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In the central nervous system of primates, several pathways are characterized by different

spectra of axon diameters. In vivo methods, based on diffusion-weighted magnetic

resonance imaging, can provide axon diameter index estimates non-invasively. However,

such methods report voxel-wise estimates, which vary from voxel-to-voxel for the same

white matter bundle due to partial volume contributions from other pathways having

different microstructure properties. Here, we propose a novel microstructure-informed

tractography approach, COMMITAxSize, to resolve axon diameter index estimates at

the streamline level, thus making the estimates invariant along trajectories. Compared

to previously proposed voxel-wise methods, our formulation allows the estimation

of a distinct axon diameter index value for each streamline, directly, furnishing a

complementary measure to the existing calculation of the mean value along the bundle.

We demonstrate the favourable performance of our approach comparing our estimates

with existing histologically-derived measurements performed in the corpus callosum

and the posterior limb of the internal capsule. Overall, our method provides a more

robust estimation of the axon diameter index of pathways by jointly estimating the

microstructure properties of the tissue and the macroscopic organisation of the white

matter connectivity.

Keywords: human brain, white-matter axon signature, diffusionMRI, tractography, microstructure, microstructure
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1. INTRODUCTION

The white matter of the central nervous system comprises axons
with different diameters (Peters et al., 1991) organized in
pathways, tracts, bundles or fascicles. Diameters correlate with:
(i) the size of the parent cell body (Tomasi et al., 2012); (ii) the size
and density of synaptic boutons (Innocenti and Caminiti, 2017);
(iii) conduction velocity (Hursh, 1937), which together with axon
length determines conduction delays between brain sites; and
possibly, (iv) the frequency of firing (Perge et al., 2012). Being
able to quantify and characterise these different aspects may be
critical to understanding sensory, motor, and cognitive functions.
In particular, as the axon diameter is strictly related to conduction
velocity (Ritchie, 1982; Drakesmith et al., 2019), it is associated
with the flow of information between different cortical sites and is
thus a critical feature when trying to understand the relationship
between the structural and functional connectivity of the brain
(Honey et al., 2010). Reliable estimates of axon diameter are also
of utmost importance for interpreting pathological cases (DeLuca
et al., 2004; Zikopoulos and Barbas, 2013; Huang et al., 2016).

First attempts to characterize the composition of neuronal
pathways in the central nervous system used histological
techniques (Aboitiz et al., 1992; Tomasi et al., 2012; Innocenti
et al., 2018) and focused on samples of animal tissue. Besides
being possible only ex vivo, these analyses require laborious
measurements of axon diameters in a few slices along the course
of known pathways. Per contra, diffusion-weighted magnetic
resonance imaging (DW-MRI) is a non-invasive technology that
can provide in vivo structural information on white matter
pathways by probing the motion of water molecules and
analyzing how it is influenced by the cellular structure of the
tissue (Le Bihan and Breton, 1985; Moseley et al., 1990; Beaulieu
and Allen, 1994). Compared to histological measurements, this
technology is faster and non-invasive. Therefore, it can be applied
to the living human brain, with enormous potential in terms of
information that can be recovered.

On the one hand, it is possible to estimate the course of
major pathways using tractography; for a review, see (Jeurissen
et al., 2017) and references therein. These fiber-tracking methods
approximate the macroscopic trajectory of axons by seeking
pathways of maximum coherence of estimates of fibre orientation
derived in each voxel from DW-MRI. Each reconstructed
trajectory, or streamline, represents a coherent set of axons
coursing together. Despite a large number of algorithms
developed, none of the existing methods can provide information
about the axon diameter of the individual reconstructed fiber
bundles, as tractography only reconstructs their macroscopic
trajectory. On the other hand, a variety of DW-MRI biophysical
models have been proposed in the literature to obtain such
information at the voxel level. Pioneering work in this field was
done by Assaf et al. (2008), who proposed a method to estimate
axon diameter distributions on an ex vivo spinal cord sample,
exploiting the simple organization of the tissue with axons having
a single, known orientation. Their model, AxCaliber, was later
employed to study in vivo the axon composition of the corpus
callosum in rodents (Barazany et al., 2009). A major limitation is
that the DW-MRI signal must be acquired perpendicular to the

axons main orientation and, hence, it requires prior knowledge
on the orientation of the bundle to study. The ActiveAx technique
developed by Alexander et al. (2010) removed this constraint
by probing the DW-MRI signal along multiple directions and
estimating orientationally-invariant features of the axons, thus
not requiring any prior knowledge on their orientation. ActiveAx
extended axon diameter index estimation to the whole brain but
at the price of providing estimates of the mean axon diameter
rather than the full distribution. The model was validated in
monkeys and humans (Alexander et al., 2010; Dyrby et al., 2013),
in vivo and ex vivo, and the estimated trend of themean diameters
in the corpus callosum agreed with histology.

Despite their attractiveness, current techniques for axon
diameter estimation with DW-MRI suffer from several
fundamental limitations which render them unsuitable for
estimating conduction velocity and connectomics studies in the
whole brain. First, the estimation is performed voxel-wise and
independently in each imaging voxel, neglecting the fact that
axons are continuous three-dimensional structures that are not
limited to the extent of the voxel. This makes it impossible to
infer the full course of the axons passing through that location
or whether the estimated values correspond to distinct fiber
bundles. Second, most methods implicitly assume a single
axon population inside a voxel and cannot cope with complex
fiber configurations such as crossing and fanning. In such
voxels, [estimated to be as high as 90% of all white-matter
voxels (Jeurissen et al., 2013)], the models provide biased
estimates as they suffer from severe overestimation of the
axon diameters (Alexander et al., 2010), limiting de facto their
applicability to specific areas of the brain, e.g., mid-sagittal
plane of the corpus callosum. Recent advances extended these
models to multiple fiber populations (Barazany et al., 2011;
Zhang et al., 2011a; Auria et al., 2015; Farooq et al., 2016)
and orientation dispersion (Zhang et al., 2011b), allowing for
a more accurate estimation in complex fiber configurations.
Although these methods showed consistent differences in the
axon diameter index estimation from various axonal bundles,
they remain limited to voxel-wise estimates, and are unable to
recover bundle-specific methods. It would be desirable to obtain
an accurate estimation along bundle trajectories, and in all white
matter voxels, allowing for the characterization of the axon
composition of individual fiber bundles. Lastly, the accuracy of
the estimates crucially depends on the strength of the diffusion
gradients that can be generated by the MRI scanners (Dyrby
et al., 2013; Nilsson et al., 2017; Jones et al., 2018; Huang et al.,
2020; Paquette et al., 2020) and other acquisition protocol (Gore
et al., 2010; Siow et al., 2013; Kakkar et al., 2018; Xu et al., 2014,
2016; Drobnjak et al., 2016; Fan et al., 2020; Veraart et al., 2020),
which affects the accuracy of the parameters as well (Drobnjak
et al., 2010; Harkins et al., 2021); conventional human scanners
are equipped with gradient systems up to 80mTm−1, which do
not provide the required sensitivity to axon diameters (Novikov
et al., 2018; Veraart et al., 2020).

In this paper, we propose a novel method to overcome
the above limitations and enable, for the first time, a non-
invasive characterization of an invariant value of axon diameter
index per streamline in the living human brain. Our method
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combines tractography with a microstructure model of the
neuronal tissue and uses DW-MRI data acquired with a 3 T
Connectom scanner capable of exploiting diffusion gradients up
to 300mTm−1. We demonstrate the favourable performance of
our method comparing our estimates with existing histologically-
derived measurements (Caminiti et al., 2009) performed in the
corpus callosum and the posterior limb of the internal capsule.
Estimating bundle-specific axon diameter index within each
voxel of the whole white matter would represent a major advance
in neuroscience, as this could shed more light on the relation
between structural and functional connectivity (Honey et al.,
2010) and improve our understanding of brain dynamics.

2. THEORY AND BACKGROUND

2.1. Voxel-Wise vs. Bundle-Specific Axon
Diameter Estimation
To illustrate the importance of bundle-specific axon diameter
index estimation, let us consider the simple example in Figure 1.
This synthetic dataset consists of two crossing fiber populations
characterized by different axon compositions, with the green
bundle containing larger axons than the blue one (Figure 1A).
Today, the axon diameter index of a bundle is characterized using
tractometry. This procedure indirectly approximates bundle-
specific statistics by first estimating the axon diameter index with
voxel-wise techniques in every voxel of the image (Figure 1B).
For simplicity, we report only the estimated mean values rather
than the full distributions. Then, the representative value of
such a metric, for a given bundle, is obtained by averaging these
values in all the voxels that are traversed by the streamlines
belonging to the bundle. The purpose of this work is to develop
a novel technique capable of estimating bundle-specific statistics,
thus allowing us to obtain more reliable estimates of its axon
composition (Figure 1D).

2.2. Microstructure-Informed Tractography
Even though DW-MRI is a quantitative imaging modality by
nature, the sets of streamlines reconstructed by tractography
are not truly quantitative (Jones and Cercignani, 2010; Jbabdi
and Johansen-Berg, 2011; Jones et al., 2013). Microstructure-
informed tractography (Sherbondy et al., 2009, 2010; Smith et al.,
2013, 2015; Pestilli et al., 2014; Daducci et al., 2015b, 2016; Girard
et al., 2017) is a recent methodological advance which aims
to overcome such limitations by complementing tractography
with biophysical models of the tissue microstructure. One of the
recent proposed methods is the Convex Optimization Modeling
for Microstructure Informed Tractography (COMMIT) (Daducci
et al., 2015b). COMMIT assigns contibutions to the signal to each
reconstructed streamline according to a microstructural forward-
model and attempts to express all the acquired DW-MRI signals
as a linear combination of the contributions arising from the
whole set of streamlines:

y = Ax+ η, (1)

where y contains the DW-MRI measurements in all voxels of
the white matter, A is a matrix that accounts for the signal

contributions of the streamlines in each voxel according to
a given multi-compartment model (Panagiotaki et al., 2012)
(possibly in addition to local voxel-wise contributions of tissue
compartments, e.g., cerebrospinal fluid) and η is the acquisition
noise. The unknown contributions x of all the compartments can
then be efficiently estimated by solving the inverse problem using
non-negative least squares:

argmin
x≥0

||Ax− y||22. (2)

Similarly to other filtering approaches, COMMIT assumes that
the contributions of the streamlines are constant along their
trajectories. More information on the method can be found in
the original COMMIT manuscript (Daducci et al., 2015b).

3. MATERIALS AND METHODS

3.1. Bundle-Specific Estimation
To enable estimation of the axon diameter index of individual
bundles, similarly to the recently proposed COMMIT-
T2 method (Barakovic et al., 2021), we extended the COMMIT
framework with the Cylinder-Zeppelin-Ball model (Panagiotaki
et al., 2012). The new formulation, COMMITAxSize, is presented
in Figure 2. The proposed method considers each streamline as
consisting of a population of axons with an unknown distribution
of diameters, which must be estimated. The forward model
(columns of the matrix A) was the DW-MRI signal arising
from axons represented as parallel cylinders oriented in parallel
to the tangent to the streamline in the voxel and with fixed
diameters and fixed longitudinal diffusivity d‖. To account
for different contributions arising from axons with distinct
diameters, we considered 12 columns for each streamline
corresponding to 12 cylinders with equally-spaced diameters
in the range 1.5 µm to 7 µm. We modeled the extra-axonal
compartment with anisotropic tensors, i.e., Zeppelins, having the
same longitudinal diffusivity d‖. To capture different geometries
of the extra-axonal space in every voxel, we considered multiple
Zeppelins in every voxel, each with a distinct perpendicular
diffusivity d⊥. Moreover, a distinct set of Zeppelins was included
in A for every principal diffusion direction in a voxel. Finally,
the cerebrospinal fluid was modeled as an isotropic tensor, i.e.,
Ball, with fixed diffusivity diso; an independent contribution
was assigned to each voxel. The physical parameters were set
according to values found in the literature (Alexander et al.,
2010; Zhang et al., 2011b, 2012; Le Bihan and Iima, 2015):
d‖=1.7× 10−3mm2 s−1, diso=3.0× 10−3mm2 s−1, and four
reasonable values equally-spaced from 0.5× 10−3mm2 s−1 to
1.0× 10−3mm2 s−1 for d⊥.

The axon diameter index of a streamline, can be estimated
from the coefficients x computed by COMMITAxSize as done in
the ActiveAxAMICO method (Daducci et al., 2015a); in fact, the 12
contributions corresponding to a given streamline represent its
volume-weighted cylinder diameter distribution. Unlike in Assaf
et al. (2008), no assumptions are made on the axon diameter
distribution to be estimated. The cylinder diameter distribution
can be defined for a bundle, i.e., a group of streamlines coursing
through a specific region of interest (ROI). Hence, we grouped
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FIGURE 1 | Voxel-wise vs. bundle-specific axon diameter estimation. (A) Schematic illustration of two crossing fiber populations characterized by different

compositions: the green bundle contains larger axons than the blue. (B) Axon diameter estimation using a voxel-wise approach; for simplicity, we report the estimated

mean diameters. The arrow points to the crossing region where such methods are known to especially suffer from overestimation. (C) Characterization of the axon

diameter of a white matter bundle is typically done by averaging, along its entire course, the values previously estimated in every voxel; this indirect procedure is

affected by such overestimated voxels and leads to biased results. (D) Estimation of bundle-specific axon diameter.

FIGURE 2 | How to enable estimation of bundle-specific axon diameter index. (A) Simple crossing configuration of two fiber populations with different axon

compositions, i.e., the vertical one is composed of larger axons than the horizontal, to illustrate the construction of the proposed formulation. (B) Corresponding

DW-MRI signal in four representative voxels. (C) Example of two possible streamlines reconstructed with tractography. (D) Visual representation of the response

functions in the Cylinder-Zeppelin-Ball forward model for each compartment. (E) The vector y contains a concatenation of the DW-MRI signal acquired in all voxels,

while the matrix A is constructed by combining the response functions with the local orientations of the streamlines in each voxel.
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TABLE 1 | DW-MRI acquisition protocol parameters.

b-value (smm−2) δ (ms) 1 (ms) G (mTm−1) directions

1,000 7 17.3 138 30

4,000 7 17.3 276 60

1,000 7 30 102 30

4,000 7 30 203 60

1,000 7 42 85 30

4,000 7 42 169 60

1,000 7 55 74 30

4,000 7 55 175 60

The images were acquired using a 2 mm isotropic resolution and a matrix size of 110 ×

110. The echo-time (TE) was 80 ms and the repetition time (TR) was 3900 ms.

streamlines sharing the same anatomical pathways in bundles
as defined by an anatomical atlas. We then calculated the axon
diameter index of a bundle by performing the weighted sum,
column by column, of the cylinder signature of all streamlines
of the bundle.

To facilitate visual inspection of the results, we extended
the Axon Diameter Index (ADI) (Alexander et al., 2010) to
streamlines (sADI), which is the mean of the distribution, and
colored all streamlines accordingly. To compute the sADI, we
excluded the contributions of the smallest (1.5 µm) and the
biggest (7 µm) cylinder diameters. This is for two reasons: i)
the used DW-MRI acquisition was shown to be insensitive to
diameters smaller than 2 µm (Nilsson et al., 2017). ii) We found
that the smallest cylinder captures, only partially, the signal of
axons from 0 µm to 1.5 µm, and the biggest cylinder captures the
signal of axons above 7 µm; hence, the coefficients corresponding
to those columns of A are unreliable for the computation of the
sADI. Simulations were performed to validate this assumption,
see Supplementary Materials.

3.2. Data Acquisition
3.2.1. In-vivo Human Data

In vivo human data were acquired from 3 healthy volunteers
on a Siemens Connectom 3T MRI system (Cardiff University
Brain Research Centre, Cardiff, Wales). The studies involving
human participants were reviewed and approved by The
School of Psychology Ethics Committee, Cardiff University. All
participants provided written informed consent to participate
in this study. Each subject was imaged five times over 2 weeks
using the same DW-MRI acquisition protocol. The DW-MRI
acquisition protocol used is the following: echo-time (TE) 80ms,
repetition time (TR) 3.900ms, matrix size 110 × 110, 2mm
isotropic resolution. Other protocol parameters are reported in
the Table 1.

Five non-diffusion weighted images (b0) were acquired,
including one in reverse phase encoding. A 1mm isotropic
resolution T1-weighted anatomical image was also acquired,
using a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence: TE = 2ms, inversion time = 857ms, TR
= 2.300ms, matrix size= 256× 256, flip angle= 9◦.

3.2.2. Simulation Data

A numerical phantom was generated with a 45◦ crossing
configuration between two bundles, from which, main directions
were obtained at each voxel. The intra-axonal and extra-axonal
signals were generated separately and then merged to generate
unique numerical phantom (Rensonnet et al., 2018). For each
bundle, the DW-MRI intra-axonal signal was simulated, using
a distribution of parallel cylinders (Van Gelderen et al., 1994)
following a gamma distribution. The first bundle had a gamma
distribution with volume weighted mean diameter of 2.70 (shape
= 3.2734 and scale = 0.2556). For the second bundle, the
volume weighted mean diameter was 4.00 (shape = 3.5027
and scale = 0.3655). The extra-axonal signal was generated
using a tensor with perpendicular diffusivity adapted to the
local intra-axonal volume fraction, following the tortuosity
approximation (Szafer et al., 1995). In single fiber voxels, the
intra-axonal signal fractions were set to 0.3 and 0.6 for the vertical
and diagonal bundles, respectively (i.e., the extra-axonal signal
was a tensor with perpendicular diffusivity equal to 0.7 × D
and 0.4 × D, respectively). The crossing voxels had an intra-
axonal volume fraction of 0.9 (i.e., the extra-axonal signals were
generated with a perpendicular diffusivity equal to 0.1 × D).
All signals were summed to have a total signal fraction of 1
in each voxel. The diffusivity of the simulations were fixed to
D = 1.7× 10−3mm2 s−1 (Alexander et al., 2010; Zhang et al.,
2011b, 2012), both for intra-axonal and extra-axonal signals. The
resulting dataset was corrupted with various levels of Rician noise.
Furthermore, four additional dataset were generated, adding
voxel-wise dispersion using a Watson distribution with k =

4, 8, 12, 16 (Zhang et al., 2011b, 2012).
For the voxel-wise estimation, the ADI for each voxel

was estimated with the ActiveAx method (Alexander et al.,
2010) implemented in the AMICO framework (Daducci et al.,
2015b). For the COMMITAxSize method, the bundle-specific
axon diameter index were estimated using both the ground-
truth bundle trajectories and using the MrTrix3 second-
order integration over Fiber Orientation Distribution (iFOD2)
algorithm generating approximately 1,000 streamlines per
bundle. Streamlines not ending at the bundle extremities were
removed before processing with COMMITAxSize.

3.3. Data Pre-processing
The anatomical T1-weighted image was registered to the
preprocessed average b0 image using FSL/FLIRT (Jenkinson
and Smith, 2001) using rigid-body registration. The white
matter and gray matter masks were estimated using FSL/FAST
(Zhang et al., 2001). The brain cortical parcellation was
performed using FreeSurfer (Destrieux et al., 2010). The DW-
MRI images were corrected for magnetic field inhomogeneities,
eddy currents (Andersson and Sotiropoulos, 2016) and motion
using the TOPUP (Graham et al., 2017), and EDDY tools
of FSL (Jenkinson and Smith, 2001). Subsequently, gradient
non-linearity correction was performed (Jovicich et al., 2006;
Rudrapatna et al., 2021). The shell with diffusion time 1 =

17.3ms, G = 276mTm−1 and b-value = 4000 smm−2 was
used to perform Constrained Spherical Deconvolution (CSD)
(Tournier et al., 2007). Tractography was then performed using
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iFOD2 algorithm (Tournier et al., 2012), generating 10,000,000
streamlines seeding from the white matter mask. Streamlines
not reaching the gray matter mask were removed. To make the
computational time practical, a sub-set of 300,000 streamlines
was randomly selected for each DW-MRI dataset.

3.4. Analysis of Specific Neuronal
Connections
We report the sADI estimated for the streamlines passing
through individual sectors of corpus callosum (CC) and of the
posterior limb of the internal capsule (PIC). The midsagittal
section of the CC was outlined using to the FreeSurfer
parcellation, and the transverse section of the PIC was manually
outlined on the T1-weighted image by an expert anatomist.
The skeletons (longitudinal centerline) of both regions were
computed and then subdivided into equally-spaced segments.
The boundaries of each sector were drawn roughly perpendicular
to the skeleton by associating all voxels within the outlines to their
closest segment. We fixed 11 regions of interest (ROIs) in the CC
showed in Figure 3A, and 6 ROIs in the PIC showed for each
hemisphere in Figure 3E.

Our in vivo study is focused on two well-characterized axonal
tracts: the CC and the PIC. The CC has been well studied in the
past with different methodologies, including DW-MRI (Barazany
et al., 2009; Alexander et al., 2010). The PIC has been less studied
with DW-MRI but is extremely important since it is traversed
by cortico-descending axons involved in motor control, whose
lesions lead to irreversible paralysis. Moreover, we concentrate
the analysis on these two bundles since they are known to
have a sufficiently large axon diameter, Figure 6. To study the
topology of bundles, the CC and the PIC were segmented and
subdivided in, respectively, 11 and 6 equal ROIs normalized for
different individuals as described in section 3.4. The streamlines
passing through regions of interest (ROIs) corresponding to these
sectors were selected, and we analyzed their projections to and
from the cortex. These projections correspond to corticofugal
and corticopetal (for the CC) connections since DW-MRI does
not distinguish the direction of the connections. Bundles of
streamlines systematically organized from anterior to posterior
connect the CC to similarly ordered slabs of cortex extending
from the cingulate gyrus to the lateral sulcus (see Figure 3). This
is usually neglected the aspect of CC topology, albeit already
shown by tracer injections in the CC of the cat (Nakamura
and Kanaseki, 1989), and is compatible with the ordering of
CC connections already described with DW-MRI (Hofer et al.,
2015). Also, anteroposteriorly organized bundles of streamlines
connect the sectors of PIC to anteroposterior cortical territories,
compatible with the topology shown by tracer injections and
DW-MRI in monkeys (Morecraft et al., 2017) and DW-MRI in
humans (Archer et al., 2018).

3.5. Comparison With Histology
The fiber composition of the CC obtained with
COMMITAxSize was compared with postmortem measurements
from a previous study (Caminiti et al., 2009); however, to
evaluate the impact of histological sampling one of the sectors
was measured again (see Supplementary Figure 8). Between 451

and 1934 axons stained for myelin were measured in CC sectors
crossed by axons connecting the prefrontal, motor, parietal and
visual cortices. From the histological data, we estimated the
histogram of diameters in each sector. However, since DW-MRI
estimates the signal fractions that are related to the volume
occupied by axons of different diameter, not their number, the
data was converted to volume-weighted distributions, to allow
comparison with the DW-MRI estimates. In the absence of
human data, the in vivo estimates of the PIC were compared with
measurements of axons stained for myelin in the monkey PIC
(Innocenti et al., 2018).

4. RESULTS AND DISCUSSION

4.1. Numerical Simulations
Figure 4 compares the estimated ADI obtained using the
conventional voxel-wise procedure and the proposed bundle-
specific COMMITAxSize on the numerical phantom described
in Section 3.2. The results from COMMITAxSize show more
consistent estimates of the bundles mean cylinder diameter,
compared to the voxel-wise method, in particular at low
SNR (Figure 4 first column). Moreover, at SNR = 50
COMMITAxSize estimated on average a sADI of 2.90 µm
and 4.01 µm compare to 3.37 µm and 4.25 µm for the
ActiveAxAMICO (the mean ground-truth diameter of each bundle
is 2.7 µm and 4.0 µm, respectively). The estimates provided by
COMMITAxSize are both more robust to noise, and closer to the
real values, when compared to voxel-wise estimates.

The second columns of Figure 4 show the ADI estimates
at SNR = 50, changing the dictionary diameter sampling of
both methods. Results improve for COMMITAxSize increasing
the sampling density, in particular for the bundle with the
smallest mean diameter. Results of the voxel-wise method are
similar using all dictionaries, with the best performances using
12 or 15 values. In all cases, COMMITAxSize outperformed the
voxel-wise method. Although more elements in the dictionary
improve the estimation, the optimisation problem becomes
harder and increases the computation requirements. Nonetheless,
a dictionary sampling of 12 columns in matrix A provides
a reasonable estimate on synthetic data, while keeping the
computation requirement feasible for in vivo data.

Finally, Figure 4 (third column) show the ADI estimated in
the same phantom, but including various levels of dispersion
(SNR = 50, dictionary diameter sampling of 12). Rather
than using the ground-truth cylinder trajectories, we used
probabilistic tractography to estimate their trajectories, capturing
the dispersion information from the data. The rightmost boxplot
shows the estimates using the probabilistic tractography with
no dispersion (κ = inf). Using the probabilistic tractography
streamlines, COMMITAxSize shows an underestimation of the
mean diameter when compared to the ground-truth bundle
trajectories. However, the increase in dispersion (lower κ value)
show a systematic over-estimation of the mean diameter of
the largest bundles, and little effect on the bundle with the
smallest cylinder diameter. However, the trend changes at κ = 4,
where both bundle ADI are estimated between 2.9 µm and 3.5
µm. This could be explained by the inability of probabilistic
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FIGURE 3 | Topology of fibers in the Corpus Callosum (CC) and posterior limb of the internal capsule (PIC), reconstructed with DW-MRI tractography of a single

healthy volunteer. (A) Subdivision of the mid-sagittal section of the CC in 11 sectors (corresponding to ROIs), see Supplementary Figure 9. (B,C) Streamlines

colored according to the corresponding ROIs (medial and lateral views of the hemisphere). (D) Projection of the streamlines onto the pial surface. (E) Subdivision of

PIC in 6 sectors (ROIs). (F,G) Streamlines colored according to the corresponding ROIs (medial and lateral view of the hemisphere). (H) Projection of the streamlines

onto the pial surface.

tractography to properly capture this high level of dispersion.
Although COMMITAxSize cannot fully model the dispersion, the
estimate along the streamlines provides more robust estimates of
the bundle diameter than the voxel-wise method.

Moreover, contrary to the voxel-wise method,
COMMITAxSize can disentangle bundles in crossing
configurations and provide a reliable bundle-specific ADI in
those areas. Something not achievable robustly with a voxel-wise
method assuming a single fiber population. These numerical
experiments showed the benefit of COMMITAxSize when
estimating axon diameter indexes.

4.2. In vivo Data
Figure 5 shows the streamlines passing through the CC (A)
and the PIC (C), colored following their corresponding sADI.
Figures 5B,D show sADI projected onto the pial surface. In both
bundles we studied, the largest sADI were found in sectors of
PIC traversed by axons connecting the motor cortex (BA 4)
while smaller sADI were found for other areas. This visualization
reveals that streamlines with larger sADI connect the CC to the
precentral gyrus, corresponding to the primary motor cortex
(M1; Broadman area BA 4), the more lateral part of premotor
cortex (BA 6), and the postcentral gyrus (BA 3,1,2) corresponding
to the primary somatosensory cortex (S1). Streamlines with
progressively smaller sADI terminate in the medial premotor
cortex (BA 6) and the parietal cortex (BA 5,7 and 40) and
still smaller sADI in the rostral prefrontal cortex (BA 8 and
9) and BA 44 and 45. In case of the CC, human postmortem
material was used to validate the estimates obtained with our
novel technique. The comparison was performed in four different
ROIs. Figure 6 shows that the bundle sADI estimated with
COMMITAxSize closely corresponds to the histological estimates
within the DW-MRI range of sensitivity.

In monkey species (Caminiti et al., 2009; Tomasi et al., 2012),
a hierarchy of axon diameters exists with thicker and faster-
conducting axons connecting the motor and somatosensory

cortices, thinner and slower axons elsewhere. The streamlines
coursing in the PIC were color-coded as above according to their
estimated sADI. These with the high sADI mapped onto the
dorsal part of the precentral BA 4 (M1) and postcentral (BA
3,1,2; S1) gyrus. Progressively smaller sADI mapped onto the
parietal cortex (BA 5 and 7) and the premotor cortex (BA 6)
and still smaller sADI onto the rostral prefrontal cortex (BA 8
and 9). This arrangement is similar to that demonstrated with
injections of anterogradely transported tracers in corresponding
areas of the monkey, although in the monkey the diameter of
axons originating in the precentral gyrus exceeds that of axons
originating in the postcentral gyrus (Innocenti et al., 2018).
Identical findings were reproduced for different sectors of the CC
and PIC in three subjects and five times for each subject, Figure 6
and Supplementary Figure 10.

Current technologies restrict the resolution of axon diameters
to about 2.0 µm (Nilsson et al., 2017). Nevertheless, axons
with larger diameter show a detectable contrast according to
our simulations, see Supplementary Materials. Despite this
limitation, since large axons are found preferentially in specific
pathways, their absence in the expected pathways, or abnormal
presence in unexpected pathways can disclose the neural basis
of specific neurological or psychiatric pathologies (DeLuca et al.,
2004; Zikopoulos and Barbas, 2013; Huang et al., 2016; Judson
et al., 2017; Golden et al., 2020) and, possibly, of individual skills
(de Manzano and Ullén, 2018).

4.3. Strengths and Limitations
Our proposed bundle-specific approach allows investigation of
the intrinsic axon composition of white matter pathways as
opposed to sampling their composition at discrete locations
along their course, making no assumptions on the axon
composition of a bundle. As the DW-MRI signal in each voxel is
expressed as the combined contributions of multiple intersecting
streamlines, our method naturally handles the presence of
different pathways within a voxel and allows their individual
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FIGURE 4 | Axon diameter indexes (ADI) estimated on the 45-degrees crossing synthetic phantom. The figures show the bundle-specific ADI estimated using the

COMMITAxSize method (top row) and the voxel-wise ADI estimated using the ActiveAxAMICO method (bottom row). The boxplots show the results 50 different Rician

noise realisations for COMMITAxSize and 100 voxels sampled in each single bundle areas and in the crossing area, for the ActiveAxAMICO method. The mean ground

truth cylinder diameter of the green and blue bundles are 4.0 µm, and 2.7 µm, respectively (colored dashed line). The first boxplot column show the estimated ADI at

various SNR, the second column using various number of columns in matrix A to compute the ADI and the last column shows the estimates for data with various

levels of dispersion.

FIGURE 5 | Streamline Axon Diameter Index (sADI) in the Corpus Callosum (CC) and posterior limb of the internal capsule (PIC) of a single healthy volunteer. (A,C)

show streamlines colored according to their sADI. (B,D) show the projection of streamlines’sADI onto the pial surface; colors correspond to the sADI averaged across

streamlines. Abbreviations: ces, central sulcus; ifs, inferior frontal sulcus; ips, interparietal sulcus; prs, precentral sulcus; sfs, superior frontal sulcus. Numbers

correspond to Brodman areas.
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FIGURE 6 | DW-MRI cylinder diameter distribution of CC and PIC sectors compared to histological mean volume-weighted axon diameter from human (CC) and

monkey (PIC) histology. Star markers represent the means of volume weighted histological distributions; hexagon markers represent the means of volume weighted

cylinder distributions in the range 2.0µm to 6.5µm.

contributions to be decoupled. This contrasts with methods in
which a ‘powder average’ of the diffusion-weighted signal is
taken as part of the axon diameter estimation process (Veraart
et al., 2018). On the contrary, in voxels with such complex fiber
configurations, the current voxel-wise estimation approaches
provide biased estimates. Another advantage of our approach
is that the cylinder diameter distribution of a bundle could be
mapped onto the cortex where it originates (and/or terminates),
eliminating the ambiguities of following axon diameters at
selected locations along the white matter pathways (Assaf et al.,
2008; Barazany et al., 2009; Alexander et al., 2010).

One could argue that it has been demonstrated that although
the axonal diameter of single axons can undergo local changes
along its trajectory (Lee et al., 2019); the axon diameter
distribution of diameters in a pathway remains stable over long
distances (Tomasi et al., 2012).

Nevertheless, we stress that a streamline represents a group of
axons that share a similar trajectory; thus, our method estimates
an average diameter for the represented group. Moreover, by
discretizing the intra-axonal signal in the contributions arising
from multiple impermeable cylinders (Van Gelderen et al., 1994),
each streamline can be composed of a different amount of
cylinders with different diameters without imposing any prior on
the eventual distribution.

By decomposing the signal of each voxel into three
components (intra-axonal, extra-axonal and isotropic
compartments) and regularizing the intra-axonal signal fractions
along streamlines, we were able to detect the signal fractions
corresponding to each component. In particular, we discretized
the signal coming from each cylinder diameter using the formula
for impermeable cylinders of Van Gelderen et al. (1994) and
what we estimated through the COMMITAxSize method was
the weighting factor in front of each diameter di, which is of
the order of d2i (Burcaw et al., 2015). Similarly, we discretized
the signal coming from the extra-axonal compartment in
two main components, parallel and perpendicular, along

each principal direction. Both components were fixed using
physically plausible constant values for the diffusion coefficient
(Alexander et al., 2010; Zhang et al., 2012). Moreover, for the
perpendicular direction, we accounted for four possible diffusion
coefficients (i.e., in each voxel for each main direction we
estimated five possible fractions of extra-axonal signal: one
parallel to the fiber population and four perpendiculars to it).
The remaining fraction of the signal in each voxel was then
captured by the signal contribution of an isotropic compartment
with fixed diffusivity. With these parameters, we do not account
for the eventual residual time dependence of the extra-axonal
diffusion tensor. However, by allowing a different fraction
for each discretized value in the perpendicular direction, we
account for a positive contribution of this compartment. Indeed,
although we acquired data with strong gradients, we are not in a
regime for which the extra-axonal signal may not be completely
suppressed (Veraart et al., 2019). The model we used in the signal
discretization, as well as the acquisition parameters chosen for
the DW-MRI sequence, can be improved to be more sensitive to
microstructure features.

Recent studies have suggested that axons may vary in
diameter along their length, may present undulations and
microscopic orientation dispersion (Brabec et al., 2020; Lee et al.,
2020a; Rafael-Patino et al., 2020) which impacts the estimate
obtained with DW-MRI (Lee et al., 2020b). The impact of
those tissue properties on COMMITAxSize will be addressed
in future studies. Furthermore, the volume fractions selected
for our simulation experiment were limited by the choice of
substrate simulator (Rafael-Patino et al., 2020). Future numerical
simulations will address more complex configurations, and more
realistic substrates will be constructed (e.g., varying volume
fractions and diameter distributions).

In this study, we proposed to estimate the bundle-specific
axon diameter index implementing the Cylinder-Zeppelin-Ball
forward model. We believe that the selection of the optimal
microstructure forward model and dictionary parameters
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could be improved in future studies. In particular, the
dictionary discretization used (i.e., 12 values for the intra-axonal
component) and fixed values for diffusivities, which may cause
loss of accuracy (Jelescu et al., 2016), will be two aspects to explore
extensively. Moreover, various tractography algorithms will be
tested to build the COMMITAxSize dictionary (e.g., deterministic
and probabilistic, and tractography parameters). Future works
will address these aspects, including the exploiting different
diffusion acquisition protocols, using similar approaches as in
Drobnjak et al. (2016) andNilsson et al. (2017), to find an optimal
set of parameters and protocols improving the sentitivity to the
tissue properties (Lampinen et al., 2017). Another important
aspect to mention is that the COMMITAxSize may be inaccurate
in the diseased brain, affected by focal lesions along white matter
tracts. However, it may be applicable to developmental disorders,
psychiatric disorders and neurological diseases such as epilepsy.

5. CONCLUSION

In this paper, we focused on the non-invasive characterization
of the composition of central nervous system pathways in the
living human brain from DW-MRI acquisitions. In particular,
we tackled some fundamental limitations of current voxel-wise
techniques and proposed a novel formulation to estimate the
axon diameter index of a fiber bundle all along its trajectory,
rather than sampling it at a few selective locations along its
course. We compared our bundle-specific approach to the state-
of-the-art voxel-wise methods, both on synthetic and in vivo
human brain data, comparing our findings with histological
measurements in two well-studied cortical pathways. Our results
demonstrated the feasibility and the benefits of our proposed
formulation. Moreover, the bundle composition estimated agree
with histology and known anatomy. Further studies could extend
the present approach to other pathways in the central nervous
system, enhancing the human connectome enterprise (Craddock
et al., 2013; Jbabdi et al., 2015; Glasser et al., 2016).
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