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Conventional magnetic resonance imaging (cMRI) in multiple sclerosis (MS) patients
provides measures of focal brain damage and activity, which are fundamental for
disease diagnosis, prognosis, and the evaluation of response to therapy. However,
cMRI is insensitive to the damage to the microenvironment of the brain tissue and
the heterogeneity of MS lesions. In contrast, the damaged tissue can be characterized
by mathematical models on multishell diffusion imaging data, which measure different
compartmental water diffusion. In this work, we obtained 12 diffusion measures from
eight diffusion models, and we applied a deep-learning attention-based convolutional
neural network (CNN) (GAMER-MRI) to select the most discriminating measures in the
classification of MS lesions and the perilesional tissue by attention weights. Furthermore,
we provided clinical and biological validation of the chosen metrics—and of their
most discriminative combinations—by correlating their respective mean values in MS
patients with the corresponding Expanded Disability Status Scale (EDSS) and the
serum level of neurofilament light chain (sNfL), which are measures of disability and
neuroaxonal damage. Our results show that the neurite density index from neurite
orientation and dispersion density imaging (NODDI), the measures of the intra-axonal
and isotropic compartments from microstructural Bayesian approach, and the measure
of the intra-axonal compartment from the spherical mean technique NODDI were the
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most discriminating (respective attention weights were 0.12, 0.12, 0.15, and 0.13). In
addition, the combination of the neurite density index from NODDI and the measures
for the intra-axonal and isotropic compartments from the microstructural Bayesian
approach exhibited a stronger correlation with EDSS and sNfL than the individual
measures. This work demonstrates that the proposed method might be useful to select
the microstructural measures that are most discriminative of focal tissue damage and
that may also be combined to a unique contrast to achieve stronger correlations to
clinical disability and neuroaxonal damage.

Keywords: multiple sclerosis, deep learning, advanced quantitative diffusion MRI, relative importance order,
clinically correlated measure selection

INTRODUCTION

Conventional magnetic resonance imaging (cMRI) in multiple
sclerosis (MS) plays a major role in MS diagnosis, prognosis,
and in the evaluation of patients’ therapeutic response (Rovira
et al., 2015; Wattjes et al., 2015). However, the heterogeneity of
focal MS lesions, the pathology in normal-appearing white and
gray matter (NAWM and NAGM), and the specific damage to
myelin and axons are largely overlooked by cMRI. Multishell
diffusion-weighted imaging (mDWI) provides a way to further
probe tissue damage and repair in MS patients (Schneider
et al., 2017; Lakhani et al., 2020). mDWI measures signal
changes that are related to the diffusion of water molecules
within central nervous system (CNS) tissue (Novikov et al.,
2019; Lakhani et al., 2020), which is constrained by the local
microenvironment (Novikov et al., 2019). This enables diffusion
measures of biophysical microstructure models derived from
mDWI to decode the information specific to different water
compartments (e.g., intra-axonal and isotropic compartments)
within the CNS tissue (Novikov et al., 2019). The intra-axonal
compartment reflects the integrity of the neurites, and the
isotropic compartment indicates the movement of the free water
(Novikov et al., 2019). These two compartments can describe the
two pathological presentations of MS lesions, demyelination, and
axonal injury and are commonly modeled by various biophysical
microstructure models (Lakhani et al., 2020).

A microenvironment characteristic is measured differently by
the measures from different mathematical models due to the
different assumptions on the diffusion within the tissue. Yet, to
our knowledge, the direct comparison of all considered diffusion
measures on MS lesions and the possibility to combine them
does not exist. Therefore, how to select the most discriminating
diffusion measures for a given neurological disorder and how
to combine the complementary information they might provide
remain to be open questions and motivate this study.

Convolutional neural network (CNN) in deep learning has
proven to be promising in various applications of MR images
and is able to encode spatial patterns on the images into
representative hidden features (Andermatt et al., 2018; Yoo et al.,
2018; Akçakaya et al., 2019; La Rosa et al., 2020; Saha et al., 2020).
In our previous work (Lu et al., 2020), we used an attention-
based CNN—GAMER-MRI—to rank the importance of the input
quantitative MRIs in the classification of stroke and MS lesions.

Here, we further developed the method to select discriminating
intercorrelated diffusion measures in the classification of MS
lesions and the perilesional tissue. Compared to the conventional
feature selection methods, this CNN-based method enables
utilizing maximally available spatial information of the images
and does not need to decide on how to find representative
values for the samples of each contrasts, such as the mean
value only within a lesion neglecting the perilesion tissue. In
addition, the method jointly considers all the contrasts, which is a
limitation for most of the conventional feature selection methods.
Furthermore, in this study, we have explored the relationship
between the chosen measures, or their combinations, with the
Expanded Disability Status Scale (EDSS) and the neurofilament
light chain in the serum (sNfL), which are respectively (i)
a clinical measure of disability in MS patients and (ii) a
biological measure of neuroaxonal damage (Barro et al., 2018;
Siller et al., 2019).

MATERIALS AND METHODS

MRI Data
One hundred twenty-three MS patients (84 relapsing–
remitting and 39 progressive, 71 female and 52 male, age
range = 44.7 ± 14.0, median EDSS = 2.5, EDSS range of 0.0–8.0)
were enrolled in the study, which was approved by the local
Ethics Committee of Basel University Hospital. All subjects
gave written consent prior to the enrollment. MS patients
underwent a multiparametric protocol on 3T whole-body
MR system (Siemens MAGNETOM Prisma). The protocol
included 3D SPACE-based FLAIR, 3D magnetization-prepared 2
rapid gradient echoes (MP2RAGE) (Marques et al., 2010), and
mDWI (Table 1).

Measured diffusion-weighted imaging was denoised by
MRtrix (Cordero-Grande et al., 2019; Tournier et al., 2019).
The correction of susceptibility-induced distortion with the
reversed phase-encoding images, eddy currents, and movement
was performed by FMRIB Software Library (FSL) (Andersson
et al., 2003; Smith et al., 2004; Jenkinson et al., 2012;
Andersson and Sotiropoulos, 2016). The quantitative diffusion
measures for the isotropic and intra-axonal compartments
were reconstructed from the eight open-source biophysical
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TABLE 1 | Acquisition parameters of each contrast in the MS dataset.

TE (ms) TR (ms) FOV (mm3) SR (mm3) TI (ms) Additional parameters

FLAIR 386 5000 256 × 256 × 256 l × l × l 1800 –

MP2RAGE 3 5000 256 × 256 × 256 l × l × l 700, 2500 –

b values (s/mm2)

mDWI 75 4500 256 × 256 × 144 1.8 × 1.8 × 1.8 –
0/12 acquisitions and 12 reverse encoding acquisitions;

700; 1000; 2000; 3000/137 directions in total

TE, echo time; TR, repetition time; TI, inversion time; FOV, field of view; SR, spatial resolution.

models, including Ball and Stick1 (Behrens et al., 2003), neurite
orientation and dispersion density imaging (NODDI)2 (Zhang
et al., 2012), NODDI with the spherical mean technique (SMT-
NODDI)1 (Cabeen et al., 2019), microstructure Bayesian (MB)
approach3 (Reisert et al., 2017), multicompartment microscopic
diffusion imaging (MCMDI)1 (Kaden et al., 2016), neurite
orientation dispersion and density imaging with diffusivities
assessment (NODDIDA)4 (Jelescu et al., 2015), distribution
of 3D anisotropic microstructural environments in diffusion-
compartment imaging (DIAMOND)5 (Scherrer et al., 2016),
and microstructure fingerprinting6 (Rensonnet et al., 2019). The
exemplary diffusion measures and FLAIR are in Figure 1.

The quantitative diffusion measures of each patient were
masked by the brain mask to remove non-brain tissue including
the ventricle. The brain mask was the binarized subcortical
segmentation obtained from FreeSurfer (Fischl et al., 2001) on
MP2RAGE (Fujimoto et al., 2014) and transformed by FSL to
align with mDWI. The diffusion measures were then subject-
wise normalized. Eighty-four patients were randomly selected
to be used in a 5-fold cross-validation. The other 39/123
patients formed a pure test dataset. White matter lesions were
automatically segmented using FLAIR and MP2RAGE7 (La Rosa
et al., 2020) and manually corrected by two expert raters. The
lesion segmentations were transformed by FSL to be aligned with
mDWI. Lesions of size less than three voxels were excluded. The
perilesional tissue was defined as white matter tissue locating
within a three-voxel region around the lesions. Patches of
5 × 5 × 5 voxels were sampled on lesions and perilesional tissue
considering the lesion sizes. To reduce the overlapping between
the lesion and perilesional patches due to their proximity, a
constraint of at most 20% of a sampled patch being overlapped
with another patch was applied. The numbers of patches being
sampled on each lesion and perilesional tissue were proportional
to the size of the lesion and the perilesional tissue, respectively. In
the end, 3007 lesion patches and 3624 perilesional patches were
sampled in the dataset for 5-fold cross-validation, and 1402 lesion
patches and 1665 perilesional patches were sampled in the pure
test dataset. The 5-fold cross-validation was based on the number

1https://github.com/AthenaEPI/dmipy
2https://github.com/daducci/AMICO
3https://bitbucket.org/reisert/baydiff/wiki/Home
4https://github.com/robbert-harms/MDT
5https://bitbucket.org/benoitscherrer/crldciestimate
6The author needs to be contacted.
7https://hub.docker.com/r/francescolr/ms_seg

of patients. Therefore, patches from a patient would not present
both in the training and in the validation datasets.

GAMER-MRI
GAMER-MRI was previously developed and validated as a
method to obtain attention weights and the relative importance
in a classification task of given input contrasts (Lu et al., 2020).
As we previously reported, the neural network consisted of three
parts for feature extraction, gated attention mechanism (Ilse
et al., 2018), and classification (Lu et al., 2020). The feature
extraction part included three convolutional blocks for each
contrast. Each convolutional block was composed of a layer of
16 convolutional filters and exponential leaky units followed by
batch normalization. The kernel size of the convolutional filter
was 3 × 3 × 3, and padding was applied correspondingly to
maintain the patch size. After the last convolutional block, a 16-
neuron fully connected layer (FCL) received the flattened vector
of 125 elements and encoded the hidden feature of 16 elements.
The gated attention mechanism was formed by an attention layer
containing an eight-neuron FCL followed by the tanh function
and a gate layer having an eight-neuron FCL followed by the
sigmoid function. The outputs of tanh and sigmoid were element-
wise multiplied. From the element-wise product, in the original
implementation for not-highly-correlated input contrasts, the
attention weights were obtained by following one-neuron FCL
and the softmax function (Lu et al., 2020). However, this design
was not effective for highly correlated inputs, i.e., diffusion
measures in this work. The information content of measures is
similar, and thus, the difference in the obtained attention weights
was small.

For the purpose of this study, we multiplied the outputs
from the element-wise multiplication by 2. This enhanced
the difference between the encoded features of the correlated
diffusion measures during training because the exponential
transformation in the softmax function could not properly reflect
the difference in the small and negative values. For example, 0.01
is 10 times larger than 0.001, but they become 1.01 and 1.001 after
the exponential transformation. This leads to 0.502 and 0.498
as attention weights after the softmax function. The enhanced
output was then connected to a one-neuron FCL followed by the
softmax function to generate the normalized attention weights.
The weighted sum of the hidden features and the corresponding
attention weights formed a combined hidden feature for the
classifier. The classifier was one sigmoid neuron. The network
structure is in Figure 2.
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FIGURE 1 | MS lesions on FLAIR and diffusion measures. (A) FLAIR: MS lesions are hyperintense and indicated by red dashed boxes. (B) Red: lesions; Green:
perilesional white matter tissue. (C) The isotropic compartment from MB. (D) The intra-axonal compartment from MB. (E) The neurite density index from NODDI.
(F) The intra-axonal compartment from SMT-NODDI. (G) The intra-axonal compartment from MCMDI. (H) The intra-axonal compartment from NODDIDA. (I) The
isotropic compartment from Ball and Stick. (J) The intra-axonal compartment from Ball and Stick. Other measures in the analysis are in Supplementary Figure 1.

FIGURE 2 | GAMER-MRI. (A) The neural network. Conv stands for the convolutional block. FC is a fully connected layer. (B) Attention block. � represents an
element-wise multiplication.

The weighted sampler was used to account for the class
imbalance, and the batch size was 256. The loss function was
cross-entropy loss. The evaluation metric was the area under
the receiver operating characteristic curve (AUC). The optimizer
was AdamW (Loshchilov and Hutter, 2019) with the learning
rate = 5e-5 and the weight decay = 1e-2. To avoid overfitting, data
augmentation and a learning-rate scheduler were performed.
On-the-fly data augmentation included random flipping in the
left–right directions and Gaussian noise with zero mean and unit

standard deviation. The scheduler was the learning-rate-reduce-
plateau scheduler with a patience of 15 epochs.

Selection of Contrasts
Intrinsic strong correlation between the quantitative diffusion
measures can lead to instability of the obtained attention
weights and the ranked order, compared to the result in
Lu et al. (2020). Therefore, to avoid determination solely based
on the attention weights, the selection of discriminating measures
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FIGURE 3 | Flowchart for using GAMER-MRI to select the most discriminating subject-wise normalized diffusion measures and correlating the combinations of
selected diffusion measures with the Expanded Disability Status Scale and the serum level of neurofilament light chain.

was an iteration process. It started from the measure whose
attention weight was dominant in the validation datasets in
all the cross-validation folds. If no measure was selected, the
measures whose attention weights were ranked first or second
in all the folds were considered. If no measures were selected,
the attention weights that ranked first or second and third
in all the folds were considered. The selection stopped when
the sum of their attention weights was over 0.5, which meant
that the selected measures were more important than 50% of
the input diffusion measures in differentiating the lesion and
perilesional tissue.

To assess which selected subject-wise normalized quantitative
diffusion measures, or combination of those measures, was
best correlated with patients’ EDSS as well as NfL in the pure
test dataset, we first averaged the diffusion measures within
each lesion and then over lesions within each patient. In
31/39 patients of the test dataset, we quantified sNfL. Then,
we performed Spearman’s correlation coefficient with two-sided
20,000 permutation tests. The Benjamin–Hochberg procedure
(Benjamini and Hochberg, 1995) was performed to control the
false discovery rate (FDR) with the threshold 0.05. The flowchart
is shown in Figure 3.

RESULTS

Lesion Classification
In Table 2, we report the average performance of GAMER-MRI
using all the diffusion measures on the (i) validation dataset over
fivefold cross-validation and (ii) on the pure test dataset.

The diffusion measures selected by using the validation
datasets were the neurite density index (NDI) from NODDI, the
intra-axonal and isotropic compartment from MB (Intra-MB and
Iso-MB), and the intra-axonal compartment from SMT-NODDI
(Intra-SMT) in Figure 1. Their average attention weights of the
corrected predicted samples are also reported in Table 2.

Spearman’s Correlation
Correlation With EDSS
The Spearman’s correlation coefficients (ρ) and the
corresponding original p-values of the selected normalized
diffusion measures, or their statistically significant combinations
and EDSS, are reported in Table 3. The Spearman’s correlation
coefficients (ρ) of the conventional lesion load metrics are
also reported. The number of potential combinations of four
selected diffusion measures is 15, and there are two tests in the
lesion load analysis. This led to in total 17 statistical tests. The
significance controlled by FDR is indicated by an asterisk. The
scatter plot of the combination having the strongest correlation
is in Figure 4A, and an exemplary image of the combination is
in Figure 4B.

Correlation With sNfL
The Spearman’s correlation coefficients (ρ) and the
corresponding original p-values are reported in Table 4.
One patient had a relatively high sNfL level of 160 µg/ml,
compared to the mean sNfL level of 8.9 µg/ml of the rest of 30
patients. After this patient’s data were excluded, the significance
in Table 4 did not change, but the correlation was stronger.
For illustration purpose, the scatter plot of the combination

TABLE 2 | Performance of the patch-based network on MS lesions and the selected diffusion measures on fivefold cross-validation (first row, average mean, and
standard deviation are reported) and pure testing set (second row). Balanced accuracy is defined as the average of sensitivity and specificity in each fold. Fl score is
defined as the harmonic mean of precision and recall.

Mean metrics (%) AUC Balanced accuracy Sensitivity Specificity F1 score

Validation dataset 90.67 ± 0.009 83.26 ± 1.35 81.09 ± 2.44 85.44 ± 2.03 81.62 ± 1.67

Test dataset 91.01 ± 0.003 83.42 ± 0.12 83.39 ± 0.67 83.45 ± 0.82 82.14 ± 0.11

Selected measures NDI Intra-MB Iso-MB Intra-SMT

Attention weights 0.121 ± 0.014 0.117 ± 0.014 0.145 ± 0.007 0.131 ± 0.015
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TABLE 3 | Spearman’s correlation of selected normalized diffusion measures, or
their combinations and EDSS.

Lesion load ρ P-value Significance

Number of lesions 0.13 0.41 –

Lesion volume 0.25 0.12 –

Normalized diffusion measures

NDI −0.38 0.017 *

Intra-SMT −0.31 0.057

Intra-MB −0.40 0.013 *

Iso-MB 0.09 0.58 –

Intra-MB + Iso-MB −0.39 0.014 *

Intra-MB + NDI −0.43 0.007 *

Intra-SMT + NDI −0.37 0.023 *

Intra-SMT + Intra-MB −0.40 0.012 *

Intra-MB + Iso-MB + NDI −0.45 0.004 *

Intra-MB + Iso-MB + Intra-SMT −0.42 0.007 *

Intra-MB + Intra-SMT + NDI −0.42 0.009 *

Intra-MB + Iso-MB + NDI + Intra-SMT −0.41 0.009 *

The significance is controlled by FDR with a threshold of 0.05. Only the
combinations of significance are reported.

having the strongest correlation (Figure 5A) does not contain
this outlier patient. An exemplary image of the combination is
in Figure 5B.

DISCUSSION

Our work provided evidence that a modified version of GAMER-
MRI, including a specific selection procedure for correlated
measures, permits to identify the microstructural diffusion
measures that are most discriminative of focal MS pathology
among the ones obtained with eight open-source mathematical

models of multishell diffusion data. Moreover, our data showed
that some of the combinations of the selected normalized
diffusion measures better correlated with patients’ disability and
neuroaxonal damage than the individual measures.

Diffusion-based microstructural measures quantify
different compartments based on various assumptions.
Nevertheless, the relative sensitivity of the different
diffusion-based microstructural metrics to specific CNS
pathologies is unclear. In this work, we have provided a
methodological frame to discriminate the most sensitive
diffusion microstructural measures to focal MS pathology in a
large population of MS patients.

We first aimed at identifying which measure best
discriminated MS lesions from the perilesional tissue because

TABLE 4 | Spearman’s correlation of selected normalized diffusion measures, or
their combinations and sNfL.

Lesion load ρ P-value Significance

Number of lesions 0.48 0.006 *

Lesion volume 0.45 0.01 *

Normalized diffusion measures

NDI −0.37 0.04 –

Intra-SMT −0.27 0.14 –

Intra-MB −0.42 0.02 *

Iso-MB 0.1 0.59 –

Intra-MB + Iso-MB −0.51 0.004 *

Intra-MB + NDI −0.43 0.02 *

Intra-MB + Iso-MB + NDI −0.48 0.007 *

Intra-MB + Iso-MB + Intra-SMT −0.45 0.01 *

Intra-MB + Iso-MB + NDI + Intra-SMT −0.44 0.02 *

The significance controlled by FDR with a threshold of 0.05. Only the combinations
of significance are reported.

FIGURE 4 | (A) Scatter plot and a regression line of EDSS and the combinations of normalized Intra-MB, Iso-MB, and NDI, which has strongest correlation. (B) An
exemplary image of the combined contrast.
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FIGURE 5 | (A) Scatter plot and a regression line of the combinations of normalized Intra-MB and Iso-MB, which showed the strongest correlation with sNFL. (B) An
exemplary image of the combined contrast.

we judged that if the neural network was able to differentiate
between lesions and the immediate surrounding tissue, the
learned pattern would have been most sensitive to focal MS
pathology than the one we would have derived by comparing
lesions to the distant normal-appearing tissue. The evaluation
metrics in Table 2 indicated that the neural network was able
to learn pivotal information for the target classification. As
expected, because of the highly correlated nature of the studied
diffusion-based measures, the difference among the obtained
attention weights was small. The proposed selection process
alleviated the fluctuating order of attention weights due to their
small differences. The threshold of 0.5 in the selection process was
empirically chosen considering the representativeness of selected
diffusion measures and the multiple comparison problem.

The core idea of the attention mechanism is to enhance
important features from the data themselves relevant to the
specific application (Bahdanau et al., 2015). Therefore, in most
of the applications in natural language processing and natural
image classification, the attention weights were used to enhance
the connection to the corresponding features based on their
importance instead of quantifying the relative importance among
the features (Maicas et al., 2017; Vaswani et al., 2017; Hu et al.,
2018; Woo et al., 2018). Using different designs of the attention
mechanism, the attention weights also provide the relative
importance among features as shown in a histopathological
image classification and image captioning (You et al., 2016;
Ilse et al., 2018). In GAMER-MRI, attention weights were
computed and validated on multicontrast MRI measures in
order to select their relative importance in a given neurological
disease classification.

To our knowledge so far, only few studies applied measures
derived from microstructural models to study focal MS
pathology (for a review, see Granziera et al., 2020) and
only one study used deep-learning to show the superior

performance of diffusion basis spectrum imaging to segment
voxel-wise different types of MS lesions compared to using
diffusion tensor imaging (Ye et al., 2020). However, the joint
comparison of multiple microstructural diffusion measures in
MS lesions has not been explored yet. This work considered
the potential interaction between the measures and tried to
address this issue.

The four selected diffusion measures include three measures
for the intra-axonal compartment from three models and one
measure for the isotropic compartment from one of the three
models. This means that most of the discriminating information
of the damaged neurons was from the loss of axonal integrity. The
additional information about the inflammatory processes might
be reflected by the measure for the isotropic compartment to
better characterize the distinction of lesions.

Besides, by combining the selected diffusion measures
in the discrimination of focal pathology, it was possible
to achieve a stronger correlation with patient disability
than one of those metrics alone or even conventional MRI
metrics, such as the lesion number and volume. These
results suggest that a comprehensive description of the tissue
microstructure in regions of focal damage in MS patients may
well help decrease the clinical–radiological paradox (Barkhof,
2002). Interestingly, the combined contrast achieving the best
correlation with disability was the sum of measures quantifying
intra-axonal and isotropic diffusion, which may be considered
surrogate measures of the loss of integrity of axons and
myelin as well as of inflammatory processes (i.e., increased
cellularity and edema).

Most of the combinations that best correlated to EDSS were
also highly related to the sNfL levels: remarkably, the correlation
coefficients between sNfL and combinations of diffusion-MRI
metrics were even higher than the ones obtained between sNfL
and the lesion load, which is known to be highly related to sNfL
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levels (Chitnis et al., 2018; Todea et al., 2020). The patient, who
had an extremely high level of sNfL, had a relapse 2 months before
the sNfL acquisition, which may have well influenced the strong
increased in sNfL levels.

To perform the correlation analyses with EDSS and sNFL,
we have used subject-wise normalized maps of diffusion-based
microstructural measures, which were the ones encoded by
GAMER-MRI. We also trained the neural network on the
original images, which, however, led to worse classification
performance. Because subject-wise normalized maps were
used, it is challenging to determine whether the network
could learn the right pattern and to generate representative
attention weights. Owing to the applied normalization
procedure, the interpretation of the pathological meaning
of the combined metrics is particularly difficult. Another
limitation of this study was that we divided the cross-
validation folds based on the number of patients instead
of the number of patches: this led to different distributions
of lesion and perilesional patches in the validation datasets
of all cross-validation folds and to the fluctuation of the
validation results. On the other hand, this also had the
advantage of preventing the leak of information induced
by the appearance of patches from one patient in both the
training and validation dataset. Based on the obtained result
(Table 2), the performance on the test dataset was stable, so the
limitation was alleviated.

CONCLUSION

In summary, our work showed that the proposed attention-
based neural network and the selection process based on
the previous work can select important diffusion measures
despite that they are highly intercorrelated. Those measures
have the potential to be combined to enhance the correlation
with the clinical measures. Future work will be required
to directly find the best combinations without using a
statistical test and tackling the multiple comparison problem.
Furthermore, the use of a combination of diffusion-
based microstructural measures deserves further attention
and development, allowing a better interpretability of its
pathological meaning.
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specific robust artificial-neural-networks for k-space interpolation (RAKI)
reconstruction: database-free deep learning for fast imaging. Magn. Reson. Med.
81, 439–453. doi: 10.1002/mrm.27420

Andermatt, S., Pezold, S., and Cattin, P. C. (2018). “Automated segmentation of
multiple sclerosis lesions using multi-dimensional gated recurrent units,” in
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries.
BrainLes 2017. Lecture Notes in Computer Science, Vol. 10670, eds A. Crimi,
S. Bakas, H. Kuijf, B. Menze, and M. Reyes (Cham: Springer), 31–42. doi:
10.1007/978-3-319-75238-9_3

Frontiers in Neuroscience | www.frontiersin.org 8 April 2021 | Volume 15 | Article 647535

https://www.frontiersin.org/articles/10.3389/fnins.2021.647535/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.647535/full#supplementary-material
https://doi.org/10.1002/mrm.27420
https://doi.org/10.1007/978-3-319-75238-9_3
https://doi.org/10.1007/978-3-319-75238-9_3
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-647535 March 29, 2021 Time: 15:59 # 9

Lu et al. GAMER-MRI and MS Diffusion Measures

Andersson, J. L. R., Skare, S., and Ashburner, J. (2003). How to correct susceptibility
distortions in spin-echo echo-planar images: application to diffusion
tensor imaging. Neuroimage 20, 870–888. doi: 10.1016/S1053-8119(03)
00336-7

Andersson, J. L. R., and Sotiropoulos, S. N. (2016). An integrated approach
to correction for off-resonance effects and subject movement in diffusion
MR imaging. Neuroimage 125, 1063–1078. doi: 10.1016/j.neuroimage.2015.
10.019

Bahdanau, D., Cho, K. H., and Bengio, Y. (2015). “Neural machine translation
by jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015 - Conference Track Proceedings,
San Diego, CA.

Barkhof, F. (2002). The clinico-radiological paradox in multiple sclerosis
revisited. Curr. Opin. Neurol. 15, 239–245. doi: 10.1097/00019052-200206000-
00003

Barro, C., Benkert, P., Disanto, G., Tsagkas, C., Amann, M., Naegelin, Y., et al.
(2018). Serum neurofilament as a predictor of disease worsening and brain and
spinal cord atrophy in multiple sclerosis. Brain 141, 2382–2391. doi: 10.1093/
brain/awy154

Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes,
R. G., Clare, S., et al. (2003). Characterization and propagation of uncertainty
in diffusion-weighted mr imaging. Magn. Reson. Med. 50, 1077–1088. doi: 10.
1002/mrm.10609

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57,
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Cabeen, R. P., Sepehrband, F., and Toga, A. W. (2019). “Rapid and accurate
NODDI parameter estimation with the spherical mean technique,” in ISMRM
27th Annual Meeting and Exhibition 11–16 May 2019, Montreal, QC.

Chitnis, T., Gonzalez, C., Healy, B. C., Saxena, S., Rosso, M., Barro, C., et al. (2018).
Neurofilament light chain serum levels correlate with 10-year MRI outcomes in
multiple sclerosis. Ann. Clin. Transl. Neurol. 5, 1478–1491. doi: 10.1002/acn3.
638

Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A. N., and Hajnal, J. V.
(2019). Complex diffusion-weighted image estimation via matrix recovery
under general noise models. Neuroimage 200, 391–404. doi: 10.1016/j.
neuroimage.2019.06.039

Fischl, B., Liu, A., and Dale, A. M. (2001). Automated manifold surgery:
constructing geometrically accurate and topologically correct models of the
human cerebral cortex. IEEE Trans. Med. Imaging 20, 70–80. doi: 10.1109/42.
906426

Fujimoto, K., Polimeni, J. R., van der Kouwe, A. J. W., Reuter, M., Kober, T., Benner,
T., et al. (2014). Quantitative comparison of cortical surface reconstructions
from MP2RAGE and multi-echo MPRAGE data at 3 and 7T. Neuroimage 90,
60–73. doi: 10.1016/j.neuroimage.2013.12.012

Granziera, C., Wuerfel, J., Barkhof, F., Calabrese, M., De Stefano, N., Enzinger,
C., et al. (2020). Quantitative magnetic resonance imaging towards clinical
application in multiple sclerosis. Brain (in press).

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,”
in Proceedings of the IEEE Computer Social Conference Computer Vision
Pattern Recognit, Salt Lake City, UT, 7132–7141. doi: 10.1109/CVPR.2018.
00745

Ilse, M., Tomczak, J. M., and Welling, M. (2018). Attention-based deep multiple
instance learning. arXiv [Preprint]. Available online at: http://arxiv.org/abs/
1802.04712 (accessed June 30, 2019).

Jelescu, I. O., Veraart, J., Adisetiyo, V., Milla, S. S., Novikov, D. S., and Fieremans,
E. (2015). One diffusion acquisition and different white matter models: how
does microstructure change in human early development based on WMTI
and NODDI? Neuroimage 107, 242–256. doi: 10.1016/j.neuroimage.2014.
12.009

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith,
S. M. (2012). Review FSL. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.
2011.09.015

Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D., and Alexander, D. C. (2016).
Multi-compartment microscopic diffusion imaging. Neuroimage 139, 346–359.
doi: 10.1016/j.neuroimage.2016.06.002

La Rosa, F., Abdulkadir, A., Fartaria, M. J., Rahmanzadeh, R., Lu, P. J., Galbusera,
R., et al. (2020). Multiple sclerosis cortical and WM lesion segmentation at 3T

MRI: a deep learning method based on FLAIR and MP2RAGE. NeuroImage
Clin. 27:102335. doi: 10.1016/j.nicl.2020.102335

Lakhani, D. A., Schilling, K. G., Xu, J., and Bagnato, F. (2020). Advanced
multicompartment diffusion MRI models and their application in
multiple sclerosis. Am. J. Neuroradiol. 41, 751–757. doi: 10.3174/AJNR.
A6484

Loshchilov, I., and Hutter, F. (2019). “Decoupled weight decay regularization,” in
7th International Conference on Learning Representations, ICLR 2019, La Jolla,
CA.

Lu, P.-J., Yoo, Y., Rahmanzadeh, R., Galbusera, R., Weigel, M., Ceccaldi, P., et al.
(2021). GAMER MRI: Gated-attention mechanism ranking of multi-contrast
MRI in brain pathology. NeuroImage Clin. 29:102522. doi: 10.1016/j.nicl.2020.
102522

Maicas, G., Carneiro, G., Bradley, A. P., Nascimento, J. C., and Reid, I. (2017).
“Deep reinforcement learning for active breast lesion detection from DCE-
MRI,” in Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), eds M. Descoteaux,
L. Maier-Hein, A. Franz, P. Jannin, D. Collins, and S. Duchesne (Cham:
Springer), doi: 10.1007/978-3-319-66179-7_76

Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele,
P. F., and Gruetter, R. (2010). MP2RAGE, a self bias-field corrected sequence
for improved segmentation and T1-mapping at high field. Neuroimage 49,
1271–1281. doi: 10.1016/j.neuroimage.2009.10.002

Novikov, D. S., Fieremans, E., Jespersen, S. N., and Kiselev, V. G. (2019).
Quantifying brain microstructure with diffusion MRI: theory and parameter
estimation. NMR Biomed. 32:e3998. doi: 10.1002/nbm.3998

Reisert, M., Kellner, E., Dhital, B., Hennig, J., and Kiselev, V. G. (2017).
Disentangling micro from mesostructure by diffusion MRI: a bayesian
approach. Neuroimage 147, 964–975. doi: 10.1016/j.neuroimage.2016.
09.058

Rensonnet, G., Scherrer, B., Girard, G., Jankovski, A., Warfield, S. K., Macq, B., et al.
(2019). Towards microstructure fingerprinting: estimation of tissue properties
from a dictionary of monte carlo diffusion MRI simulations. Neuroimage 184,
964–980. doi: 10.1016/j.neuroimage.2018.09.076

Rovira, Á, Wattjes, M. P., Tintoré, M., Tur, C., Yousry, T. A., Sormani, M. P., et al.
(2015). Evidence-based guidelines: MAGNIMS consensus guidelines on the use
of MRI in multiple sclerosis - Clinical implementation in the diagnostic process.
Nat. Rev. Neurol. 11, 471–482. doi: 10.1038/nrneurol.2015.106

Saha, S., Pagnozzi, A., Bourgeat, P., George, J. M., Bradford, D. K., Colditz,
P. B., et al. (2020). Predicting motor outcome in preterm infants from very
early brain diffusion MRI using a deep learning convolutional neural network
(CNN) model. Neuroimage 215:116807. doi: 10.1016/j.neuroimage.2020.11
6807

Scherrer, B., Schwartzman, A., Taquet, M., Sahin, M., Prabhu, S. P., and Warfield,
S. K. (2016). Characterizing brain tissue by assessment of the distribution
of anisotropic microstructural environments in diffusion-compartment
imaging (DIAMOND). Magn. Reson. Med. 76, 963–977. doi: 10.1002/mrm.
25912

Schneider, T., Brownlee, W., Zhang, H., Ciccarelli, O., Miller, D. H., and Wheeler-
Kingshott, C. G. (2017). Sensitivity of multi-shell NODDI to multiple sclerosis
white matter changes: a pilot study. Funct. Neurol. 32, 97–101. doi: 10.11138/
FNeur/2017.32.2.097

Siller, N., Kuhle, J., Muthuraman, M., Barro, C., Uphaus, T., Groppa, S., et al.
(2019). Serum neurofilament light chain is a biomarker of acute and chronic
neuronal damage in early multiple sclerosis. Mult. Scler. J. 25, 678–686. doi:
10.1177/1352458518765666

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J.,
Johansen-Berg, H., et al. (2004). Advances in functional and structural MR
image analysis and implementation as FSL. NeuroImage 23(Suppl. 1), S208–
S219. doi: 10.1016/j.neuroimage.2004.07.051

Todea, R. A., Lu, P. J., Fartaria, M. J., Bonnier, G., Du Pasquier, R., Krueger, G.,
et al. (2020). Evolution of cortical and white matter lesion load in early-stage
multiple sclerosis: correlation with neuroaxonal damage and clinical changes.
Front. Neurol. 11:973. doi: 10.3389/fneur.2020.00973

Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M.,
et al. (2019). MRtrix3: a fast, flexible and open software framework for medical
image processing and visualisation. Neuroimage 202:116137. doi: 10.1016/j.
neuroimage.2019.116137

Frontiers in Neuroscience | www.frontiersin.org 9 April 2021 | Volume 15 | Article 647535

https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1097/00019052-200206000-00003
https://doi.org/10.1097/00019052-200206000-00003
https://doi.org/10.1093/brain/awy154
https://doi.org/10.1093/brain/awy154
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1002/acn3.638
https://doi.org/10.1002/acn3.638
https://doi.org/10.1016/j.neuroimage.2019.06.039
https://doi.org/10.1016/j.neuroimage.2019.06.039
https://doi.org/10.1109/42.906426
https://doi.org/10.1109/42.906426
https://doi.org/10.1016/j.neuroimage.2013.12.012
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
http://arxiv.org/abs/1802.04712
http://arxiv.org/abs/1802.04712
https://doi.org/10.1016/j.neuroimage.2014.12.009
https://doi.org/10.1016/j.neuroimage.2014.12.009
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2016.06.002
https://doi.org/10.1016/j.nicl.2020.102335
https://doi.org/10.3174/AJNR.A6484
https://doi.org/10.3174/AJNR.A6484
https://doi.org/10.1016/j.nicl.2020.102522
https://doi.org/10.1016/j.nicl.2020.102522
https://doi.org/10.1007/978-3-319-66179-7_76
https://doi.org/10.1016/j.neuroimage.2009.10.002
https://doi.org/10.1002/nbm.3998
https://doi.org/10.1016/j.neuroimage.2016.09.058
https://doi.org/10.1016/j.neuroimage.2016.09.058
https://doi.org/10.1016/j.neuroimage.2018.09.076
https://doi.org/10.1038/nrneurol.2015.106
https://doi.org/10.1016/j.neuroimage.2020.116807
https://doi.org/10.1016/j.neuroimage.2020.116807
https://doi.org/10.1002/mrm.25912
https://doi.org/10.1002/mrm.25912
https://doi.org/10.11138/FNeur/2017.32.2.097
https://doi.org/10.11138/FNeur/2017.32.2.097
https://doi.org/10.1177/1352458518765666
https://doi.org/10.1177/1352458518765666
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.3389/fneur.2020.00973
https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/10.1016/j.neuroimage.2019.116137
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-647535 March 29, 2021 Time: 15:59 # 10

Lu et al. GAMER-MRI and MS Diffusion Measures

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. arXiv [Preprint]. Available online at: http:
//arxiv.org/abs/1706.03762 (accessed June 30, 2019).

Wattjes, M. P., Rovira, À, Miller, D., Yousry, T. A., Sormani, M. P., De Stefano,
N., et al. (2015). Evidence-based guidelines: MAGNIMS consensus guidelines
on the use of MRI in multiple sclerosis - Establishing disease prognosis and
monitoring patients. Nat. Rev. Neurol. 11, 597–606. doi: 10.1038/nrneurol.2015.
157

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). “CBAM: convolutional block
attention module,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), eds
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss (Cham: Springer), 3–19.
doi: 10.1007/978-3-030-01234-2_1

Ye, Z., George, A., Wu, A. T., Niu, X., Lin, J., Adusumilli, G., et al. (2020). Deep
learning with diffusion basis spectrum imaging for classification of multiple
sclerosis lesions. Ann. Clin. Transl. Neurol. 7, 695–706. doi: 10.1002/acn3.
51037

Yoo, Y., Tang, L. Y. W., Brosch, T., Li, D. K. B., Kolind, S., Vavasour, I., et al. (2018).
Deep learning of joint myelin and T1w MRI features in normal-appearing brain
tissue to distinguish between multiple sclerosis patients and healthy controls.
NeuroImage Clin. 17, 169–178. doi: 10.1016/j.nicl.2017.10.015

You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016). “Image captioning with
semantic attention,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, doi: 10.1109/CVPR.
2016.503

Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., and Alexander, D. C. (2012).
NODDI: practical in vivo neurite orientation dispersion and density imaging of
the human brain. Neuroimage 61, 1000–1016. doi: 10.1016/j.neuroimage.2012.
03.072

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Lu, Barakovic, Weigel, Rahmanzadeh, Galbusera, Schiavi,
Daducci, La Rosa, Bach Cuadra, Sandkühler, Kuhle, Kappos, Cattin and Granziera.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 April 2021 | Volume 15 | Article 647535

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1038/nrneurol.2015.157
https://doi.org/10.1038/nrneurol.2015.157
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1002/acn3.51037
https://doi.org/10.1002/acn3.51037
https://doi.org/10.1016/j.nicl.2017.10.015
https://doi.org/10.1109/CVPR.2016.503
https://doi.org/10.1109/CVPR.2016.503
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1016/j.neuroimage.2012.03.072
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation
	Introduction
	Materials and Methods
	MRI Data
	GAMER-MRI
	Selection of Contrasts

	Results
	Lesion Classification
	Spearman's Correlation
	Correlation With EDSS
	Correlation With sNfL


	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


