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Pediatric obstructive sleep apnea (OSA) is a prevalent disorder that disrupts sleep and
is associated with neurocognitive and behavioral negative consequences, potentially
hampering the development of children for years. However, its relationships with sleep
electroencephalogram (EEG) have been scarcely investigated. Here, our main objective
was to characterize the overnight EEG of OSA-affected children and its putative
relationships with polysomnographic measures and cognitive functions. A two-step
analysis involving 294 children (176 controls, 57% males, age range: 5–9 years) was
conducted for this purpose. First, the activity and irregularity of overnight EEG spectrum
were characterized in the typical frequency bands by means of relative spectral power
and spectral entropy, respectively: δ1 (0.1–2 Hz), δ2 (2–4 Hz), θ (4–8 Hz), α (8–13 Hz), σ

(10–16 Hz), β1 (13–19 Hz), β2 (19–30 Hz), and γ (30–70 Hz). Then, a correlation network
analysis was conducted to evaluate relationships between them, six polysomnography
variables (apnea–hypopnea index, respiratory arousal index, spontaneous arousal
index, overnight minimum blood oxygen saturation, wake time after sleep onset, and
sleep efficiency), and six cognitive scores (differential ability scales, Peabody picture
vocabulary test, expressive vocabulary test, design copying, phonological processing,
and tower test). We found that as the severity of the disease increases, OSA broadly
affects sleep EEG to the point that the information from the different frequency bands
becomes more similar, regardless of activity or irregularity. EEG activity and irregularity
information from the most severely affected children were significantly associated with
polysomnographic variables, which were coherent with both micro and macro sleep
disruptions. We hypothesize that the EEG changes caused by OSA could be related
to the occurrence of respiratory-related arousals, as well as thalamic inhibition in the
slow oscillation generation due to increases in arousal levels aimed at recovery from
respiratory events. Furthermore, relationships between sleep EEG and cognitive scores
emerged regarding language, visual–spatial processing, and executive function with
pronounced associations found with EEG irregularity in δ1 (Peabody picture vocabulary
test and expressive vocabulary test maximum absolute correlations 0.61 and 0.54)
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and β2 (phonological processing, 0.74; design copying, 0.65; and Tow 0.52). Our
results show that overnight EEG informs both sleep alterations and cognitive effects of
pediatric OSA. Moreover, EEG irregularity provides new information that complements
and expands the classic EEG activity analysis. These findings lay the foundation for the
use of sleep EEG to assess cognitive changes in pediatric OSA.

Keywords: sleep apnea, pediatrics, electroencephalography, cognition, correlation networks

INTRODUCTION

Pediatric obstructive sleep apnea (OSA) is not only prevalent
among children but also carries a significant risk for long-
term morbidities primarily affecting cognitive and behavioral
functioning, as well as inducing cardiovascular and metabolic
dysfunction (Marcus et al., 2012). OSA-induced night time
perturbations such as intermittent hypoxia, hypercapnia,
and sleep fragmentation are often accompanied by systemic
inflammation and oxidative stress, the latter being implicated
in the neurocognitive and behavioral deficits that could
hamper their intellectual and emotional development (Marcus
et al., 2012; Hunter et al., 2016). Cognitive impairments
have indeed been recognized as one of the major morbidities
of OSA during childhood, with the most severe patients
showing a higher risk of being affected (Hunter et al., 2016).
Nevertheless, cognitive testing is not routinely administered
to children being clinically evaluated for suspected OSA.
Adenotonsillectomy has shown the reversibility of cognitive
deficits associated with OSA, as well as improvements in
academic results (Gozal, 1998), with suggested neurocognitive
enhancements even in mild patients receiving timely
treatment (Tan et al., 2017). Hence, objective identification
of cognitive impairments in OSA-affected children is of
paramount importance to minimize their impact and maximize
their reversibility.

Sleep EEG has shown the potential to provide physiologically
based cognitive information (Weichard et al., 2016; Brockmann
et al., 2018, 2020; Christiansz et al., 2018) that would
obviate the need for traditional neurocognitive tests, yet
secure an estimate of risk for OSA-associated morbidities.
However, all previous studies exploring sleep EEG and cognition
focused on very specific EEG attributes, such as spindles
or delta activity (Weichard et al., 2016; Brockmann et al.,
2018, 2020; Christiansz et al., 2018). Consequently, how
OSA alters the overnight electrical behavior of the brain of
children, and whether such alterations indicate cognitive deficits,
remains unclear. If such were the case, however, the intrinsic
informative value of the PSG-derived EEG recordings would
add further incentive to the use of PSG since it would provide
not only the necessary respiratory information required for
clinical treatment decision making but would also provide
inferences as to the cognitive susceptibility of the patients, i.e.,
would enable more personalized approaches. We, therefore,
hypothesized that pediatric OSA and its cognitive implications
are reflected in a differential behavior of the overnight EEG.
Furthermore, the recurrent nature of apneic events suggests

an examination in the frequency domain. Accordingly, our
main objective was to characterize new relationships between
the information obtained from the overnight EEG spectrum,
pediatric OSA-related polysomnographic perturbations, and
cognitive functions.

To this effect, we extracted information from the conventional
spectral bands of 294 EEG recordings from children, not
only using the activity-based classic approach (relative spectral
power, RP) but also the analysis of their irregularity (spectral
entropy, SpecEn). Connections between these complementary
analyses, applied to eight EEG channels, six polysomnographic
variables, and six cognitive scores, were assessed using correlation
networks, as they allow for an easy visualization of relationships
in high-dimensional data and have been successfully used in
the study of different pathological conditions (Liu et al., 2009;
Barabási et al., 2011; Epskamp et al., 2012; Kwapiszewska
et al., 2018; Jimeno et al., 2020). Our analytical approach is
expected to identify how EEG activity and irregularity evolve
as pediatric OSA worsens, while concurrently assessing their
interrelationship with sleep variables and cognitive outcomes.

MATERIALS AND METHODS

Pediatric Cohort and Sleep Studies
Community nonreferral children (169 boys/125 girls, 5–9 years
old) were recruited in Chicago, Illinois, after obtaining an
informed consent from their parents or legal caregivers in
accordance with the Declaration of Helsinki. The protocol
was approved by the Ethics Committee of the University of
Chicago (protocol # 09-115-B). Polysomnography (PSG) was
conducted using commercial digital equipment and scored
according to the recommendations of the American Academy
of Sleep Medicine (AASM) (Grigg-Damberger et al., 2007; Iber
et al., 2007; Berry et al., 2012). The apnea–hypopnea index
(AHI) from PSG was used as the OSA diagnostic standard.
AHI common cutoffs were used to split the cohort in three
subgroups: controls (AHI ≤ 1 event/h, N = 176), mild OSA
(1 e/h ≤ AHI ≤ 5 e/h, N = 98), and moderate/severe OSA (5
e/h ≤ AHI, N = 20). Children were recruited from the sleep
clinic and the pediatric otolaryngology clinics as well as by flyers
posted in the community. Those children who had genetic or
craniofacial syndromes and chronic diseases such as cardiac
disease, diabetes, cerebral palsy, and chronic lung disease of
prematurity or cystic fibrosis were excluded. In addition, any
child with a known neuropsychiatric condition or developmental
delay was also excluded.
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Polysomnographic Variables and
Neurocognitive Tests
Six PSG-related variables were included in the study: AHI,
respiratory event-related arousals (AR), minimum oxygen
saturation value (NadirSpO2), spontaneous arousals (AS), the
number of minutes awake after sleep onset (WASO), and
the sleep efficiency (SleepEff). AHI refers to the number of
apneas and hypopneas per hour of sleep, and was used to
establish the presence and severity of OSA (Berry et al., 2012).
AR is the number of arousals per hour of sleep caused by
abnormal respiratory events, thus, reflecting associated micro
sleep disruptions. Respiratory arousals are involved in hypopnea
definition, and therefore, they are also related to AHI. NadirSpO2
is the lowest value of oxygen saturation during the night. It
is very often associated with the occurrence of desaturations,
which are also involved in hypopnea definition. AS is the number
of spontaneous arousals. It has been included to contrast the
evaluation of AR. Finally, WASO are the minutes awake after
sleep onset, and SleepEff is the percentage of minutes spent asleep
divided by the total of minutes in bed. Both are associated with
macro sleep disruptions.

Six neurocognitive tests were administered to the children
under study in the morning immediately after the PSG night
(Hunter et al., 2016). Differential ability scales (DAS) is composed
of a battery of subtests with ability to measure the performance of
several intellectual activities of children in the range 2–17 years
(Elliott, 1990b). However, in this study, it was only used as a
measure of global intellectual ability by means of a composite
score termed “general conceptual ability.” It merges the scores
from each subtest, with a proper age standardization, showing
high agreement with other common general tests (Elliott,
1990a,b). The third edition of the Peabody Picture Vocabulary
Test (PPVT3) was used to assess the verbal ability of the
children under study (Restrepo et al., 2006). It is a test in
which children point to a picture they think that shows a word
previously said aloud, i.e., it is focused on receptive verbal skills.
The Expressive Vocabulary Test (EVT) is complementary to
PPVT3 when evaluating language (Restrepo et al., 2006; Hunter
et al., 2016). During EVT, children have to articulate the word
representing the image shown in a picture, so it assesses the
expressive part of language (Restrepo et al., 2006). The three
remaining cognitive tests are included within NEPSY (for A
Developmental NEuroPSYchological Assessment) series. Design
Copying (DesCop) is intended for measuring visual–spatial
processing (Ahmad and Warriner, 2001; Miller, 2007). Children
are asked to copy geometrical figures, and credit is given for each
partial drawing (Miller, 2007). Phonological processing (PhPro)
from NEPSY assesses language in a different way than PPVT3
and EVT. While the last two refer to receptive and expressive
language, respectively, PhPro measures the third subcomponent
of language, called indeed phonological processing (Miller, 2007).
It consists of two parts. In the first one, children have to identify
words from word segments using graphic and verbal indications.
In the second part, children are required to repeat a word and
create a new one from the original. Finally, Tower (Tow) test
is the NEPSY variant of the well-known Tower of London. It
is intended for assessing executive functions, such as planning

or problem solving (Baron, 2018). In less than six movements,
children are asked to imitate with real pieces a given state shown
in a figure (Miller, 2007).

Signal Acquisition and Analysis
Eight EEG channels referenced to mastoids (F3, F4, C3, C4,
O1, O2, T3, and T4) were acquired during PSGs at a sampling
rate of 200 Hz (Grigg-Damberger et al., 2007; Iber et al., 2007).
Pre-processing consisted of a four-stage methodology: (i) re-
referencing to the average of the eight EEG channels; (ii) stop-
band filter in 60 Hz and band-pass filter from 0.1 to 70 Hz using a
Hamming window; (iii) automatic rejection of artifacts following
an epoch-adaptive thresholding approach (Bachiller et al., 2015);
and (iv) rejection of first and last parts of the EEG to avoid initial
and final awake states.

The Blackman–Tukey method was used to estimate the power
spectral density (PSD) of the eight EEG channels from each
subject under study. A rectangular nonoverlapping window was
used, with a length of 6,000 samples (30 s). The PSDs of the
epochs of the whole night were averaged to estimate one PSD
for each channel. Then these PSDs were normalized (PSDn)
dividing its amplitude values by the total spectral power of the
corresponding channel. The relative power (RP) and spectral
entropy (SpecEn) of delta 1 (δ1: 0.1–2 Hz), delta 2 (δ2: 2–4 Hz),
theta (θ: 4–8 Hz), alpha (α: 8–13 Hz), sigma (σ: 10–16 Hz), beta 1
(β1: 13–19 Hz), beta 2 (β2: 19–30 Hz), and gamma (γ: 30–70 Hz)
were obtained from the PSDn of each channel (Uhlhaas and
Singer, 2010). The split of delta is predicated on their different
behavioral characteristics during sleep (Benoit et al., 2000), as well
as in OSA presence (Gutiérrez-Tobal et al., 2019b). Sigma band
was specifically analyzed because of its well-known relationship
to sleep spindles (Iber et al., 2007). RPs were obtained per
convention as it accounts for EEG activity and were computed
as the sum of the PSDn amplitude values within each band:

RP =
∑f 2

f = f 1
PSDn(f ) (1)

where f 1 and f 2 are the limits of each spectral band. SpecEn
reflects EEG irregularity within these frequencies, regardless
of total activity, thus, affording additional useful information
(Inouye et al., 1991; Gutiérrez-Tobal et al., 2019a). It was obtained
as follows (Inouye et al., 1991):

SpecEn = −
1

log N

∑f 2

f = f 1
PSDn

(
f
)
· log

(
PSDn

(
f
))

(2)

which is the application of Shannon’s entropy equation to the
PSDn values within f 1 and f 2, with N being the number of
values within these limits. As Shannon’s entropy represents
the uniformity of a given distribution, SpecEn quantifies the
uniformity of a given spectrum in terms of its peakedness/flatness
(Inouye et al., 1991). Consequently, SpecEn values equal to 0, the
minimum in Equation (2), are reached when a single spectral
component is present. This would be the case of a sinusoid in
time domain, that is, a completely regular (predictable) signal. In
contrast, SpecEn values equal to 1, the maximum in Equation (2),
are reached when the power of the spectrum is equally distributed
among frequencies as in the case of white noise, which is
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a completely irregular (unpredictable) signal in time domain
(Inouye et al., 1991). According to these features, SpecEn should
be able to characterize a redistribution of the within-band spectral
power caused by OSA regardless of RP remaining the same
in the given band.

Correlation Network Analysis
Correlation networks are graphs based on pairwise relationships
between variables (Borsboom et al., 2011). Such associations
are represented as nodes—the variables—and edges—their
connections—where the width and color of the later show
the intensity of the correlation and its sign (in this study,
red/negative and green/positive). The abovementioned six PSG
outcomes and six cognitive scores were used as variables along
with the activity (RP) and irregularity (SpecEn) of each EEG
channel and band. A total of six correlation networks (three
for RP and three for SpecEn) were dedicated to show the
relationships of polysomnographic and cognitive data with the
overnight EEG information in each OSA severity subgroup.
Accordingly, the first step was to calculate the Spearman’s
partial correlation (adjusted by sex and age) between all the
variables included in the networks to form the corresponding
correlation matrices. In order to cope with the different number
of subjects in each OSA severity group, the correlation matrices
used to estimate the networks were composed after a 1.000-
run bootstrap procedure (correlation matrices with 2.5 and 97.5
percentiles are provided in the file “correlation matrices.xlsx”
of the Supplementary Material). Thus, 1.000 bootstrap samples
with 20 subjects from each OSA severity group were used to
compute the relationship between each node of each correlation
network. The subjects were randomly selected with replacement
and uniform probability, and the median value of the 1.000 runs
was chosen to build each network. Then, these were obtained
using the R package qgrah (Epskamp et al., 2012). Particularly,
the Fruchterman–Reingold algorithm was applied (Fruchterman
and Reingold, 1991), which forced embedded network layouts
after 500 iterations. Newman’s maximized algorithm was used
to conduct a modularity analysis to show possible clusters in
the networks (Newman, 2006; Rubinov and Sporns, 2010). It
measures the degree in which a network can be divided into
different related and nonoverlapping clusters and, at the same
time, provides the composition of such clusters (Rubinov and
Sporns, 2010), i.e., the nodes assigned to each of them. An
ancillary analysis of centrality of the nodes was assessed using
strength, closeness, and betweenness (Rubinov and Sporns, 2010),
whose results can be seen as Supplementary Figures.

Statistical Analysis
Mann–Whitney nonparametric U-test was used to evaluate
differences between OSA severity groups in age, body mass index,
clinical variables, and cognitive scores. Fisher’s exact test was
conducted to evaluate these differences in sex. Spearman’s partial
correlation (ρ), adjusted by the sex and age of children, were
used in the correlation networks. R package qgraph was used to
obtain the corresponding network graphs (Epskamp et al., 2012).
Only non-negligible absolute correlation values (| ρ| ≥ 0.30) were
shown in the correlation networks (Mukaka, 2012).

RESULTS

Polysomnography Variables and
Cognitive Scores
Table 1 shows the summary of the PSG variables and
cognitive scores (median and interquartile range) in the 294
subjects divided according to OSA subgroups. Sociodemographic
characteristics (age, sex, and body mass index) are also presented.
As would be anticipated from the delineation of the groups, AHI,
AR, and NadirSpO2 showed statistically significant differences (p-
value < 0.05, Mann–Whitney U-test) between them, while AS
was significantly lower in moderate/severe OSA. All cognitive
scores showed a decreasing tendency as OSA severity increases,
with DAS, PhPro, and Tow reaching significant differences. No
statistically significant differences emerged for age, sex (Fisher’s
exact test), WASO, and SleepEff.

Averaged Electroencephalogram
Spectrum of the Three Obstructive Sleep
Apnea Severity Categories
Figures 1A–D show the averaged EEG PSDn’s from the three
OSA severity degrees considered. First, the normalized spectrum
from the eight EEG channels was averaged for each subject.
Then, the median and quartile values within each OSA group
were obtained for each frequency to be illustrated in the figure.
As shown in Figure 1A, a peak coherent with the typical
slow oscillation (SO) wave from δ1 gradually decreases in
frequency and increases in relative power as OSA severity is
higher. In addition, the spectrum from δ2 onward (except for
α band) tends to flatten (notice the scale of the Figures 1B–D)
with OSA severity, particularly when comparing controls and
moderate/severe OSA.

Overall Evolution of the
Electroencephalogram Relationships
With Polysomnography Variables and
Cognitive Scores
The three networks built using the activity of EEG channels
(RPs) show high relationships within and between spectral
bands (Figures 2A–C), i.e., a compact behavior in the
activity information that reflects its similarity. However, major
associations with PSG and cognitive nodes only arise for
moderate/severe OSA (Figure 2C). In the corresponding
irregularity (SpecEn) networks (Figures 3A–C), the behavior of
the EEG nodes progresses from disaggregated by spectral bands
(controls) to strong relationships between these (moderate/severe
OSA). Similarly, only a few non-negligible relationships arise
between irregularity nodes and PSG or cognitive variables
in controls, but this behavior disappears as OSA worsens,
reaching the maximum correlations in the moderate/severe
group. Therefore, in both activity and irregularity networks, the
development of OSA increases the absolute correlations between
EEG and non-EEG nodes, as well as between EEG nodes from
different spectral bands.
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TABLE 1 | Sociodemographic data, polysomnography (PSG) variables, and cognitive scores in the three groups.

Data Controls (N = 176) Mild obstructive sleep apnea (OSA) (N = 98) Moderate/severe OSA (N = 20) p < 0.05

Age (years) 6.92 (6.50, 7.42) 6.92 (6.50, 7.42) 6.81 (6.37, 7.29) n.s

Sex (M/F) 104/72 (59%) 55/43 (56%) 10/10 (50%) n.s

BMIz 0.65 (−0.11, 1.47) 0.76 (−0.14, 2.04) 1.70 (−0.08, 2.24) b

AHI (e/h) 0.40 (0.10, 0.60) 1.50 (1.20, 2.20) 9.20 (7.30, 17.20) a,b,c

AR (e/h) 0.30 (0.05, 0.80) 1.00 (0.40, 2.82) 7.30 (4.88, 9.55) a,b,c

AS (e/h) 6.70 (4.70, 9.00) 6.60 (4.20, 9.00) 3.10 (1.52, 6.88) b,c

NadirSpO2 (%) 94.00 (92.00, 95.00) 91.00 (89.00, 94.00) 84.00 (75.00, 87.00) a,b,c

WASO (min) 45.50 (27.00, 79.50) 37.50 (23.30, 64.30) 41.00 (19.80, 75.40) n.s

SleepEff (%) 90.60 (84.03, 94.10) 91.00 (85.23, 94.50) 91.00 (85.45, 95.05) n.s

DAS 101.50 (92.00, 111.50) 100.50 (86.00, 111.00) 97.00 (85.00, 104.00) b

PPVT3 99.00 (89.50, 110.00) 98.00 (89.80, 109.30) 96.00 (88.25, 101.50) n.s

EVT 100.00 (89.30, 108.00) 97.00 (85.50, 105.00) 96.50 (91.00, 99.00) n.s

DesCop 11.00 (8.00, 13.00) 10.00 (7.00, 12.00) 9.00 (7.50,11.00) n.s

PhPro 10.00 (8.00, 12.00) 9.00 (8.00, 13.00) 7.50 (5.50, 10.00) b,c

Tow 12.00 (10.00, 14.00) 11.00 (9.00, 14.00) 9.50 (7.00, 11.50) b,c

AHI, apnea–hypopnea index; AR, respiratory arousal index; AS, spontaneous arousal index; BMIz, standardized body mass index; DAS, differential ability scales;
DesCop, design copying; EVT, expressive vocabulary test; NadirSpO2, overnight minimum oxygen saturation value; PhPro, phonological processing; PPVT3, Peabody
picture vocabulary test; SleepEff, sleep efficiency, WASO, time awake after sleep onset; Tow, Tower test aControls vs. mild OSA comparison. bControls vs.
moderate/severe OSA comparison. cMild OSA vs. moderate/severe OSA comparison. n.s, not significant.

All correlation values between nodes are in the
Supplementary Material (“correlation matrices.xlsx”), along
with the networks corresponding to 95% confidence interval
derived from the bootstrap procedure. The most relevant
correlation values are also shown in the next sections.

Spectral Band Average Associations
With Polysomnography Variables and
Cognitive Scores
Figures 4A,B,D,E are radar (spider) charts showing channel-
averaged correlations between the EEG spectral bands and the
non-EEG variables. As expected, the overall tendency reflects
higher absolute correlations with PSG and cognitive variables
as OSA severity increases, for both EEG activity (RP) and
irregularity (SpecEn). The tendency is only somehow different for
the relationships between RP and PSG nodes (Figure 4A), where
the averaged absolute correlation is generally higher in controls
than in mild OSA.

Average relationships between EEG irregularity and PSG
variables of mild and moderate/severe OSA are higher than the
equivalent for EEG activity, as reflected by the values of the
corresponding radar charts (Figures 4A,D). The highest absolute
averaged correlations, reached in the moderate/severe group, are
mainly influenced by EEG activity from δ1 (0.28), δ2 (0.31), and
β1 (0.27), and EEG irregularity from δ1 (0.25), σ (0.31), and
γ (0.27).

Relationships between EEG irregularity and activity with
cognitive scores are more similar (Figures 4B,E), but still more
spectral bands show higher averaged correlations in the case
of SpecEn for both mild and moderate/severe OSA, the latter
reaching the maximums values again in δ1 (0.25) and δ2 (0.29),
and σ (0.25) for EEG activity, and δ1 (0.30), σ (0.29), and β2 (0.26)
for EEG irregularity.

Radar charts with the relationships between PSG and cognitive
variables were also generated for completeness of the analysis
and are shown in Figures 4C,F. As can be observed, the
relationship between PSG variables and cognitive scores also
increases with OSA severity.

Modularity Analysis and Specific
Relationships
Coherent with its compact behavior, a low number of groups
of especially related nodes (termed modules or clusters) were
obtained after applying the modularity analysis to the EEG
activity networks: five modules for controls, four for mild
OSA, and three for the moderate/severe group (Figures 5A–
C). This was summarized and quantified in the maximized
modularity measure that reached very low values, meaning a low
expected modular behavior (0.12, 0.14, and 0.07, respectively)
(Newman, 2006). Node distribution through modules agrees
with the evolution of the relationships of EEG activity and
PSG/cognitive variables from controls to moderate/severe OSA,
the latter showing a module shared by all non-EEG nodes and
the C3 channels of β2 and γ bands.

The EEG irregularity networks showed a more modular
behavior (Figures 5D–F). Controls, mild OSA, and
moderate/severe OSA showed eight, six, and five modules,
respectively, with concordant maximized modularity values
(0.35, 0.29, and 0.19) that quantify the vanishing of the clustering
tendency. OSA worsening implied modules more shared by EEG
and non-EEG nodes, as well as by EEG nodes from different
spectral bands because of increased absolute correlations
between them. Interestingly, four out of the five modules of
moderate/severe OSA (Figure 5F) are shared by both EEG and
non-EEG nodes. AHI, PPVT3, EVT, and Tow are with all the σ

band nodes and most of δ1. Similarly, AR, DAS, and PhPro are

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 644697

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-644697 November 2, 2021 Time: 12:5 # 6

Gutiérrez-Tobal et al. OSA Effects in Children’s EEG

FIGURE 1 | Electroencephalogram (EEG) normalized spectrum (PSDn) averaged for the three obstructive sleep apnea (OSA) severity groups (median, 25%, and
75% quartiles), showing (A) δ1 and δ2, (B) θ, (C) α, σ, and β1, and (D) β2 and γ.

with all θ nodes and one node from δ1 and δ2. AS, WASO, and
SleepEff are with most of β1 and β2. DesCop is with all α and
γ nodes and most of δ2. Finally, NadirSpO2 is the single node of
the last module.

Supplementary Figures 1–8 show further assessment on
the networks based on stability and centrality measures
(Rubinov and Sporns, 2010).

DISCUSSION

The approaches undertaken to process the overnight EEG
signal show the overall evolution of the activity (RP) and
irregularity (SpecEn) of the overnight EEG as a function of
pediatric OSA severity. Implicitly, we have also assessed the
ability of RP and SpecEn to characterize the effects of pediatric
OSA in the sleep EEG, with SpecEn being specifically used
for the first time toward this goal. As such, current findings
obtained using correlation networks unravel the existence of
novel specific relationships between both activity and irregularity
of the EEG, PSG variables, and cognitive scores in children

with OSA. These initial observations open the door to more
intense explorative analyses of the PSG as a source of not only
clinical information regarding respiratory disturbance but also
to provide improved phenotyping of cognitive morbidity in
such patients, thereby allowing for tailored and personalized
interventions and follow-up.

Electroencephalogram Correlation
Networks Evolves With Obstructive
Sleep Apnea Worsening
The behavior of the networks showed higher absolute
correlations between the nodes as OSA severity increased,
regardless of whether these were related to PSG, cognition, or
EEG. Such evolution was supported by higher network densities,
decreasing number of modules, and lower maximized modularity
values. These results support the idea of a gradual pathological
expression of OSA in the overnight EEG spectrum, with only
the step between controls and mild OSA in the activity networks
slightly disagreeing with this general tendency. This a priori
incongruence might be explained by the AHI range represented
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FIGURE 2 | EEG activity (RP) correlation networks with polysomnography (PSG) variables [apnea–hypopnea index (AHI), AE, respiratory event-related arousals (AR),
minimum oxygen saturation value (NadirSpO2), the number of minutes awake after sleep onset (WASO), and sleep efficiency (SleepEff)] and cognitive scores
[differential ability scales (DAS), Peabody Picture Vocabulary Test (PPVT3), Expressive Vocabulary Test (EVT), design copying (DesCop), phonological processing
(PhPro), and Tower (Tow)] for (A) controls, (B) mild OSA, and (C) moderate/severe OSA. Wider edges are higher Spearman’s correlation absolute values | ρ|, with red
color meaning negative correlation and green positive correlation. Solid lines represent | ρ| ≥ 0.50.

FIGURE 3 | EEG irregularity (SpecEn) correlation networks with PSG variables (AHI, AE, AR, NadirSpO2, WASO, and SleepEff) and cognitive scores (DAS, PPVT3,
EVT, DesCop, PhPro, and Tow) for (A) controls, (B) mild OSA, and (C) moderate/severe OSA. Explanations regarding the construction of the networks are
analogous to those from Figure 2.

in our mild OSA group, whose median value (1.5 e/h) is much
closer to control threshold (1 e/h) than to the low limit of
moderate/severe OSA (5 e/h). This is a potential limitation of
our study, whereby the absence of equally distributed AHI values
in mild OSA may be hiding higher correlations with the EEG
information. However, further investigation would be required
to confirm these premises.

Activity RP networks were denser and less modular than
irregularity SpecEn networks. This finding reveals the presence
of more similarities among the information offered by RP
than the corresponding one provided by SpecEn, suggesting

the representation of a broader variety of information by the
latter. However, in both activity and irregularity networks, the
information contained in the overnight EEG spectrum became
more similar as OSA worsened. Although this effect is clearer
for irregularity spectral bands, it is also present in activity ones,
which suggests that OSA affects EEG over a wide range. This
finding is consistent with recent studies on continuous influence
on the EEG of OSA-affected children due to different abnormal
respiratory patterns during sleep (Guilleminault et al., 2019).

The moderate/severe OSA group showed the strongest
correlations between EEG and non-EEG nodes. This is not
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FIGURE 4 | Radar charts summarizing the averaged absolute correlation values between the sleep EEG, the PSG variables, and the cognitive scores. (A,B)
correspond to relationships with EEG activity (RP). (D,E) correspond to relationships with EEG irregularity (SpecEn). (C,F) correspond to averaged correlations of
PSG variables with each cognitive score and averages cognitive scores with each PSG variable. The distances from the center represent the average absolute
correlations for controls (blue), mild OSA (yellow), and moderate/severe OSA (green).

surprising for the PSG variables, since they either directly
reflect pathophysiological events (AHI, AR, and NadirSpO2),
or they are indirectly affected by the occurrence of these
(WASO, SleepEff, and AS). Regarding cognitive scores, only EEG
irregularity in β2 showed non-negligible (but weak) relationships
in networks other than those from the moderate/severe group.
The combined indication of these weak associations and the
stronger correlations found for the highest severity degree, may
be suggesting that sleep EEG does not robustly reflect cognition,
in general, at least in an overnight scale, but reflects cognitive
alterations in the presence of the most severe degrees of OSA.
These results agree with the decreasing tendencies in all our
cognitive scores as OSA worsens and the significantly lower
values in some of these measures. Our findings also agree with
previous reports pointing to a higher risk of cognitive deficits in
moderate/severe OSA children (Hunter et al., 2016).

Electroencephalogram Activity and
Irregularity Characterize Specific
Relationships
Correlation network and modularity analyses highlighted
interesting associations of the EEG with PSG and cognitive
variables in moderate/severe OSA. EEG δ1 and δ2 bands played
a key role in both activity and irregularity networks. As reflected

in Figures 2C, 5C, activity in these bands was mainly associated
with the PSG variables AHI, SleepEff, (δ1 and δ2), and AR (δ2)—
absolute correlation through the EEG channels in the ranges
0.35–0.58, 0.26–0.48, and 0.31–0.43, respectively, as well as the
cognitive scores PPVT3, EVT, and Tow—ranging 0.30–0.53,
0.31–0.53, and 0.31–0.42. Similarly, irregularity in δ1 and δ2 was
mainly related to AHI (δ1), AR (δ1 and δ2), and AS (δ1 and δ2),
ranging 0.41–0.48, 0.31–0.66, and 0.31–0.52, respectively, with δ1
being also associated with DAS (0.33–0.38), PPVT3 (0.49–0.61),
and EVT (0.32–0.54). EEG σ band also exhibited meaningful
associations in both networks, with activity being principally
related to PSG variables AS (0.19–0.48) and SleepEff (0.11–
0.50) and with the cognitive score PPVT (0.31–0.49). Likewise,
σ irregularity was mainly related to AHI (0.35–0.58), SleepEff
(0.28–0.51), PPVT3 (0.43–0.59), and EVT (0.36–0.46).

Interestingly, EEG irregularity also showed major absolute
correlations beyond δ1, δ2, and σ: with PSG variables in θ

(AHI: 0.30–0.57, AR: 0.46–0.67) and γ (AHI: 0.34–0.61, WASO:
0.40–0.55), and with cognitive scores in β2 (DesCop: 0.31–
0.65, PhPro: 0.32–0.74, Tow: 0.32–0.52). These irregularity
further associations reached the strongest correlations of any
single EEG node with AHI (0.61), AR (0.67), PhPro (0.74),
and Tow (0.52), or were very close to the strongest for
WASO (0.57) and DesCop (0.66), which were also obtained
using irregularity. The EEG activity nodes, thus, reached
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FIGURE 5 | Modularity analysis of the correlation networks of each group using (A–C) EEG activity (RP) and (D–F) EEG irregularity (SpecEn). The color of the
external circles represents belonging to the same module within each correlation network.

higher maximum absolute correlations with non-EEG variables
only in relationships with DAS (0.58) and NadirSpO2 (0.60).
This suggests the usefulness of irregularity measured by
SpecEn to characterize both physiological perturbations and
cognitive effects, which adds novelty to the classic activity-
based analysis.

Another interesting comparison arose when assessing the
maximum absolute correlations found for the PSG variables and
cognitive scores in the moderate/severe OSA group. Whereas
radar charts (Figure 4) showed half of the averaged correlations
between PSG/Cog and Cog/PSG higher than those with EEG
nodes, only AHI, PPVT3 and Tow reached the highest values
in nodes other than RP or SpecEn. Accordingly, 14, 7, 3, 5,
and 14 EEG nodes (either RP or SpecEn) reached absolute
correlations higher than the highest with non-EEG nodes
for AR, AS, NadirSpO2, WASO, and SleepEff, respectively.
Similarly, 6, 33, 32, and 1 EEG nodes reached absolute
correlations higher than the highest with non-EEG nodes for
DAS, EVT, DesCop, and PhPro, respectively. Moreover, the
maximum absolute values for AHI (0.65 with PPVT3), PPVT3
(0.65 with AHI), and Tow (0.58 with AHI) were almost
reached by EEG nodes too (0.61, 0.62, and 0.52, respectively).
These figures highlight that the information contained in

the EEG reaches a more complete characterization of the
cognitive performance than PSG variables in moderate/severe
OSA, as well as a more complete characterization of this
disease state than cognitive scores. Moreover, in contrast to
the PSG variables and cognitive scores, the SpecEn and RP
computing is automated.

Correlation Networks Help Expand
Current Knowledge
The found relationship between δ activity and AHI agrees
with previous studies reporting differences in slow wave sleep
activity (SWS) in OSA-affected children (Bandla and Gozal,
2000; Christiansz et al., 2018). Moreover, we have shown that
not only activity in δ but also irregularity in δ, θ, σ, and γ

reflects AHI. These bands have been previously associated with
arousals and other different wakefulness states (De Gennaro
et al., 2001; Scholle and Zwacka, 2001; Cantero et al., 2004;
Vanhatalo et al., 2004; Le Van Quyen et al., 2010), suggesting
that the most consistent relationships between moderate/severe
OSA and EEG activity and irregularity are related to micro
and macro sleep disruptions. Coherent with this idea are
the also uncovered associations between the EEG information
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and AR (δ1, δ2, and θ), SleepEff (δ1, δ2, θ, σ, and γ), and
WASO (γ ).

A few studies exist assessing relationships between δ and
cognition during sleep in either healthy or OSA-affected children.
Weichard et al. (2016) analyzed the EEG of 42 children
(13 controls, 15 resolved OSA, and 14 unresolved OSA).
They found associations between increased verbal performance
and late SWS, which agrees with the relationships of EEG
activity in δ1/δ2 with PPVT3 (receptive language) and EVT
(expressive language) shown in this study. Interestingly, we found
stronger relationships between δ1 and receptive and expressive
language using EEG irregularity. Similarly, neither their study
nor ours report strong associations of δ activity with DesCop
(visual–spatial processing) and PhPro (phonological processing).
However, we do expose robust associations of EEG irregularity in
β2 with both cognitive scores. Christiansz et al. (2018) extended
the previous work to 72 children and found associations between
SWS activity and impaired executive function in OSA presence,
showing absolute correlations of 10 different tests in the range
0.33–0.78 (Christiansz et al., 2018). Their observations agree
with the non-negligible correlations found between Tow test and
δ1/δ2 activity of moderate/severe OSA (0.31–0.42). Moreover, our
method allowed us to find the strongest correlation with Tow
score using β2 irregularity (0.52).

Brockmann et al. (2018) implemented a different approach
by assessing the spindle pattern of 14 controls and 19 mild
OSA children. Spindle density was significantly lower in the
latter, which also showed associations with Wechsler Intelligence
Test for Children total IQ, verbal comprehension, working
memory, and processing speed (Brockmann et al., 2018). Spindle
frequencies in children (≈10–16 Hz.) are within σ band
(Purcell et al., 2017; Markovic et al., 2020), which showed
only negligible associations in our mild OSA group. This
discrepancy may be due to the different cognitive tests used
and that sleep spindles occur mostly in N2 non-rapid-eye
movement (NREM) sleep. However, we found some robust
relationships between the cognitive scores of moderate/severe
OSA with the corresponding σ activity and irregularity values
(see “correlation matrices.xlsx”), thus, pointing again to the
overrepresented low AHI values in our mild OSA group as
the cause for the differences with their results. Brockmann
et al. (2020) complemented their previous study by assessing
spindle differences in 20 control children and 20 primary snorers,
who showed decreased spindle density. This is an interesting
finding that agrees with the decreased activity and regularity
of our σ band as OSA degree is higher. However, we are
precluded from further comparisons since the inclusion of
a primary snoring group is both a limitation of our study
and a future goal.

Interpretations of the SpecEn
Characterization on Sleep
Electroencephalogram
A preliminary effort focused on the analysis of overnight
EEG activity in the context of pediatric OSA (Gutiérrez-Tobal
et al., 2019b) laid the foundation for the in-depth evaluation

conducted in this study, including the use of SpecEn, a wider
range of sleep cognitive scores, and common sleep indices
from the PSG. As a result, SpecEn demonstrated its ability to
characterize both PSG variables and cognitive scores, particularly
in the case of moderate/severe OSA children, enabling higher
absolute correlations than RP with most of the non-EEG
nodes considered.

According to the correlation network and modularity
analyses, the SpecEn ability to characterize a wider range of EEG
information may underlie these improvements in the strength of
the associations identified herein. One reason for such superiority
as shown by SpecEn may be related to the finite nature of RP.
Spectrum normalization by its total spectral power is a common
tool to avoid the characterization of features different from the
object of the study, which, in this case, are the OSA effects
on sleep EEG. However, this technique leads to the sum of all
RPs from the same EEG being 1, thus, providing the RP from
each spectral band with a competitive essence. Consequently,
the RP from one spectral band may be related to the others
either because a genuine subjacent event is reflected in several
spectral bands or, if this shared event does not exist, because
an increase in the RP of one spectral band means a decrease in
the RP in the others (to end up with a total sum of 1). This
characteristic would also explain the less modular behavior of
the RP networks. In contrast, the shape of the spectrum (its
peakedness or flatness) does not impose the same limitation,
since a dominant peak in one spectral band does not imply
changes in the occurrence of dominant peaks in other spectral
bands. Consequently, one possibility is that SpecEn relationships
between spectral bands may be reflecting only genuine subjacent
events. One example would be the positive relationships between
δ1, σ, and γ found in the SpecEn correlation network of controls,
which would be coherent with the hierarchical relationships
between SO, spindles, and ripples described in the literature
(Staresina et al., 2015). Another example in the same network
would be the negative relationships found in the occipital
channels of θ and α, which are coherent with the transitions
between N1 and “wake” stages in which they are involved,
respectively (Iber et al., 2007).

Assuming that the SpecEn sleep EEG characterization indeed
reflects genuine subjacent events, interesting physiological
interpretations can be derived from our results. First, as
mentioned above, Figure 1A shows a decrease in SO frequency
with OSA severity. In the control group, SO is located within its
normal range: ≈0.75 Hz and within (0.55–0.95 Hz) (Achermann
and Borbély, 1997). However, the frequency gradually slows
down for mild OSA (0.417 Hz) and moderate/severe OSA
(0.267 Hz). A progressive increase in the amplitude of the SO
peak can be also observed from 0.0081 1/Hz in controls to
0.0100 1/Hz, and 0.0127 1/Hz in mild and moderate/severe
OSA. SOs are sleep waves characterized by periods in which
cortical and thalamic neurons alternate states of intense synaptic
activity, or up states, with the almost complete absence of
activity, or down states (Neske, 2016). The functions of SO
are still under discussion, but growing evidence suggests that
they comprise at least the synchronization of higher frequency
oscillations, memory consolidation, and biochemical regulation
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of neurons during down states (Neske, 2016). Both cortex and
thalamus are involved in SO, the latter playing key roles in
generating the up state (i.e., the generation of the oscillation
period) and the synchronization of faster oscillations (David
et al., 2013; Neske, 2016). It has been also observed that the
suppression of the thalamic role leads to a deceleration of the
typical SO frequency in rodents, suggesting cortical attempts to
mimic the role of thalamus (David et al., 2013; Neske, 2016).
Accordingly, our results may be showing that OSA inhibits the
role of thalamus in SO, with this inhibition becoming more
intense as the illness is more severe. Moreover, the increased
normalized power in the corresponding SO frequencies of mild
and moderate/severe OSA may be reflecting that more time is
spent overnight in these frequencies compared with controls.
This increased time could be related to an inefficiency of
the cortex when assuming the abovementioned thalamus roles.
Concurrently, SpecEn in δ1 may be characterizing an increasing
regular behavior of the cortex when trying to compensate the
absence of the thalamus as this is more inhibited. Why thalamus
function is inhibited with OSA remains unclear. However, it
might be related to an increase in the consciousness/arousal
degree that would be needed to recover from respiratory events.
In the absence of a proper evaluation of this hypothesis,
it would be supported by the fact that the cortex activity
is increased, as well as by previous studies reporting that
the power in δ band is higher and the EEG irregularity is
lower when recovering from OSA-related respiratory events
(Huang et al., 2018).

A second interpretation can be derived from the flattening
experimented in most of the spectral bands beyond δ1,
particularly in the moderate/severe OSA group. A significant
increased number of respiratory arousals per hour (see Table 1)
may be one possible explanation. These EEG events are known
to present frequencies in the range of θ, α (except spindles),
β1, β2, and γ (Iber et al., 2007). They have been also related
to some changes in δ band (Bandla and Gozal, 2000; Bruce
et al., 2011). Therefore, they can contribute to the spectral
power of almost the whole frequency range in a white noise-
like behavior. This means that adding these events to the
normal EEG could make all its spectral components to be
more distributed or flatter, thus, increasing the information
similarity among the affected spectral bands. In our study, the
meaningful correlations found in all the spectral bands between
SpecEn and AR make respiratory arousals one of the most
central nodes of the moderate/severe correlation network (see
Supplementary Figure 6), thus, supporting this explanation.
In addition, previous works have reported positive correlations
between entropy measures on hypnogram and traditional sleep
fragmentation measures such as arousal index and sleep efficiency
(Kirsch et al., 2012). Another explanation, which does not
exclude the previous one, is related to the abovementioned
inefficiency of cortex when mimicking the role of thalamus to
synchronize higher-frequency oscillations (Neske, 2016). If such
synchronization is not properly conducted in moderate/severe
patients, a regular behavior is lost (or at least reduced),
thus, increasing the EEG irregularity and, consequently, the
flatness of the affected spectral components. Further ad hoc

studies would be required to assess whether any of these two
explanations are right.

Finally, to complete the SpecEn interpretation, we propose
a connection with our cognitive results. A recent systematic
review has established speech and language problems in children
suffering from OSA (Mohammed et al., 2021). This is aligned
with the maximum correlations found between SpecEn in δ1
and PPVT3 (+0.61) and EVT (+0.54) of moderate/severe OSA
children, which could be indicating that the impairment of these
verbal skills could be measured through the increased regularity
(increased peakedness) in this spectral band. Accordingly,
the language problems could be somehow associated with
the abovementioned thalamus inhibition in SO due to OSA.
Interestingly, the third language ability score evaluated in this
study, PhPro, was strongly associated with irregularity in β2
(+0.74), suggesting a different physiological process involved.
This idea would be supported by the other correlations found
between β2 and DesCop (+0.65) and Tow (+0.52) scores, which
account for visuospatial processing and executive function,
respectively. Beta oscillations are common in REM sleep (Vijayan
et al., 2017). Although the role of REM sleep and cognition
has not been completely delineated, it has been linked to neural
network reorganization leading to new neural associations and an
increased creativity (Cai et al., 2009; Mason et al., 2021). However,
whether these results are associated with altered REM sleep must
be further assessed.

Other Limitations and Future Steps
Despite the large database used, the number of moderate/severe
subjects is relatively low when comparing with the other groups.
We have implemented a bootstrap procedure to account for
the median of the correlation distributions and minimize the
effect of the imbalance. However, future analyses on children
with moderate/severe OSA would improve the statistical power
of our results. It would also be very interesting to assess our
analyses in symptomatic children referred for clinical evaluation.
Moreover, there is substantial skepticism as to the validity of
AHI and OSA symptomatology or morbidity (Penzel et al., 2015).
This AHI limitation may explain why some cognitive scores
do not reach significant differences among our OSA severity
groups. The cognitive morbidity of OSA is well established
(Gozal, 1998; Marcus et al., 2012; Hunter et al., 2016; Tan et al.,
2017; Cardoso et al., 2018), and indeed, all our scores exhibit
decreasing tendency as OSA worsens. However, the combination
of an unclear association between AHI and OSA symptoms and
the assessment of a general community-based nonreferral cohort
may have resulted in the inclusion of children with AHI ≥ 1 e/h
but without any symptoms or morbidity. Another limitation is
the specific EEG arrangements we followed. We used the typical
EEG channel configuration of sleep studies and the Common
Averaged Reference method to minimize the influence of the
other channels in each electrode (Cox and Fell, 2020). However,
other configurations may lead to different results. On the other
hand, we included NadirSpO2 in our analyses because it has
been observed that the depth of desaturations is associated with
increased OSA-related negative consequences in adults (Kulkas
et al., 2013; Karhu et al., 2021). However, it would be an
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interesting future goal to assess other oximetric variables such
as oxygen desaturation index or hypoxic burden. Similarly, the
inclusion of children’s subjective sleepiness scores in the analysis
could complement our findings. Other interesting future goal
would be to analyze the EEG recordings by separating REM
and NREM sleep stages. In this study, we have shown that
OSA-related changes in EEG were evident even without the labor-
intensive task of defining REM and NREM sleep. However, this
further analysis would help interpret some of our findings. In
addition, it could enhance relationships between cognitive scores
and specific EEG information in control subjects. Ultimately,
another limitation is the age range of the subjects involved in the
study. We have conducted several actions to avoid a bias of our
results toward age-related natural brain development. First, the
age range is not wide (5–9 years). Second, our control and OSA
groups are matched in age. Finally, all the correlations used in the
study were controlled for age (and sex). However, EEG changes
are present in sleep as a consequence of typical development
(Gaudreau et al., 2001; Kurth et al., 2010; Gorgoni et al., 2020),
which is the reason why our findings should be evaluated in
other age ranges.

CONCLUSION

Pediatric OSA broadly affects overnight EEG and progressively
equates the information of its different spectral bands, regardless
of whether it refers to activity or irregularity. Such effects on
EEG are coherent with the occurrence of micro and macro sleep
disruptions. They also reflect cognitive morbidity, particularly in
domains involving language processes, visual–spatial processing,
and executive function. Sleep EEG irregularity characterizes
a wider range of OSA-related information than the classic
activity analysis, which results in more numerous and enhanced
robustness in their associations with both physiological and
cognitive variables. The results from our correlation network
approach were coherent with the previous studies, while
expanding the knowledge about the EEG classic spectral bands.
Thus, our findings illustrate that the EEG spectrum echoes
physiological perturbations during sleep and adverse cognitive
consequences of pediatric OSA. It may therefore provide a tool to
identify children with OSA who are at increased risk of cognitive
deficits, thereby enabling a more personalized approach to its
evaluation and management.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because of restrictions from the ethical committee. The
data that support the findings of this study are, however,
available on reasonable request from the corresponding authors.

Requests to access the datasets should be directed to GG-T,
gonzalo.gutierrez@gib.tel.uva.es.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Ethics Committee of the University of
Chicago (protocol # 09-115-B). Written informed consent to
participate in this study was provided by the participants’ legal
guardian/next of kin.

AUTHOR CONTRIBUTIONS

GG-T conceptualized and designed the study, analyzed and
interpreted data, drafted the initial manuscript, and reviewed
the manuscript. JG-P conceptualized the study, analyzed and
interpreted data, and contributed to the manuscript editing
and reviewing. LK-G conceptualized the study, recruited and
diagnosed the subjects, analyzed the data, and reviewed the
manuscript. AM-M, JP and DÁ contributed to the data analysis
and interpretation, and reviewed the manuscript. FC contributed
to the data analysis and interpretation and critically reviewed
the manuscript for important intellectual content. DG and RH
conceptualized the study, supervised data collection, conducted
the data analysis and interpretation, drafted components of
the manuscript, and reviewed the manuscript. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by the “Ministerio de Ciencia,
Innovación y Universidades” and the “European Regional
Development Fund (FEDER)” under projects DPI2017-84280-
R, RTC-2017-6516-1, and PGC2018-098214-A-I00, by the
“European Commission” and “FEDER” under project “Análisis
y correlación entre el genoma completo y la actividad
cerebral para la ayuda en el diagnóstico de la enfermedad
de Alzheimer” (“Cooperation Programme Interreg V-A Spain–
Portugal POCTEP 2014–2020”), and by CIBER-BBN (ISCIII),
cofunded with FEDER funds. DG and LK-G are supported by
the United States National Institutes of Health grants HL130984
(LK-G) and HL140548 (DG).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.644697/full#supplementary-material

REFERENCES
Achermann, P., and Borbély, A. A. (1997). Low-frequency (< 1 hz) oscillations

in the human sleep electroencephalogram. Neuroscience 81, 213–222. doi:
10.1016/S0306-4522(97)00186-3

Ahmad, S. A., and Warriner, E. M. (2001). Review of the NEPSY: a developmental
neuropsychological assessment. Clin. Neuropsychol. 15, 240–249. doi: 10.1076/
clin.15.2.240.1894

Bachiller, A., Poza, J., Gómez, C., Molina, V., Suazo, V., and Hornero, R. (2015).
A comparative study of event-related coupling patterns during an auditory

Frontiers in Neuroscience | www.frontiersin.org 12 November 2021 | Volume 15 | Article 644697

mailto:gonzalo.gutierrez@gib.tel.uva.es
https://www.frontiersin.org/articles/10.3389/fnins.2021.644697/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.644697/full#supplementary-material
https://doi.org/10.1016/S0306-4522(97)00186-3
https://doi.org/10.1016/S0306-4522(97)00186-3
https://doi.org/10.1076/clin.15.2.240.1894
https://doi.org/10.1076/clin.15.2.240.1894
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-644697 November 2, 2021 Time: 12:5 # 13

Gutiérrez-Tobal et al. OSA Effects in Children’s EEG

oddball task in schizophrenia. J. Neural Eng. 12:16007. doi: 10.1088/1741-2560/
12/1/016007

Bandla, H. P. R., and Gozal, D. (2000). Dynamic changes in EEG spectra during
obstructive apnea in children. Pediatr. Pulmonol. 29, 359–365. doi: 10.1002/
(sici)1099-0496(200005)29:5&lt;359::aid-ppul4&gt;3.0.co;2-o

Barabási, A.-L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a
network-based approach to human disease. Nat. Rev. Genet. 12:56. doi: 10.
1038/nrg2918

Baron, I. S. (2018). Neuropsychological Evaluation of the Child: Domains, Methods,
and Case Studies. New York, NY: Oxford University Press.

Benoit, O., Daurat, A., and Prado, J. (2000). Slow (0.7–2 Hz) and fast (2–4 Hz) delta
components are differently correlated to theta, alpha and beta frequency bands
during NREM sleep. Clin. Neurophysiol. 111, 2103–2106. doi: 10.1016/s1388-
2457(00)00470-3

Berry, R. B., Budhiraja, R., Gottlieb, D. J., Gozal, D., Iber, C., Kapur, V. K., et al.
(2012). Rules for scoring respiratory events in sleep: update of the 2007 AASM
manual for the scoring of sleep and associated events. J. Clin. Sleep Med. 8,
597–619. doi: 10.5664/jcsm.2172

Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., and Waldorp,
L. J. (2011). The small world of psychopathology. PLoS One 6:e27407. doi:
10.1371/journal.pone.0027407

Brockmann, P. E., Bruni, O., Kheirandish-Gozal, L., and Gozal, D. (2020). Reduced
sleep spindle activity in children with primary snoring. Sleep Med. 65, 142–146.
doi: 10.1016/j.sleep.2019.10.001

Brockmann, P. E., Damiani, F., Pincheira, E., Daiber, F., Ruiz, S., Aboitiz, F., et al.
(2018). Sleep spindle activity in children with obstructive sleep apnea as a
marker of neurocognitive performance: a pilot study. Eur. J. Paediatr. Neurol.
22, 434–439. doi: 10.1016/j.ejpn.2018.02.003

Bruce, E. N., Bruce, M. C., Ramanand, P., and Hayes, D. (2011). Progressive
changes in cortical state before and after spontaneous arousals from sleep in
elderly and middle-aged women. Neuroscience 175, 184–197. doi: 10.1016/j.
neuroscience.2010.11.036

Cai, D. J., Mednick, S. A., Harrison, E. M., Kanady, J. C., and Mednick, S. C. (2009).
REM, not incubation, improves creativity by priming associative networks.
Proc. Natl. Acad. Sci. U.S.A. 106, 10130–10134. doi: 10.1073/pnas.090027
1106

Cantero, J. L., Atienza, M., Madsen, J. R., and Stickgold, R. (2004). Gamma
EEG dynamics in neocortex and hippocampus during human wakefulness
and sleep. Neuroimage 22, 1271–1280. doi: 10.1016/j.neuroimage.2004.
03.014

Cardoso, T., da, S. G., Pompeia, S., and Miranda, M. C. (2018). Cognitive and
behavioral effects of obstructive sleep apnea syndrome in children: a systematic
literature review. Sleep Med. 46, 46–55.

Christiansz, J. A., Lappin, C. R., Weichard, A. J., Nixon, G. M., Davey, M. J.,
Horne, R. S. C., et al. (2018). Slow wave activity and executive dysfunction
in children with sleep disordered breathing. Sleep Breath. 22, 517–525. doi:
10.1007/s11325-017-1570-x

Cox, R., and Fell, J. (2020). Analyzing human sleep EEG: a methodological primer
with code implementation. Sleep Med. Rev. 54:101353. doi: 10.1016/j.smrv.
2020.101353

David, F., Schmiedt, J. T., Taylor, H. L., Orban, G., Di Giovanni, G., Uebele, V. N.,
et al. (2013). Essential thalamic contribution to slow waves of natural sleep.
J. Neurosci. 33, 19599–19610. doi: 10.1523/JNEUROSCI.3169-13.2013

De Gennaro, L., Ferrara, M., and Bertini, M. (2001). The boundary between
wakefulness and sleep: quantitative electroencephalographic changes during
the sleep onset period. Neuroscience 107, 1–11. doi: 10.1016/s0306-4522(01)00
309-8

Elliott, C. D. (1990b). The nature and structure of children’s abilities: evidence from
the differential ability scales. J. Psychoeduc. Assess. 8, 376–390. doi: 10.1177/
073428299000800313

Elliott, C. D. (1990a). Diflerential Ability Scales: Introductory and Technical
handbook. San Antonio, TX: Psychological Corporation.

Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., and Borsboom,
D. (2012). Qgraph: network visualizations of relationships in psychometric
data. J. Stat. Softw. 48, 1–18. doi: 10.18637/jss.v048.i04

Fruchterman, T. M. J., and Reingold, E. M. (1991). Graph drawing by force-
directed placement. Softw. Pract. Exp. 21, 1129–1164. doi: 10.1002/spe.
4380211102

Gaudreau, H., Carrier, J., and Montplaisir, J. (2001). Age-related modifications of
NREM sleep EEG: from childhood to middle age. J. Sleep Res. 10, 165–172.
doi: 10.1046/j.1365-2869.2001.00252.x

Gorgoni, M., D’Atri, A., Scarpelli, S., Reda, F., and De Gennaro, L. (2020). Sleep
electroencephalography and brain maturation: developmental trajectories and
the relation with cognitive functioning. Sleep Med. 66, 33–50. doi: 10.1016/j.
sleep.2019.06.025

Gozal, D. (1998). Sleep-disordered breathing and school performance in children.
Pediatrics 102, 616–620. doi: 10.1542/peds.102.3.616

Grigg-Damberger, M., Gozal, D., Marcus, C. L., Quan, S. F., Rosen, C. L., Chervin,
R. D., et al. (2007). The visual scoring of sleep and arousal in infants and
children. J. Clin. Sleep Med. 3, 201–240. doi: 10.5664/jcsm.26819

Guilleminault, C., Huang, Y., Chin, W.-C., and Okorie, C. (2019). The nocturnal-
polysomnogram and non-hypoxic sleep-disordered-breathing in children. Sleep
Med. 60, 31–44. doi: 10.1016/j.sleep.2018.11.001

Gutiérrez-Tobal, G. C., Gomez-Pilar, J., Kheirandish-Gozal, L., Martín-Montero,
A., Poza, J., Álvarez, D., et al. (2019b). “Network analysis on overnight
EEG spectrum to assess relationships between paediatric sleep apnoea and
cognition,” in Proceedings of the Mediterranean Conference on Medical and
Biological Engineering and Computing, (Cham: Springer), 1138–1146. doi: 10.
1007/978-3-030-31635-8_138

Gutiérrez-Tobal, G. C., Álvarez, D., Crespo, A,. del Campo, F., and Hornero, R.
(2019a). “Evaluation of machine-learning approaches to estimate sleep apnea
severity from at-home oximetry recordings,” in Proceedings of the IEEE Journal
of Biomedical and Health Informatics, vol. 23, 882–892. doi: 10.1109/JBHI.
2018.2823384

Huang, S., Wang, T., Zhang, X., Yen, C. W., Liang, J., Zeng, L., et al. (2018).
The correlations between electroencephalogram frequency components and
restoration of stable breathing from respiratory events in sleep apnea hypopnea
syndrome. Respir. Physiol. Neurobiol. 258, 91–97. doi: 10.1016/j.resp.2018.06.
006

Hunter, S. J., Gozal, D., Smith, D. L., Philby, M. F., Kaylegian, J., Kheirandish-
Gozal, L., et al. (2016). Effect of sleep-disordered breathing severity on cognitive
performance measures in a large community cohort of young school-aged
children. Am. J. Respir. Crit. Care Med. 194, 739–747. doi: 10.1164/rccm.
201510-2099OC

Iber, C., Ancoli-Israel, S., Chesson, A., and Quan, S. F. (2007). The AASM
manual for the scoring of sleep and associated events: rules, terminology and
technical specification. J. Clin. Sleep Med. 8, 323–332. doi: 10.5664/jcsm.
1928

Inouye, T., Shinosaki, K., Sakamoto, H., Toi, S., Ukai, S., Iyama, A., et al.
(1991). Quantification of EEG irregularity by use of the entropy of the power
spectrum. Electroencephalogr. Clin. Neurophysiol. 79, 204–210. doi: 10.1016/
0013-4694(91)90138-t

Jimeno, N., Gomez-Pilar, J., Poza, J., Hornero, R., Vogeley, K., Meisenzahl, E., et al.
(2020). Main symptomatic treatment targets in suspected and early psychosis:
new insights from network analysis. Schizophr. Bull. 46, 884–895. doi: 10.1093/
schbul/sbz140

Karhu, T., Myllymaa, S., Nikkonen, S., Mazzotti, D. R., Töyräs, J., and Leppänen,
T. (2021). Longer and deeper desaturations are associated with the worsening
of mild sleep apnea: the sleep heart health study. Front. Neurosci. 15:657126.
doi: 10.3389/fnins.2021.657126

Kirsch, M. R., Monahan, K., Weng, J., Redline, S., and Loparo, K. A. (2012).
Entropy-based measures for quantifying sleep-stage transition dynamics:
relationship to sleep fragmentation and daytime sleepiness. IEEE Trans.
Biomed. Eng. 59, 787–796. doi: 10.1109/TBME.2011.2179032

Kulkas, A., Tiihonen, P., Eskola, K., Julkunen, P., Mervaala, E., and Töyräs, J.
(2013). Novel parameters for evaluating severity of sleep disordered breathing
and for supporting diagnosis of sleep apnea-hypopnea syndrome. J. Med. Eng.
Technol. 37, 135–143. doi: 10.3109/03091902.2012.754509

Kurth, S., Ringli, M., Geiger, A., LeBourgeois, M., Jenni, O. G., and Huber, R.
(2010). Mapping of cortical activity in the first two decades of life: a high-
density sleep electroencephalogram study. J. Neurosci. 30, 13211–13219. doi:
10.1523/JNEUROSCI.2532-10.2010

Kwapiszewska, G., Gungl, A., Wilhelm, J., Marsh, L. M., Puthenparampil, H. T.,
Sinn, K., et al. (2018). Transcriptome profiling reveals the complexity of
pirfenidone effects in idiopathic pulmonary fibrosis. Eur. Respir. J. 52:1800564.
doi: 10.1183/13993003.00564-2018

Frontiers in Neuroscience | www.frontiersin.org 13 November 2021 | Volume 15 | Article 644697

https://doi.org/10.1088/1741-2560/12/1/016007
https://doi.org/10.1088/1741-2560/12/1/016007
https://doi.org/10.1002/(sici)1099-0496(200005)29:5&lt;359::aid-ppul4&gt;3.0.co;2-o
https://doi.org/10.1002/(sici)1099-0496(200005)29:5&lt;359::aid-ppul4&gt;3.0.co;2-o
https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/nrg2918
https://doi.org/10.1016/s1388-2457(00)00470-3
https://doi.org/10.1016/s1388-2457(00)00470-3
https://doi.org/10.5664/jcsm.2172
https://doi.org/10.1371/journal.pone.0027407
https://doi.org/10.1371/journal.pone.0027407
https://doi.org/10.1016/j.sleep.2019.10.001
https://doi.org/10.1016/j.ejpn.2018.02.003
https://doi.org/10.1016/j.neuroscience.2010.11.036
https://doi.org/10.1016/j.neuroscience.2010.11.036
https://doi.org/10.1073/pnas.0900271106
https://doi.org/10.1073/pnas.0900271106
https://doi.org/10.1016/j.neuroimage.2004.03.014
https://doi.org/10.1016/j.neuroimage.2004.03.014
https://doi.org/10.1007/s11325-017-1570-x
https://doi.org/10.1007/s11325-017-1570-x
https://doi.org/10.1016/j.smrv.2020.101353
https://doi.org/10.1016/j.smrv.2020.101353
https://doi.org/10.1523/JNEUROSCI.3169-13.2013
https://doi.org/10.1016/s0306-4522(01)00309-8
https://doi.org/10.1016/s0306-4522(01)00309-8
https://doi.org/10.1177/073428299000800313
https://doi.org/10.1177/073428299000800313
https://doi.org/10.18637/jss.v048.i04
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1046/j.1365-2869.2001.00252.x
https://doi.org/10.1016/j.sleep.2019.06.025
https://doi.org/10.1016/j.sleep.2019.06.025
https://doi.org/10.1542/peds.102.3.616
https://doi.org/10.5664/jcsm.26819
https://doi.org/10.1016/j.sleep.2018.11.001
https://doi.org/10.1007/978-3-030-31635-8_138
https://doi.org/10.1007/978-3-030-31635-8_138
https://doi.org/10.1109/JBHI.2018.2823384
https://doi.org/10.1109/JBHI.2018.2823384
https://doi.org/10.1016/j.resp.2018.06.006
https://doi.org/10.1016/j.resp.2018.06.006
https://doi.org/10.1164/rccm.201510-2099OC
https://doi.org/10.1164/rccm.201510-2099OC
https://doi.org/10.5664/jcsm.1928
https://doi.org/10.5664/jcsm.1928
https://doi.org/10.1016/0013-4694(91)90138-t
https://doi.org/10.1016/0013-4694(91)90138-t
https://doi.org/10.1093/schbul/sbz140
https://doi.org/10.1093/schbul/sbz140
https://doi.org/10.3389/fnins.2021.657126
https://doi.org/10.1109/TBME.2011.2179032
https://doi.org/10.3109/03091902.2012.754509
https://doi.org/10.1523/JNEUROSCI.2532-10.2010
https://doi.org/10.1523/JNEUROSCI.2532-10.2010
https://doi.org/10.1183/13993003.00564-2018
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-644697 November 2, 2021 Time: 12:5 # 14

Gutiérrez-Tobal et al. OSA Effects in Children’s EEG

Le Van Quyen, M., Staba, R., Bragin, A., Dickson, C., Valderrama, M., Fried, I.,
et al. (2010). Large-scale microelectrode recordings of high-frequency gamma
oscillations in human cortex during sleep. J. Neurosci. 30, 7770–7782. doi:
10.1523/JNEUROSCI.5049-09.2010

Liu, H., Lafferty, J., and Wasserman, L. (2009). The nonparanormal:
semiparametric estimation of high dimensional undirected graphs. J. Mach.
Learn. Res. 10, 2295–2328.

Marcus, C. L., Brooks, L. J., Draper, K. A., Gozal, D., Halbower, A. C.,
Jones, J., et al. (2012). Diagnosis and management of childhood obstructive
sleep apnea syndrome. Pediatrics 130, 576–584. doi: 10.1542/peds.2012-
1671

Markovic, A., Buckley, A., Driver, D. I., Dillard-Broadnax, D., Gochman,
P. A., Hoedlmoser, K., et al. (2020). Sleep spindle activity in
childhood onset schizophrenia: diminished and associated with clinical
symptoms. Schizophr. Res. 223, 327–336. doi: 10.1016/j.schres.2020.08.
022

Mason, G. M., Lokhandwala, S., Riggins, T., and Spencer, R. M. C. (2021). Sleep
and human cognitive development. Sleep Med. Rev. 57:101472. doi: 10.1016/j.
smrv.2021.101472

Miller, D. C. (2007). Essentials of School Neuropsychological Assessment. Hoboken,
NJ: John Wiley & Sons Inc.

Mohammed, D., Park, V., Bogaardt, H., and Docking, K. (2021). The impact of
childhood obstructive sleep apnea on speech and oral language development: a
systematic review. Sleep Med. 81, 144–153. doi: 10.1016/j.sleep.2021.02.015

Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in
medical research. Malawi Med. J. 24, 69–71.

Neske, G. T. (2016). The slow oscillation in cortical and thalamic networks:
mechanisms and functions. Front. Neural Circuits 9:88. doi: 10.3389/fncir.2015.
00088

Newman, M. E. J. (2006). Modularity and community structure in networks. Proc.
Natl. Acad. Sci. U.S.A. 103, 8577–8582.

Penzel, T., Schöbel, C., and Fietze, I. (2015). Revise respiratory event criteria or
revise severity thresholds for sleep apnea definition? J. Clin. Sleep Med. 11,
1357–1359. doi: 10.5664/jcsm.5262

Purcell, S. M., Manoach, D. S., Demanuele, C., Cade, B. E., Mariani, S., Cox, R., et al.
(2017). Characterizing sleep spindles in 11,630 individuals from the National
Sleep Research Resource. Nat. Commun. 8:15930. doi: 10.1038/ncomms1
5930

Restrepo, M. A., Schwanenflugel, P. J., Blake, J., Neuharth-Pritchett, S., Cramer,
S. E., and Ruston, H. P. (2006). Performance on the PPVT–III and the EVT:
applicability of the measures with African American and European American
preschool children. Lang. Speech. Hear. Serv. Sch. 37, 17–27. doi: 10.1044/0161-
1461(2006/003)

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi: 10.
1016/j.neuroimage.2009.10.003

Scholle, S., and Zwacka, G. (2001). Arousals and obstructive sleep apnea syndrome
in children. Clin. Neurophysiol. 112, 984–991. doi: 10.1016/s1388-2457(01)
00508-9

Staresina, B. P., Bergmann, T. O., Bonnefond, M., Van Der Meij, R., Jensen, O.,
Deuker, L., et al. (2015). Hierarchical nesting of slow oscillations, spindles and
ripples in the human hippocampus during sleep. Nat. Neurosci. 18, 1679–1686.
doi: 10.1038/nn.4119

Tan, H. L., Alonso Alvarez, M. L., Tsaoussoglou, M., Weber, S., and Kaditis, A. G.
(2017). When and why to treat the child who snores? Pediatr. Pulmonol. 52,
399–412. doi: 10.1002/ppul.23658

Uhlhaas, P. J., and Singer, W. (2010). Abnormal neural oscillations and synchrony
in schizophrenia. Nat. Rev. Neurosci. 11:100. doi: 10.1038/nrn2774

Vanhatalo, S., Palva, J. M., Holmes, M. D., Miller, J. W., Voipio, J., and Kaila,
K. (2004). Infraslow oscillations modulate excitability and interictal epileptic
activity in the human cortex during sleep. Proc. Natl. Acad. Sci. U.S.A. 101,
5053–5057. doi: 10.1073/pnas.0305375101

Vijayan, S., Lepage, K. Q., Kopell, N. J., and Cash, S. S. (2017). Frontal beta-theta
network during REM sleep. Elife 6:e18894. doi: 10.7554/eLife.18894

Weichard, A. J., Walter, L. M., Hollis, S. L., Nixon, G. M., Davey, M. J., Horne,
R. S. C., et al. (2016). Association between slow-wave activity, cognition and
behaviour in children with sleep-disordered breathing. Sleep Med. 25, 49–55.
doi: 10.1016/j.sleep.2016.06.004

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Gutiérrez-Tobal, Gomez-Pilar, Kheirandish-Gozal, Martín-
Montero, Poza, Álvarez, del Campo, Gozal and Hornero. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 November 2021 | Volume 15 | Article 644697

https://doi.org/10.1523/JNEUROSCI.5049-09.2010
https://doi.org/10.1523/JNEUROSCI.5049-09.2010
https://doi.org/10.1542/peds.2012-1671
https://doi.org/10.1542/peds.2012-1671
https://doi.org/10.1016/j.schres.2020.08.022
https://doi.org/10.1016/j.schres.2020.08.022
https://doi.org/10.1016/j.smrv.2021.101472
https://doi.org/10.1016/j.smrv.2021.101472
https://doi.org/10.1016/j.sleep.2021.02.015
https://doi.org/10.3389/fncir.2015.00088
https://doi.org/10.3389/fncir.2015.00088
https://doi.org/10.5664/jcsm.5262
https://doi.org/10.1038/ncomms15930
https://doi.org/10.1038/ncomms15930
https://doi.org/10.1044/0161-1461(2006/003)
https://doi.org/10.1044/0161-1461(2006/003)
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/s1388-2457(01)00508-9
https://doi.org/10.1016/s1388-2457(01)00508-9
https://doi.org/10.1038/nn.4119
https://doi.org/10.1002/ppul.23658
https://doi.org/10.1038/nrn2774
https://doi.org/10.1073/pnas.0305375101
https://doi.org/10.7554/eLife.18894
https://doi.org/10.1016/j.sleep.2016.06.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Pediatric Sleep Apnea: The Overnight Electroencephalogram as a Phenotypic Biomarker
	Introduction
	Materials and Methods
	Pediatric Cohort and Sleep Studies
	Polysomnographic Variables and Neurocognitive Tests
	Signal Acquisition and Analysis
	Correlation Network Analysis
	Statistical Analysis

	Results
	Polysomnography Variables and Cognitive Scores
	Averaged Electroencephalogram Spectrum of the Three Obstructive Sleep Apnea Severity Categories
	Overall Evolution of the Electroencephalogram Relationships With Polysomnography Variables and Cognitive Scores
	Spectral Band Average Associations With Polysomnography Variables and Cognitive Scores
	Modularity Analysis and Specific Relationships

	Discussion
	Electroencephalogram Correlation Networks Evolves With Obstructive Sleep Apnea Worsening
	Electroencephalogram Activity and Irregularity Characterize Specific Relationships
	Correlation Networks Help Expand Current Knowledge
	Interpretations of the SpecEn Characterization on Sleep Electroencephalogram
	Other Limitations and Future Steps

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


