia. Again, this is precisely what is observed: rat studies
indicate that ageing increases sensitivity to anaesthetics, and
prolongs their effect (Chemali et al., 2015); likewise, older
humans are also more susceptible to anaesthesia (Kanonidou
and Karystianou, 2007). Furthermore, recent evidence indicates
that age influences the newly discovered EEG marker of neural
inertia in humans, slow wave activity saturation (SWAS): SWAS
is more likely to cease abruptly rather than gradually in older
patients, predicting their likelihood of post-operative delirium
(Warnaby et al., 2017).

Neuroimaging evidence in older adults further supports the
link between sleep and neural inertia and loss of anticorrelations
between DMN and FPN/DAN: it is well established that aging
corresponds to a reduction of anticorrelations between these
networks (Keller et al., 2015; Siman-Tov et al., 2017), even in the
absence of concomitant psychiatric conditions (Kobuti Ferreira
et al., 2015) and more so in those with mild cognitive impairment
(Esposito et al., 2018). Thus, older brains are intrinsically more
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prone to loss of anticorrelations, and suffer from higher sleep
inertia and higher neural inertia.

Molecular Mechanisms of Sleep and
Neural Inertia
Orexin/Hypocretin
One candidate system for the control of sleep inertia—and
hence, we have argued, neural inertia—is the orexinergic system.
Located exclusively in the lateral hypothalamus (De Lecea et al.,
1998; Sakurai et al., 1998), orexin/hypocretin neurons are wake-
active (Lee et al., 2005; de Lecea and Huerta, 2014), and
innervate the wake-promoting monoaminergic and cholinergic
nuclei (Carter et al., 2012). And indeed, using channelrhodopsin-
2 to selectively stimulate orexin neurons promotes awakening
from sleep in mice (Adamantidis et al., 2007), and increased
wakefulness is reported in rodents after orexin-A administration,
either intracerebroventricular or directly into monoaminergic
and cholinergic wake-promoting nuclei (Hagan et al., 1999;
Sakurai and Mieda, 2011).

Conversely, optogenetic suppression of orexin neurons
with archaerhodopsin has sleep-promoting effects in mice
(Tsunematsu et al., 2011, 2013); and in humans, orexin blockers
are now available as medication against insomnia (Bennett
et al., 2014). These effects were confirmed using Designer
Receptors Exclusively Activated by Designer Drugs (DREADDs)
to chemogenetically activate or silence orexin neurons, resulting
in increased wakefulness or sleep in rodents, respectively (Sasaki
et al., 2011). Loss of orexin neurons causes the sleep disorder
narcolepsy in dogs (Lin et al., 1999) and humans (Nishino
et al., 2000; Thannickal et al., 2000), and the same is obtained
by selective orexin knock-out in mice (Chemelli et al., 1999;
Mochizuki et al., 2004), as well as pharmacological lesions in rats
(Gerashchenko et al., 2001). Crucially, narcolepsy is characterised
by an unstable and fragmented sleep-wake cycle, and difficulty
in becoming awake (i.e., high sleep inertia) (Scammell, 2003).
Indeed, sleep inertia is often present in narcoleptic children
(Wise, 1998).

Thus, there is ample evidence, in both humans and other
animals, that orexin and orexinergic neurons play a crucial role
in sleep-wake regulation (Mieda, 2017). A recent computational
study indicates that the specific role of orexin may be to stabilise
the transitions between sleep and wake (Fulcher et al., 2014).
According to the model, a bistable region of state-space exists
when the inputs to the sleep-promoting and wake-promoting
systems are balanced, and state transitions are easy (Figure 5).
By increasing the activity of wake-promoting monoaminergic
nuclei upon awakening, orexin pushes the system out of the
bistable region, stabilising it. Indeed, simulating orexin loss in the
model lowered transition thresholds, resulting in frequent wake-
sleep transitions and sleep fragmentation, analogous to what is
observed in orexin-deficient narcoleptic patients.

Intriguingly, recent neuroimaging work using a variant
of functional MRI called MR encephalography, which has
high temporal resolution (100 ms), determined that human
narcoleptic patients have aberrant interactions between DMN
and FPN/DAN, characterised by delayed and monotonic

FIGURE 5 | Dynamics of orexin stabilisation of state transitions according to
the model of Fulcher et al. (2014). The axes represent the net drives to the
wake-promoting (DM ) and sleep-promoting (DV ) circuits. Regions are labelled,
with the bistable region shown in blue. The black arrow represents the waking
period, while the grey arrow represents sleep. The trajectory marked “no Orx”
represents the dynamics of the model in the absence of orexin input. Figure
adapted from Figure 3 of Fulcher et al. (2014), published under CC-BY licence.

interactions, which the authors interpreted as a compromised
ability of task-positive networks to suppress the DMN (Järvelä
et al., 2020); Once again, this observation is in line with our
proposed macroscale identification of sleep inertia with abnormal
anticorrelations between large-scale networks of the brain.

Thus, evidence suggests that low orexin levels lead to high
levels of sleep inertia, and its associated neural signatures.
According to the hypothesis developed here, such high sleep
inertia should be accompanied by high levels of neural inertia.
This is indeed the case: case reports suggest high neural inertia
in at least some narcoleptic human patients (Mesa et al., 2000;
Burrow et al., 2005), confirmed by the increased neural inertia
observed in rodents with narcolepsy arising from genetic ablation
of orexin neurons (Hara et al., 2001; Kelz et al., 2008). Moreover,
orexin is known to be involved in anaesthetic action: the
activity of orexin neurons is reduced by propofol, sevoflurane
and isoflurane, as indicated by a reduced number of c-Fos-
immuno-reactive orexinergic neurons in rodents (Kelz et al.,
2008; Zhang et al., 2012; Scharf and Kelz, 2013). Moreover, rodent
studies show that reduced activation of orexin neurons during
anaesthesia is exacerbated when the anaesthesia is administered
under conditions of sleep deprivation (Ran et al., 2015).
Conversely, intracerebroventricular administration of orexin-
A (though not orexin-B) causes emergence from propofol,
isoflurane and sevoflurane anaesthesia in rats (Dong et al., 2009;
Shirasaka et al., 2011; Zhang et al., 2012, 2016), and similar results
have also been obtained in mice, whereby activation of orexin
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neurons with DREADDs facilitated emergence from isoflurane
anaesthesia (Zhou et al., 2018). Thus, orexin appears to play
a major role in anaesthesia and the sleep-wake cycle, with its
absence increasing both sleep inertia and neural inertia.

Noradrenaline
The action of orexin neurons is believed to occur mainly through
excitation of monoaminergic wake-promoting nuclei, which they
innervate (Sakurai and Mieda, 2011). In particular, orexinergic
neurons may exert their effects on sleep-wake transitions through
the noradrenergic locus coeruleus (LC) (Carter et al., 2012).
Orexin neurons send strong excitatory projections to the LC, and
the wake-inducing effect of orexin infusion involves activation of
the LC (Hagan et al., 1999).

Indeed, the fragmented sleep-wake cycle of narcolepsy was
reconsolidated by restoring orexin receptors in the LC of
mice, and equivalent results were achieved by chemogenetically
activating these neurons with DREADDs (Hasegawa et al.,
2014). Furthermore, optogenetic inactivation of LC prevents
the arousal-promoting effect of optogenetically activating orexin
neurons; conversely, the latter is potentiated by concomitant
stimulation of LC neurons (Carter et al., 2012). Thus, there is
strong evidence that noradrenergic system activity is one of the
primary routes through which orexin neurons perform their
regulatory role (De Lecea, 2015).

Specifically supporting a role for noradrenaline in neural
inertia, previous work (Friedman et al., 2010) established that
genetic deletion of dopamine-ß-hydroxylase (DBH) in mice
to remove noradrenergic signalling resulted in hypersensitivity
to isoflurane anaesthesia, as well as increased neural inertia.
This could be reversed by pharmacologic CNS-specific rescue
of adrenergic signalling, achieved by providing the amino acid
L-DOPS so that it would be converted into noradrenaline by
L-amino acid decarboxylase (Friedman et al., 2010). In humans,
Kuizenga et al. (2018) reported evidence of neural inertia
when sevoflurane was supplemented with remifentanil, which is
believed to influence sleep-wake regulation through adrenergic
neurotransmission (McCormick and Bal, 1997; Samuels and
Szabadi, 2008).

Indeed, implication of orexin and noradrenaline in neural
inertia has been considered before (Sepúlveda et al., 2019;
Wasilczuk et al., 2020). Wasilczuk et al. (2020) observed
that halothane does not suppress hypothalamic orexinergic
neurons and LC noradrenergic neurons (Gompf et al., 2009),
whereas isoflurane does suppress them (Kelz et al., 2008).
Thus, these authors proposed that this difference may underlie
the increased neural inertia induced by halothane compared
with isoflurane (Friedman et al., 2010; Wasilczuk et al., 2020)
due to non-abolished orexinergic activity. As mentioned above,
our own explanation of the same phenomenon is in terms
of halothane failing to reduce sleep debt, unlike isoflurane
(Pick et al., 2011), thereby producing more sleep inertia (and
hence neural inertia, according to our account). These two
explanations are not in contrast: indeed, they suggest that a
fruitful avenue for future research may be to seek a connection
between persistent orexinergic activity and halothane’s failure to
discharge sleep debt.

On the other hand, studies providing a direct link between
noradrenaline and sleep inertia are presently lacking;
nevertheless, several indirect lines of evidence suggest that
low levels of noradrenaline may be related to sleep inertia.
Behaviourally, noradrenaline is implicated in cognitive functions
such as sustained attention and working memory (Chamberlain
and Robbins, 2013; Spencer et al., 2015), which are especially
vulnerable to sleep deprivation (Goel et al., 2009; Killgore,
2010)—of which sleep inertia is a post-awakening counterpart,
we have argued here. Noradrenaline is also increased following
consumption of coffee (Papadelis et al., 2003), and caffeine
consumption can reverse many of the cognitive adverse effects of
clonidine (Smith et al., 2003), which mimics the state of reduced
arousal observed as a result of sleep deprivation by reducing
turnover of central noradrenaline, by binding to autoreceptors
(Nutt and Glue, 1988).

Recently, Bellesi et al. (2016) used in vivo microdialysis
to demonstrate decreasing levels of prefrontal noradrenaline
in rodents undergoing sleep deprivation, correlating with an
increase in low EEG frequencies tracking the need to sleep.
Thus, low levels of prefrontal noradrenaline could contribute to
explain the cognitive deficits observed during sleepiness induced
by prolonged wakefulness. Crucially, noradrenaline restoration
to baseline levels post-awakening was slower in prefrontal cortex
than in other areas, such as M1—and in humans, prefrontal
regions are those that were found to have reduced cerebral blood
flow upon awakening in the PET study of Balkin et al. (2002).
Thus, evidence suggests that decreased prefrontal noradrenaline
could also explain the confusion and cognitive deficits observed
during sleep inertia—especially since this state is very similar to
sleepiness, as we have shown. This evidence also suggests that, if
our hypothesis is correct, then we should expect noradrenaline
to modulate the prevalence of anticorrelations between DMN
and FPN/DAN in the human brain, since anticorrelations are
also enhanced by caffeine and decreased by sleepiness (De Havas
et al., 2012), sleep (Sämann et al., 2011), sleep inertia (Vallat et al.,
2018), and anaesthesia (Boveroux et al., 2010; Golkowski et al.,
2019; Luppi et al., 2019; Huang et al., 2020). Interestingly, recent
studies indicate that caffeine infusion can accelerate emergence
from isoflurane anaesthesia in both rodents and humans (Fong
et al., 2018; Fox et al., 2020), and future research may seek
to determine whether this effect corresponds to faster recovery
of anticorrelations in the brain after anaesthesia (Nir et al.,
2020) and whether it is specifically attributable to caffeine’s
action on noradrenergic neuromodulation (Papadelis et al., 2003;
Smith et al., 2003).

Indeed, as major wake- and alertness-promoting
neurotransmitter, noradrenaline is modulated by both sleep
and anaesthesia—just as we should expect if noradrenaline
were involved in both sleep and neural inertia, as we propose
here. Noradrenaline levels are highest during wake and
drop during sleep (Léna et al., 2005) and stimulation of the
noradrenergic LC of mice induces waking (Carter et al.,
2010, 2013; Berridge et al., 2012); activity of the LC is
inhibited by GABA during sleep (Gervasoni et al., 1998), as
well as during propofol and isoflurane anaesthesia in mice
(Zecharia et al., 2009). Administration of noradrenaline
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by microinjection into the central medial nucleus of the
thalamus accelerates emergence from propofol anaesthesia
in rodents, and reverses the local physiological effects of
propofol (Fu et al., 2016). Likewise, pharmacogenetic activation
of noradrenergic neurons in the LC with virally delivered
DREADDs promotes EEG markers of neural arousal and
accelerates emergence from isoflurane anaesthesia in rats, an
effect that can be prevented by application of noradrenergic
antagonists (Vazey and Aston-Jones, 2014). The anaesthetic
dexmedetomidine also operates on noradrenergic transmission:
as an adrenergic α-2 receptor agonist, it decreases the
firing of LC neurons (Nelson et al., 2003), and indeed α-
2A receptor activation inhibits noradrenergic LC neurons
(Lakhlani et al., 1997).

Although it was originally thought that dexmedetomidine
would induce sedation by inhibiting the LC (Sanders and Maze,
2012) thereby removing the noradrenergic inhibition on the
sleep-promoting VLPO neurons (Nelson et al., 2003), recent
evidence suggests a more intricate picture: acute inhibition
of LC neurons does not induce strong sleep in mice (Carter
et al., 2010), and LC inhibition is not required for low
doses of dexmedetomidine to produce their sedative effects,
since knockdown of LC α2A adrenergic receptors in mice
does not prevent sedation, even though loss of the righting
reflex is still observed at high doses (Zhang et al., 2015).
Intriguingly, the same hypothalamic neurons in the mouse
are involved in inducing recovery sleep and dexmedetomidine-
induced sedation, by locally exciting neurons in the preoptic area
(Zhang et al., 2015).

Other studies also indicate a more complicated picture:
microdialysis of noradrenaline into rat prefrontal or parietal
cortex under constant levels of sevoflurane anaesthesia failed to
produce wake-like behaviour—although it did produce wake-
like EEG (Pal et al., 2018). Similar failure to awaken rats
from continuous sevoflurane anaesthesia was also reported after
pharmacological blockade of noradrenaline reuptake (Kenny
et al., 2015). Since cholinergic stimulation of prefrontal cortex
did induce wake-like behaviour in the rats studies by Pal
et al. (2018), this evidence suggests that a full picture
will likely need to also take additional neuromodulatory
systems into account. Dopamine in particular has been
implicated, largely in rodent studies. Lesions to the wake-
active dopaminergic ventral tegmental area in the brainstem
shorten the induction time of anaesthesia, and lengthen the
time taken for recovery—whereas both electrical and optogenetic
stimulation of the VTA can reverse the anaesthetic effects of
propofol in rats and mice (Solt et al., 2014; Taylor et al.,
2016). These contributions of dopaminergic signalling have
recently also been extended to a dopaminergic population
in the ventral periaqueductal grey (Li et al., 2018; Liu
et al., 2020). Given the shared pathways of dopaminergic
and noradrenergic transmitter production, it seems plausible
that these transmitters and their nuclei in the brainstem may
act in-concert to produce wakefulness, and to counter the
effects of sleep inertia and neural inertia, as evidenced by
their influences on recovery and induction times. Likewise,
the recent discovery that hypothalamic neuroendocrine cells

are involved in both slow-wave sleep and general anaesthesia
induced by multiple classes of anaesthetic drugs (Jiang-Xie et al.,
2019) suggests that a fuller understanding of the link between
sleep and neural inertia may benefit from taking into account
neuroendocrine involvement.

DISCUSSION

Overall, there is converging human and animal evidence that
neural inertia strongly resembles sleep inertia, in terms of
both behavioural manifestations and microscale and macroscale
neural markers. Both phenomena are influenced by orexin
neurons, which seem to perform a state-stabilising function
via noradrenergic transmission. Loss of orexin neurons in
narcolepsy, results in fragmented sleep-wake cycles and increases
in both sleep inertia and neural inertia. Therefore, we have argued
here that neural inertia may in fact be a manifestation of sleep
inertia, as it occurs after the artificial slow-wave sleep induced by
anaesthetics. Of note, this hypothesis can account for phenomena
as diverse as the higher inertia-inducing properties of halothane
vs. isoflurane (Friedman et al., 2010; Wasilczuk et al., 2020), and
the increased susceptibility to neural inertia in the elderly and in
narcoleptic patients.

If our hypothesis is correct, then it could have implications
for clinical practice: by assessing each patient’s individual
susceptibility to sleep inertia and current sleep debt, anaesthetists
may be able to estimate individual likelihood of their patient
experiencing neural inertia. In turn, this may better equip them
to counteract adverse effects such as post-anaesthetic delirium
(Warnaby et al., 2017; Sepúlveda et al., 2019).

Multiple sources of evidence—behavioural and
neurophysiological, in animals and humans—suggest that
orexin may play a stabilising effect between states of sleep
and wakefulness, possibly (though likely not exclusively)
through its effects on locus coeruleus noradrenergic neurons.
Together, these neuromodulatory systems may be key in
determining sleepiness, sleep inertia and what we have
argued is its post-anaesthetic counterpart: neural inertia.
Nevertheless, direct evidence explicitly linking all pieces of
this puzzle together is still lacking, and even evidence of a
link between noradrenergic modulation and sleep inertia is at
present only indirect. Further studies explicitly investigating
involvement of noradrenaline and other neuromodulators
in relation to sleep inertia remain necessary, as a test of the
hypothesis presented here.

Of course, the brain is a remarkably complex system. There
are other components of the sleep- and wake-promoting circuits
beyond orexin and noradrenaline, and they are likely to play
some direct or indirect role in the phenomena of sleep inertia
and neural inertia, and the stabilisation of arousal states more
broadly. All these circuits are intricately interconnected, and
changes in one are likely to have multiple repercussions.
Indeed, investigating such interactions will be required to further
elucidate the hypothesis proposed here. Nevertheless, here we
have provided a number of predictions that are testable with
current scientific techniques, and we hope that these predictions
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will stimulate fruitful avenues for further research—whether or
not they ultimately support our hypothesis.
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