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Traditionally, neuropsychological testing has assessed processing speed and precision,
closely related to the ability to perform high-order cognitive tasks. An individual making
a decision under time pressure must constantly rebalance its speed to action in order
to account for possible errors. A deficit in processing speed appears to be afrequent
disorder caused by cerebral damage — but it can be hard to pinpoint the exact cause
of the slowdown. It is therefore important to separate the perceptual-motor component
of processing speed from the decision-time component.We present a technique to
isolate Reaction Times (RTs): a short digital test to assess the decision-making abilities
of individuals by gauging their ability to balance between speed and precision. Our
hypothesis is that some subjects willaccelerate, and others slow down in the face
of the difficulty.This pilot study, conducted on 83 neurotypical adult volunteers, used
images stimuli. The test was designed to measure RTs and correctness.After learning
release gesture, the subjects were presented with three tasks: a simple Reaction
Time task, a Go/No-Go, and a complex Go/No-Go with 2 simultaneous Choices.
All three tasks have in common a perceptual component and a motor response. By
measuring the 3 reference points requiring attentional and executive processing, while
progressively increasing the conceptual complexity of the task, we were able to compare
the processing times for different tasks — thus calculating the deceleration specific to
the reaction time linked to difficulty. We defined the difficulty coefficient of a task as
being the ratio of the group average time of this task minus the base time/average time
of the unit task minus the base time.We found that RTs can be broken down into three
elementary, uncorrelated components: Reaction Time, Executive Speed, and Reaction
to Difficulty (RD). We hypothesized that RD reflects how the subject reacts to difficulty
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by accelerating (RD < 0) or decelerating (RD > 0). Thus we provide here a first proof
of concept: the ability to measure four axes of the speed-precision trade-off inherent
in a subject’s fundamental decision making: perceptual-motor speed, executive speed,
subject accuracy, and reaction to difficulty.

Keywords: digital test, attention, executive functions, decision making, software, psychomotor speed, reaction
time, categorization

INTRODUCTION

The goal of a clinical test is to observe a difference between
a normal condition and a pathological condition. To achieve
this, it is necessary to measure certain parameters, among which
the precision of the subject’s response (number and quality
of errors) and processing speed. Processing speed is measured
using Reaction Times (RTs). The reaction time to the onset of a
visual stimulus is a well-studied behavioral measure that presents
moment-to-moment fluctuations (Ribeiro et al., 2016). Speed and
precision are closely related to the ability to perform higher-order
cognitive tasks and encompass many components including
perceptual, cognitive and output speed (Kibby et al., 2019).

The reaction time (RT) is interesting in several respects.
It is a continuous measurement (without an arbitrary upper
limit) and is sensitive to small differences in performance
(Teng, 1990). Psychomotor slowing is also thought to be
linked to alteration in the subcortical-frontal loops, to a
frontal involvement (Kochunov et al., 2010), and to diffuse
white matter damage. Psychomotor slowing is a fundamental
symptom of neuropathological disorders; for example, in HIV
encephalopathy, psychomotor slowing is the only precursor sign
of dementia (Sacktor et al., 1996) and is the first symptom
to improve under treatment (Stankoff et al., 2001; Suarez
et al., 2001), suggesting that it may reflect neuroanatomical
damage.Psychomotor speed is also a measure that has been
reported to be significantly slower in psychiatric conditions such
as schizophrenia (Osborne et al., 2020). Studies focusing on
Attention Deficit/Hyperactivity Disorder (ADHD), for instance,
have shown that mean response times are significantly higher
than those of the control group, the difference being more
marked in a subgroup with a more executive profile. It therefore
seems necessary to examine these profiles by dissociating
the cognitive elements as far as possible (Nigg et al., 2005;
Willcutt et al., 2005). Another factor that seems to intervene in
psychomotor speed is motor speed. Neuropsychological testing
has traditionally assessed processing speed with paper-and-pencil
tests, but results may be confounded by motor speed especially
in older participants (Ebaid et al., 2017), as reaction times slow
down and become more variable with age (Der and Deary,
2006; Ebaid et al., 2017). It should also be taken into account
that psychomotor speed is a parameter that varies greatly from
one individual to another and that it also varies for the same
individual due to circadian variation (Gueugneau et al., 2017).It
appears important, therefore, to distinguish the perceptive-motor

Abbreviations: 1CRRT, 1-choice-releasing reaction time; 2CRRT, 2-choice-
releasing reaction time; ES, executive speed; RD, reaction to difficulty; Errors, total
errors.

part of processing speed, particularly with clinical populations
in whom deficits in motor performance are frequently observed
(i.e., in aging) (Der and Deary, 2006; Ebaid et al., 2017). However,
speed is not the only issue. The crucial question behind speed
measurement is that a change in speed may reflect an alteration
in cognitive functions, in particular decision-making processes
(Ernst and Paulus, 2005; Doya, 2008), in other words if there is
a “decision time.”

Decision-making is a fundamental adaptive process that
allows an individual to choose one option among several (Pittaras
et al., 2018; Cabeza et al., 2020), the goal being to choose the
most advantageous option in both the short and the medium
term. This neurobiological process brings into play several
cognitive, affective and motivational functions associated with
the activation of brain networks that rely on coordinated brain
structures, among which the prefrontal cortex, amygdala, insula,
and nucleus accumbens play critical roles (Volz et al., 2006;
Pittaras et al., 2016). It also depends on the context in which
the individuals find themselves and on their own needs and
internal feelings (Bechara et al., 2000). The influence of the
individual’s affective state on decision making has been explored
in particular by the theory of somatic markers (Bechara et al.,
1994) which suggested that, under uncertain circumstances,
second-level processing of the intact emotion system could
facilitate rational decision making in the long term (Damasio,
1994, 1996). Somatic markers and the environment influence
the speed of decision-making processes; it is therefore the
combination of the individual’s emotional, motivational and
cognitive state as well as the characteristics of the environment
that will allow the person to choose one option over another
more rapidly (Ernst and Paulus, 2005; Doya, 2008). These
abilities are sensitive to the environment and in particular to
lack of sleep (Rabat et al., 2016; Pittaras et al., 2018). Decision
making is therefore the result of a balance in which different
processes intervene. This balance constantly adjusts a system
to take errors into consideration. In sensorimotor activities
performed under time pressure, the action monitoring system
acts before, during, and after the action in order to take errors into
account (Vidal et al., 2020). Hence, attentional processes underlie
decision-making processes: being engaged in a cognitive task
triggers a general maintenance of vigilance/alertness in order to
achieve the fastest reaction time possible (Godefroy et al., 1999),
and stimulus presentation regularly attracts attention.Processing
speed is ecologically essential for adaptation to our environment.
A deficit in this function appears to be one of the most frequent
attentional disorders caused by cerebral damage (Godefroy et al.,
2018). It is important, therefore, to understand the mechanism
of slowness and in particular, to understand whether cognitive
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slowing is linked to motor slowing.Therefore, one way to observe
decision making is to measure the balance between time and
response accuracy and, as discussed above, since speed is broken
down into motor speed and cognitive speed, it would no doubt
be informative to explore decision making from a clinical
perspective in order to break down its component elements of
speed and precision.

Executive functions (EFs) refer to the top-down mental
processes needed when someone has to concentrate and pay
attention. There are three core EFs: inhibition (involving
being able to control one’s attention), working memory, and
cognitive flexibility (Diamond, 2013; Friedman and Miyake,
2017). Since the work by Crick (1984) in the mid-1980s,
attention has been described as a kind of spotlight that
can be controlled. Subsequently, Posner and Petersen (1990)
developed the theory of three networks of attention systems:
an alerting network, related to sustained vigilance, an orienting
network, and an executive network. Updating the model in
2012, Petersen and Posner introduced the notion of “self-
control,” namely the ability to control our thoughts, feelings,
and behavior, revealed in conflict tasks such as the Stroop task
(Petersen and Posner, 2012).

To assess the presence of dysfunction in executive
and attentional functions, neuropsychological tests and
questionnaires are used to specify the pathological profile
of cognitive functions. For example, focusing on ADHD,
Sonuga-Barke (2002) proposed a model which posits the
existence of multiple neurodevelopmental pathways, suggested
by the existence of patient subgroups showing different profiles
of neuropsychological dysfunctions. Most of these tests measure
the speed of the subject’s reaction and his/her accuracy, and
many experiments have proved that objects that better capture
attention are processed faster and with higher accuracy, and
that allocating attention to the target location speeds up the
reaction in probe detection tasks (Posner, 1980). Drawing
on these findings that attention enhances processing, models
to measure visual processing speed and the distribution of
attentional resources have been proposed (Tünnermann et al.,
2017).As a result, most neuropsychological clinical tests require
the subject to accomplish a task as fast as possible, or to perform
as many actions as possible in a limited amount of time.
However, tests are constrained by the duration of the task that
is being observed. It has been found that if a reaction time task
exceeds 2′30′′, then what is measured is not selective attention
but the effect of fatigue, and the intra individual variability in
response time increases with time-on-task (Tarantino et al.,
2013). Consequently, the duration of the test or the subtest is
important depending on what we are trying to measure, and if
we want to measure selective attention, the duration must be
short (i.e., around 2′30′′). The neuropsychological tests widely
used to measure these functions, (because they are sensitive
to a variety of neurological disorders) such as the STROOP
(Stroop, 1935) and the Trail Making Test (Reitan, 1992), focus
on measurements within the first 2 min, and use very few data
(2–3 speed data and 2–3 precision data). They therefore avoid
conditions of fatigue and yet manage with small amounts of data
to distinguish a normal condition from a pathological condition.

Among the factors that may influence RT, Sternberg (1966)
assumed that there must be an effect of task complexity on
processing speed. In the diffusion model, a prominent cognitive
process model of speeded two-choice decisions (Ratcliff and
McKoon, 2008), one of the main parameters, the drift rate, is
claimed to be related to the task difficulty and to individual
differences in the quality of information processing. It is therefore
reasonable to think that psychomotor slowing could be measured
in a decision-making task by making the choice more difficult
or complex.We will examine two ways of breaking down RTs:
the Godefroy process (Godefroy et al., 2010), and the diffusion
model (Ratcliff and McKoon, 2008).The former proposes that in
a simple reaction time task, four critical processes are involved:
(i) a perceptual process that determines the relevance of the
stimulus; (ii) a decision process that triggers a behavior (the
motor response); (iii) an action process; (iv) a central attentional
process. With the repeated reaction time curve observation
model, Godefroy et al. (2010) observed that slowing was mainly
linked to perceptual and motor processes and that it was only
after the age of 60 that attentional markers played a significant
role.In this descriptive model of RTs, the “perceptual and motor”
part is not independent of the others. The idea of removing the
perceptual-motor part by a subtraction is in fact contained in
the diffusion model (Ratcliff and McKoon, 2008). The diffusion
model provides a theoretical account of performance in speeded
two-choice tasks and has been successfully applied across a
wide range of paradigms. Fitting the ex-Gaussian function (for
a review, see Ratcliff and McKoon, 2008) to empirical RT
data provides estimates of three independent parameters: Mu
represents the mean of the normal component and mainly
reflects average performance; Sigma corresponds to thestandard
deviation of the Gaussian portion of the RT distribution and
indicates variability of performance; Tau corresponds to the
variability of the exponential function, associated with the
skewness of the tail of the RT distribution, and reflects extremes
in performance (Matzke and Wagenmakers, 2009).

As RTs are classically used as indices for measuring attentional
functions, it seems essential, in view of its variability, to
dissociate the various components of the RTs and separate
the perceptuomotor components of reaction times from their
attentional and executive components in order to better
understand what really generates slowing in pathologies.
By breaking RTs down into its different components, it
should be possible to highlight the underlying elements of
perceptuomotor decision-making, particularly attentional and
executive functions.

In order to detect and characterize attentional and executive
deficits and reaction to difficulty in mild cognitive impairments
in the scope of the perceptivo-motor decisional abilities, we
propose a new neurocognitive digital test named “MindPulse.”
The index used in our test reflects precision and psychomotor
slowing, determined by measuring RTs and errors in various
conditions of difficulty.In order to avoid cultural biases, the test
was developed from knowledge gained from animal cognition.
Many studies have shown categorical responses in different
species such as pigeons (Wright and Cumming, 1971), goldfish
(Poralla and Neumeyer, 2006) and macaques (Walsh et al., 1992).
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The conceptualization capacity of primates was explored by
Fabre-Thorpe (2003) in a go/no-go categorization task using
colored versus gray level photographs and with abstract concepts
such as ‘food objects’ or ‘animals.’ The earlier study by Thorpe
et al. (1996) was the first to give a direct estimate of the processing
time necessary to perform fast visual categorizations. In the study,
primates had to categorize stimuli based on whether they were
animals or not. It was found that their RTs were around 300 ms.
When the same task was conducted in humans, it was found
that RTs fell to less than 150 ms (Thorpe et al., 1996). The
authors also provided a precise description of the characteristics
and temporal evolution of visual categorization in the primate
brain and suggested that the processing of visual information
during the activation of abstract representations was analogous
in humans and monkeys (Fabre-Thorpe, 2011; Fize et al., 2011).
Taking into account the existence of these similarities, we used
general categorizations to primates (e.g.,white versus gray, and
animals versus object).

As mentioned above, RTs include not just visual processing but
also the decision process and the motor time. The minimum time
required to generate a “reaching command” in humans is 80–
100 ms (Kalaska and Crammond, 1992) and the necessary visual
processing mechanisms involved in the categorization tasks take
about 150 ms (Thorpe et al., 1996; VanRullen and Thorpe, 2001).
Teng (1990) introduced the idea of separating the cognitive and
the sensorimotor processes and subtracting the latter from the
total reaction time. However, the mathematical modeling of the
levels of complexity was not exploited. In the Trail Making
Test, there are two parts: part A consists in connecting numbers
in ascending order and part B consists in alternating numbers
and letters in numerical and alphabetical order. The B/A ratio
provides an index of executive function (Arbuthnott and Frank,
2000). However, when calculating the ratio, the motor and the
executive steps are considered to be proportional.

Here, our aim was to break down fundamental decision-
making processes into their attentional, executive and maybe
psychological components. We present a technique to isolate
Reaction Times (RTs): a short digital test to assess the decision-
making abilities of individuals by gauging their ability to adapt —
how they strike the balance between speed and precision —
relative to their perception of the complexity of the given task.
Their capacities of adaptation should lead some subjects to go
faster, while others slow down in the face of the difficulty. We
hypothesize that by superimposing three tasks using the same
visual presentation and the same motor response (varying only
the difficulty of the categorization to be carried out), we will
be able to break down the reaction time into more basic and
independent parts.

The projected output of the test was to provide an easy and fast
way to measure these different brain processes in any individual
regardless of his/her culture, language or reading ability.

In addition, the test requires the subject’s commitment to
action in order to control for motivational aspects. We used
a procedure mimicking that used in experimental psychology
in rodents (Brasted et al., 1998). In their study, the authors
developed a procedure to ensure the animal’s attention by
training the rat to sustain a nose poke for a variable period of

time until a brief unpredictable visual stimulus appeared in one
of the two side holes. Reaction time was then defined as the
latency to withdraw the nose from the center hole of a Skinner
box after onset of the light stimulus, and movement time was
defined by the latency to poke its nose through another hole.
Here, we used a similar procedure adapted to humans in order
to ensure attentional commitment of the subjects by asking them
to keep their finger pressed on the mouse until a stimulus of the
appropriate category appeared on the screen (see “Materials and
Methods” section).

MATERIALS AND METHODS

Underlying Principles of Test
Development
The MindPulse test is an original digital software protected by a
patent (Suarez et al., 2019). In this test, the subject is seated in
front of a computer screen that shows images to which he/she is
instructed to respond via a wired mice mouse. The test consists
of four parts of increasing complexity (see section “Description
of the Test” below) that the subject has first to learn (learning
phase) and then to perform (test phase). The test starts with
subjects first learning a “release action,” i.e., the subject clicks on
the mouse, maintains the pressure on the mouse button until a
stimulus is shown on the screen, and then releases his/her finger.
This procedure, borrowed from animal experiments, ensures the
subject’s engagement.

Stimuli are single images displayed in the center of the
screen on a white background. The images were designed to be
recognized and classified without cultural bias (see below). In
order to avoid effects due to stimulus repetition, the task uses a
wide variety of pictures that are seen only once in each part. The
strict identity in the perceptual part and the motor response in all
the tasks of the test is an essential principle of the MindPulse test.
Only the instructions and the rules to be applied are different.
An overview of the MindPulse timeline is presented in Figure 1.
The computer records reaction times and the quality of responses
(number and type of errors) for each trial.

Patient Information Requested
This pilot study was conducted as a “proof of concept” and
was not devoted to establishing standards. We recruited 83
neurotypical adult volunteers [19–45 years old, 63 women, 72
right-handed]. All the subjects declared that they had no neuro-
cognitive, neurological, or psychiatric medical history or neuro-
cognitive damage, no neuroactive treatment or drug intake in the
past 3 months, including sleeping medication, antidepressants
and anxiolytics, and no alcohol addiction. In addition, they
specified their native language, whether they were right- or
left-handed, and completed a questionnaire on their current
psychological state, the Hospital Anxiety and Depression scale
(HAD) (Zigmond and Snaith, 1983).

The subject’s name and birth date (month/year) were not
recorded but were typed in a password-like entry form on
the computer and instantly hashed into an anonymized unique
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identification code. The goal of this code was to match data for
subjects who did a retest a few days later.

Procedure
The experiment was conducted in a classroom at Paris-Saclay
University. Subjects were seated in front of the computer at a
distance of about 60 cm from the screen and were encouraged
to use their preferred hand. Experimenters ensured that the
instructions had been well understood. Three computers with a
wired mouse and with the MindPulse test software installed were
used in the experiment. To explore the retest effect, a subgroup of
28 subjects were retested the following day.

Data Collection
The test measures the reaction time equal to the latency in
clicking or releasing the mouse button after the image appears.
The precision is about 3 hundredths of a second [limitation set
by the screen refreshment time of 16 ms, by the mouse (about
10 ms for a wired mouse), and the OS: the time recording
software programmed by a professional software engineer is
in C-language, a compiled low-level language, usually taking
nanoseconds to execute]. The test also records for each stimulus
the white screen duration (time before the image appears drawn
by a semi-random constrained algorithm) and measures the
correctness (right or wrong) and type of response (not releasing
or releasing before or after the image appears) (See Figure 2).

Description of the Test
The test has four main parts (see Figure 1). In each part the
subject has to respond to an image appearing on the screen:

• Preliminary: learning the “releasing movement.”
• Simple Releasing Reaction Time Task (RRT): the subject has

to respond to any image.
• A Go/No-Go task with 1 Choice Releasing Reaction Time

(1CRRT): the subject has to respond only to images of a
prescribed color category, white or gray.
• And a complex Go/No-Go task with 2 simultaneous

Choices Releasing Reaction Time (2CRRT): the subject has
to respond only to images of two prescribed categories, i.e.,

color white or gray, and nature alive (animate) or not-alive
(inanimate).

In each task, the subject received instructions on the screen,
then performed the trials. In each trial, an image instructing the
subject to press the mouse appeared, then as soon as the mouse
button had been pressed, the screen turned blank for a random
amount of time (between 2 and 7 s called “waiting time”) during
which the subject had to maintain the pressure on the mouse.
After the waiting time, an image appeared, and the subject had
to release the mouse as fast as possible if the image satisfied the
go/no-go criteria. If the image did not satisfy the criteria, the
subject was asked to release the button after 3 s.

The 1-choice go/no-go category criterion was chosen at
random between color = white or color = gray, at the beginning
of the test. The 2-choice go/no-go category criterion was set
as the opposite color of the 1-choice task, plus an additional
category chosen at random between nature = animate or
nature = inanimate.

The images used in the test were chosen at random from an
image bank specially created for the test and carefully selected
so that any healthy individual in any country would be able to
classify them according to the animate/inanimate criterion (i.e.,
animals and objects were chosen to be without cultural bias).
The random algorithm ensured that no image could appear twice
(independently of its color) during a task. Two distinct image
banks were used for the learning and test phases.

The random waiting times before each image were selected
by a constrained random algorithm to ensure that waiting times
were in the range of 2–7 s, and well distributed among the color
and nature categories.

In the simple RRT task, the subject had to release the mouse
after the appearance of any image, whereas in the go/no-go tasks
the pressure on the mouse had to be released only if the image
satisfied 1 or 2 criteria.

Each of the three tasks, RRT, 1CRRT, and 2CRRT, was
preceded by a learning period with four trials. If the subject
made an error, the experimenter intervened to explain it. Subjects
who failed more than once out of the four training trials were
asked to repeat the four training trials once or twice. Subjects

FIGURE 1 | Subjects first learn the releasing gesture (subject is in front of the screen and responds with the mouse, the response is by releasing the mouse rather
than clicking) and then have 3 tasks, of increasing difficulty, each one preceded by a learning part (4 trials and 3/4 must be passed to proceed to the test part). The
first task consists in a “simple Releasing Reaction Task” (RRT) with 16 trials. The second is a one-choice Releasing Reaction Task (1CRRT) with 8 Go and 8 NoGo.
The third is a two-simultaneous Choices Releasing Reaction Task (2CRRT) with 8 Go and 8 NoGo.
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FIGURE 2 | Description of error subtypes. Anticipatory errors (subject releases pressure on the mouse button before the image appears); Omission errors (subject
does not release within 3 s after image presentation); Choice errors (subject responds to the wrong category).

who failed more than three series of four training sessions were
to be excluded. This never occurred in the current pilot study.
Subjects then accessed the test parts after successfully completing
the training session.

In each trial, the subject started by pressing the button of
the mouse on seeing the “clicking hand” image. Immediately
after clicking, the signal disappeared, and the screen turned
white. The latency before the appearance of the target image
was set according to a semi-random algorithm, between 2 and
7 s. After the target image appeared, the subject had 3 s to
respond. Each part of the task consisted of 16 successive trials.
No information was provided to the subjects as to whether
they passed or failed during this test phase. In the go/no-
go tasks, 8 images corresponded to the target, and 8 images
did not. Therefore in the absence of errors, there were 16
reaction times measured in the first task, 8 in the simple go/no-
go task and 8 in the 2-choice go/no-go task, amounting to
32 reaction time measures altogether. Errors were rare (90%
of subjects made at most 1 error). The presence of errors
could diminish the precision of the time measurement, but the
number of errors was considered to be inherently more useful
information about pathological conditions than the precision
of reaction time.

The Releasing Movement: AKey to Attentional
Engagement
The first task involved learning the gesture of clicking on the
mouse button at the signal and releasing it when an image

appeared. A “clicking hand” picture prompted the subject to
click on the computer mouse (see Figure 2). The experimenter
explained the instruction to the subject: “Keep your finger pressed
as long as the screen remains blank. Then release the mouse
button as quickly as possible when an image appears.” The subject
was invited to practice as many times as necessary.

The Releasing Reaction Time Task (RRT)
The Releasing Reaction Time Task (RRT) is a measurement of the
subject’s releasing reaction time. The subject has to disengage the
motor gesture when the target image appears. This task includes
a learning part, (4 trials and 3/4 had to be passed to proceed to the
test part) then a test part with 16 trials (see Figure 2). Behavioral
measures recorded Reaction Time; Time before the target image
appears; Anticipation Errors; and Omission Errors.

The 1CRRT (1-Choice Releasing Reaction Time) Is a
Go/NoGo Releasing Task
1CRRT provides a measurement of the subject’s reaction time
with one choice, and errors in the form of a Go/No-Go task. The
category is a color choice (the subject must release the mouse
button if the image is gray or white). The target category was
randomized between subjects.

Subjects were instructed to release the mouse button (Go
response) as quickly as possible when the picture was the target.
They had 3 s to perform a Go response after which any response
was considered as a no-go response. This task included a learning
part, (4 trials and 3/4 had to be passed to proceed to the test part)
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then a test part with 16 trials, 8 Go and 8 NoGo (see Figure 2).
The behavioral measures recorded were: Reaction Time; Time
before the target image appears; Anticipation Error; Omission
Error; Right or Wrong choice (button released when the image
was not the target category).

2CRRT (2-Choice Releasing Reaction Time) Is a
Complex Go/No-Go Releasing Task
In the 2CRRT task, the subject had to react (release) only
for stimuli corresponding simultaneously to the two required
categories. The color criterion was systematically reversed with
respect to the 1CRRT, which requires inhibiting the previously
relevant color. The second, new criterion corresponds to the
animate/inanimate nature of the picture stimuli. The selection
of the relevant criterion for this new category was random.
The 2CRRT included a learning part (4 trials and 3/4 had to
be passed to proceed to the test part), while the 2CRRT Test
part comprised 16 trials, 8 Go and 8 NoGo (see Figure 2). The
behavioral measures scored were: Reaction Time; Time before
the target image appears; Anticipation Error; Omission Error;
Right or Wrong choice and details about the kind of wrong choice
errors (Figure 2).

Code
The test used to collect data was a research prototype (named
TIREX) developed in Python by a professional software engineer,
running on a MacbookPro computer. The prototype was usable
exclusively on the researchers’ computers and was not subjected
to an operating license. The data were then processed using the
Python, scipy.stats, sklearn, statsmodels, matplotlib, seaborn, and
Pandas libraries, which are standard libraries in data science.

A patent of the test has been filed (Suarez et al., 2019).
The prototype was developed for a dedicated computer, and
sources are available for reviewers. The authors cannot be held
responsible for environment compatibility on another computer
than the one for which it was developed.

The TIREX prototype was not developed for scalability, but
clinicians can have access to the upgraded version (subject to
license and patent) which performs identical measurement tasks,
with an improved design, ergonomics, precision, portability to
other systems, and user interface, making the learning phase
autonomous (not requiring the researcher’s explanations and
supervision). The upgraded version was named MindPulse.

DATA ANALYSIS PROGRAM

The test produces 16 + 8 + 8 reaction times per subject, plus
other data amounting to a total of 144 data per subject. Each
subject accomplishes 3× 16 tasks, for which we recorded 3 items:
the reaction time, the correctness of the response, and the type of
response (release or no release, after or before the image appears).

We first extracted the list of error-free reaction times. We
calculated a mean of each individual’s RT. The RT variation
index (standard deviation) is very sensitive to extreme values
and its reliability is low for individual RT measurements (Brewer
and Smith, 1984). Nevertheless, it is an interesting measure

which reflects fluctuations in attentional and executive control
as well as impairments in information processing and, in
particular, a dysfunction related with a failure to maintain
attentional control (Haynes et al., 2017). It is greater among
children with Attention-Deficit/Hyperactivity Disorder than
among typically developing controls. It also appears to be
characteristic of other populations, including autism spectrum
disorders, schizophrenia, and traumatic brain injury, and has
been commonly observed in the elderly (Tamm et al., 2012;
Graveson et al., 2016; Haynes et al., 2017). As this is a proof
of concept of a test and not of clinical trials, we will only show
our measures of variability, the objective then being to carry out
standards of these measures in order to be able to observe the
variations. in pathological conditions.

Measures: Methods and Concepts
Primary Measurements
Our primary measurements were the following:

RRT: average reaction time over the first task (no choice),
calculated only on valid responses (maximum 16). 1CRRT:
average reaction time over the second task (1-choice go/no-go),
calculated only on valid responses (maximum 8). 2CRRT: average
reaction time over the third task (2-choice go/no-go), calculated
only on valid responses (maximum 8).Having less than maximum
number of response times is rare in normal subjects. Moreover in
view of developing a clinical test, evaluating a balance between
rapidity and precision, we consider that subjects with several
errors will be evaluated in a balance between the number of
errors and rapidity.

The Difficulty Scale
Our aim was to extract information about decision time from the
participant data. The idea was to first subtract for each subject the
mean RRT from the choice RRTs, assuming that the subtraction
gives an executive component of the response, and then compare
the reaction times for tasks of different levels of difficulty, by
establishing a “difficulty scale.”

We considered that the RRT plays the role of a baseline
(perceptivo-motor part of the response) and the remaining
part is interpreted as the executive part, and is proportional
to the difficulty of the task. This construct is in agreement
with fundamental neuroscience theory of reaction time. In
particular in the diffusion model (Ratcliff and McKoon, 2008),
one parameter is a baseline (the non-decisional time) and another
one is the drift (time scale related to the difficulty of the task),
and in this theoretical model, after subtracting the baseline
and keeping all parameters equal, the time distributions are
proportional to the inverse of the drift parameter). Therefore, we
proceeded as follows:

We defined the ChoiceReactionTimes with baseline subtracted
(averages for a subject):

1CRRT′ = 1CRRT−RRT

2CRRT′ = 2CRRT−RRT
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The statistical distributions of 1CRRT′ and 2CRRT′ were of
course different with different averages and standard deviations.
We then multiplicatively rescaled the 2CRRT′ by a coefficient
which brings its group average to the same value as that of
1CRRT′. We defined Coef as the ratio of group averages of
2CRRT′ by 1CRRT′:

Coef = groupaverage(2CRRT′)/groupaverage(1CRRT)

The value found in our subject data was Coef = 1.59 (95%
confidence interval = [1.29, 1.76).We named this coefficient the
“Difficulty Coefficient.” It introduces a notion of difficulty scale
(Figures 3A,B).

We then defined 2CRRT′′ = 2CRRT′/Coef, as a rescaled 2-
Choice-executive time on the same scale as that of the 1-Choice
1CRRT′.

2CRRT′′ = 2CRRT′/Coef = (2CRRT − RRT)/Coef

Our hypothesis was confirmed by the fact that not only
the average values of 2CRRT′′ and 1CRRT′ become equal
(Figure 3B) but the standard deviations also become equal and
the whole distribution over the 83 subjects is the same [the
Kolmogorov–Smirnov test gave d = 0.12, p = 0.59 against the
hypothesis of different distributions (Figure 4)]. Our findings
can be interpreted as a confirmation of the agreement with the
diffusion model hypothesis that the difficulty corresponds to a
scaling parameter.

Secondary Measures
From the primary measures and using this difficulty coefficient,
we defined secondary measures:

We defined the “Executive Speed” (ES): average executive time
was obtained by subtracting the 0-Choice RRT from both the 1-
Choice RRT (1CRRT) and the 2-Choice RRT (2CRRT) in order
to subtract the perceptual-motor part, and then rescaling 2CRRT′
using the formula:

ES = ( 1CRRT′ + 2CRRT′′)/2

The statistical distribution of ES (see Figure 5 for the
distribution) was as expected identical ‘(not statistically
distinguishable) from that of 2CRRT′′ or 1CRRT′ (KStest
ES/1CRRT′: d = 0.096, p = 0.83, KStest ES/2CRRT′′: d = 0.108,
p = 0.71).

We also recorded information about how the subject reacted
to difficulty. We defined:

1 = (2CRRT′′ − 1CRRT′)/2

In consequence, ES and 1 represent the same information as
1CRRT′ and 2CRRT′′ but rotated by 45◦.

Subjects with 1 < 0 accelerated when the difficulty increased
(in fact they slowed down less than average), whereas subjects
with 1 > 0 slowed down more than average. This measure was
therefore a good index of the reaction to difficulty.

Reaction to Difficulty (RD): As such, the residue 1 was
not homoscedastic (see Figure 6A). Statistically speaking, it

depended on the values of ES, as subjects with a higher ES
also had a larger 1 (slope of variance = 24.80, r-value = 0.470,
p-value = 7.36e-06). By dividing by ES we defined the following
index

RD = 1/ES

The RD index was homoscedastic and its standard deviation
was independent (slope of variance = 0, r-value = 0.068,
p-value = 0.539 NS) of ES (see Figure 6B).

RD had a centered Gaussian distribution (σ = 0.208, KS:
d = 0.0616; p = 0.891) as illustrated on Figure 6C.

Standard Deviations (StD)
Standard deviations were calculated as they are used in
clinical evaluations. The standard deviations of the reaction
times (TRS, TR1C, and TR2C) of one subject reflected the
dispersion of the subject’s responses. For RTT, mean = 50.918;
median = 50.739; StD = 22.175. For 1CRRT, mean = 102.254;
Median = 88.924; Std = 49.776. For 2CRRT mean = 109.635;
median = 88.548; Std = 65.129.

Changing the Measurement of the
Perceptivo-Motor Reaction Time Part
Godefroy et al. (1999) suggested that a way of measuring the
perceptual-motor reaction time is to measure the minimum
response time rather than the average RT. We thus studied
the distribution of minimum RRT and considered redefining
our difficulty scale by subtracting the minimum RRT instead
of the average RRT, from the average 1CRRT and 2CRRT
before computing the coefficient that would align the means.
Not surprisingly, these 2 RRT scores were correlated [Pearson
corr (meanRRT, minimumRRT), r = 0.68, p = 6e-6]. We found
that the difficulty coefficient was about 1.44 and that the
distributions of (1CRRT-RRTmin) and (2CRRT-RRTmin)/1.44
were not significantly different (p = 0.71). The benefit of one
method compared to the other is not clear, and the study should
be pursued with larger numbers of subjects.

Error Types
We defined several types of errors: anticipatory errors, omission
errors and choice errors (Cf. Figure 2). However, as errors
were rather rare in our healthy population, we calculated the
total of all errors in the three test parts named “Errors.”
Errors = Anticipatory error + Omission errors + Choice errors.
Error mean = 1.31, Error median = 1; Error Std = 1.46. See
Figure 7, for the statistical distribution of Errors. This distinction
may prove to be interesting in clinical populations.

Re-test
The re-test effect was observed in a subgroup of 28 subjects with
the test conducted in the same conditions 24 h later.
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FIGURE 3 | Difficulty scale for reaction times.(A) Arbitrary x-axis positions. The x-axis represents the 3 tasks, and the y-axis the reaction times (in ms). Each line with
3 points represents the reaction times of a subject, and the thick lines represent the average and 1std lines of the 83 subjects. Without a notion of difficulty scale,
one could represent arbitrarily the 3 tasks at positions 1,2,3 on the x-axis, as shown in (A).(B) Difficulty scale x-axis positions. In (B) we represent the 3 tasks,
respectively, at positions 0, 1, 1.592, which makes the averages aligned. In other words, we consider that the 0 Choice task has difficulty 0, the 1 Choice task serves
as a unit and is at position 1, and the 2 Choices task is 1.592 times more difficult than the 1 Choice task. The average values of 2CRRT′ ′ and 1CRRT′ become equal.

FIGURE 4 | Superposition of distributions of 1CRRT′ and 2CRRT′. After re-scaling 2CRRT for difficulty, the 2 distributions 1CRRT′ and 2CRRT′are superposed. KS,
d = 012, p = 0.59.The standard deviations also become equal and the whole distribution over the 83 subjects is the same (the Kolmogorov–Smirnov test gave
d = 0.12, p = 0.59 against the hypothesis of different distributions). Our findings can be interpreted as a confirmation that the difficulty corresponds to a scaling
parameter. (A) Distribution of 1CRRT′ and 2CRRT′ ′ are superposed. (B) View of the cumulative distribution of 1CRRT′ and 2CRRT′ ′.

RESULTS: EXAMPLES OF USE AND
LIMITATIONS

General Results
Our method is based on the notion of increasing the
TR linked to the difficulty, allowing us to calculate a
difference between the “choiceReactionTimes” and RRT

(Tables 1, 2). 100% of the subjects in this study had a
positive difference.

Distributions
The distributions of reaction times, RRT, 1CRRT, 2CRRT,
1CRRT′, 2CRRT′′, and ES can be fitted by Gaussian Normal
distributions. ES Gaussian fit (µ = 195.09, σ = 84.46, KS d = 0.081,
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FIGURE 5 | Distributions of RRT and ET and ex-Gaussian fit.It is usual to fit reaction times with ex-Gaussian distribution. 3 ex-Gaussian parameters are considered:
mu is the location (close to the center), sigma represents the width, and tau represents the length of the exponential tail. The quality of the fit is assessed by
Kolmogorov-Smirnov test (KS), the smaller d (higher p), the better fit. Here, the fit is extremely good. (A) Histogram of RRT and fit ex-Gaussian. (B) Histogram of ES
and fit ex-Gaussian.

FIGURE 6 | Observing homoscedasticity of RD. (A) It is visible on figure that the variance of Delta grows with ES (slope of variance = 24.80, r-value = 0.470,
p-value = 7.36e-06), meaning that Delta is not homoscedatic. (B) Represents RD = Delta/ES, which is homoscedatic (assessed by the fact that the square of RD is
not correlated to ES significantly p > 0.05). (C) Is the distribution of RD fitted by Gaussian.

TABLE 1 | Distribution of our sample.

Total Male Female

N 83 20 63

Age 19–45 (29,3) Avg. = 31.4,
std = 9.7,

median = 31.5

Avg = 28.7, std = 7.9,
median = 26.0

Laterality Left (13.25%) 3 8

Right (86.75%) 17 55

p = 0.61). RRT Gaussian fit (µ = 305.802, σ = 51.228, KS d = 0.060,
p = 0.90). However, we preferred to fit them by ex-Gaussian

distributions, which are more commonly used in the field
(Table 3).

An even better fit would be with the diffusion model (Ratcliff
and McKoon, 2008), but that depends on 7 parameters, and
requires much more data that are often not accessible in practice.

Correlations
Pearson’s correlations: We observed that RRT, 1CRRT, and
2CRRT were correlated, corr (RRT, 1CRRT r = 047, p = 9.1e-06);
corr (RRT, 2CRRT r = 0.29, p = 0.0072); corr (1CRRT, 2CRRT
r = 0.59, p = 3.1e-09). We recall that we acknowledged that
they are composite, and that we can break them down into their
elementary components, RRT, ES, and RD. This decomposition
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TABLE 2 | General results.

Mean Std 95% confidence interval

RRT 309.56 48.02 298.95− 320.18

1CRRT 513.81 105.56 490.47− 537.15

2CRTT 634.71 162.59 598.77− 670.64

1CRRT′ 204.24 93.45 183.59− 224.90

2CRRT′ 325.14 155.47 290.78− 359.50

2CRTT′ ′ 204.25 97.66 182.66− 225.83

ES 204.24 83.89 185.70− 222.79

Delta 0.00 45.80 −10.12 − 10.12

RD 0.01 0.20 −0.04 − 0.05

TABLE 3 | Ex-Gaussian fits of the distribution.

Mu Sigma Tau KS-test p

RRT 264.41 33.01 46.39 97.32%

1CRRT 400.22 57.25 119.23 91.13%

2CRTT 494.37 81.46 131.52 KS-test p = 96.68%

1CRRT′ 121.48 66.88 82.71 KS-test p = 92.71%

2CRTT′ 175.29 50.34 147.00 93.84%

2CRTT′ ′ 110.12 31.62 92.34 93.84%

ES mu = 124.25 53.51 80.13 96.94%

Fit Gaussian

Delta 0.00 38.6 88.3%

RD −0.01 0.21 89.1%

FIGURE 7 | Distribution of erors.Statistical distribution of numbers of errors
could not be fitted by a normal law, because it was bounded on the left by the
minimal value 0, and by the fact that 0 was the most probable value (in healthy
subjects). It would be natural to think that it could be fitted by exponential law
(Poisson distribution) but the amount of errors in our data was not sufficient to
draw this conclusion.

was confirmed by the fact that RRT, ES, and RD were indeed not
correlated (p > 0.05).

ES was not correlated to RRT, but it was logically correlated
with 1CRRT and 2CRRT, corr (ES, 1CRRT r = 0.77; p = 9.3e-18);
corr (ES, 2CRRT r = 0.85, p = 7.1e-24).

The volunteers filled out the HADS anxiety and depression
self-questionnaire (we recall that our criteria excluded

FIGURE 8 | Correlation RD vs.depression.Reaction to dfficulty (RD) is
correlated to depression score of the Hospital Anxiety and Depression Scale
(HADS).

FIGURE 9 | Regression ES vs.error.Executive speed and error are correlated.
Linear relation between executive speed and errors.Pearson coefficient of
regression (ES, Errors r = 0.264 p = 0.016).

diagnosed depression). Scoring for anxiety and depression
was not correlated.

Very interestingly, we observed that RD was correlated to
the Depression part of HADS responses corr (RD, Depression
r = 0.28,p = 0.0091). RD was not correlated with the reaction
time scores (nor with RRT, 1CRRT, 2CRRT, and ES) nor with
Error (Figure 8).

As expected, ES was correlated to 1CRRT and 2CRRT, corr.
(ES, 1CRRT) r = 0.77, p = 9.3e-18; corr (ES, 2CRRT) r = 0.85,
p = 7.1e-24 and ES was not correlated to RD nor to the HADS and
its 2 subscores, depression and anxiety. However, we observed
that there was a linear correlation between ES and Errors (the
number of errors) (Figure 9). There was not a linear regression
between Errors and RRT (Pearson: r =−0.174, p = 0.12).

No correlation with age was found in this study, but this could
be due to the homogeneous age range of our sample and would
need to be investigated further.
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Test Consistency and Reliability
High Level of Internal Consistency
Convergent and divergent internal correlation method
We observed very strong internal consistency (across items)
assessed by the convergent and divergent internal correlation
method. Our model assumes that RRT, 1CRRT, and 2CRRT all
contained a “RRT part.” Thus, RRT was, as expected, strongly
correlated with 1CRRT and 2CRRT, Pearson corr (RRT, 1CRRT
r = 047, p = 9.1e-06); corr (RRT, 2CRRT r = 0.29, p = 0.0072); corr
(1CRRT,2CRRT r = 0.59, p = 3.1e-09).

Divergent internal correlations: separation of RRT and ES was
confirmed while RRT and ES were not correlated with each other.
Separation of the RD coefficient was confirmed while RD was not
correlated to RRT nor to ES.

Validity of construct
RRT, 1CRRT, and 2CRRT had different means, confirming the
pattern of the increase in reaction time with increasing difficulty
of the response. KW test (RRT, 1CRRT, 2CRRT, s = 171.32,
p = 0.00627).

Single-administration test score reliability: Cronbach’s alpha
Single-administration test score reliability – Cronbach’s alpha
(Tau-equivalent reliability) are all at very good levels of
reliability > 0.9. RRT: Cronbach Alpha RRT = 0.9147;
1CRRT = 0.9083; 2CRRT = 0.9551.

Reliability (Test and Re-test Reliability)
We tested the evolution between day zero and day 1 (the
following day) in a subgroup of 28 subjects.

Re-test reliability can mean that the measurements would
be identical the second time (assessed by a paired comparison
of means). However, this almost never occurred in the RT
tests found in the literature: all have a retest effect usually
described as a notion of “novelty.” Another assessment of
reliability is whether the values the second time are correlated
to the values the first time. From our data (see Figure 10),
we found that Test and next-day-Retest reliability was good
for RRT, Spearman correlation of ranks are: corr(RRT0,RRT1,
r = 0.72, p = 0.00%) Figure 10A; corr(1CRRT0,1CRRT1,
r = 0.63, p = 0.02%) Figure 10B;corr(2CRRT0,2CRRT1, r = 0.42,
p = 2.51%) Figure 10C; corr(ES0,ES1, r = 0.53, p = 0.31%)
Figure 10D; corr(Error0,Error1, r = 0.13, p = 51.68%).

Most RT tests in the literature have r in the range 0.5–0.8.
Correlation for number of errors was not significant, but this

could simply be related to the fact that few errors were produced
by our healthy subjects.

Yet another assessment of test-retest reliability is by ANOVA
Intra Class Correlation (ICC), by taking the ratio of intra-class
variance to total variance. r = 1 would mean perfect reliability,
and r = 0 would mean no reliability. Most RT tests in the literature
have r in the range 0.5–0.8.

ICC ANOVA: percentage of the total variance due to
IntraClass (i.e., not from test/retest Inter-Classes): RRT:
ICC = 98.5%, 1CRRT ICC = 98.8%, 2CRRT ICC = 97%.

Very interestingly, 1 (Figure 10E) and the difficulty reaction
score was not correlated on re-test: corr(RD0,RD1, r = −0.30,

p = 10.83%); (Figure 10F). The subjects did not react in the same
way to the difficulty.

Unsurprisingly, the subjects remained in the same areas
of TR (the mean of T + 1 days is in the area of the
standard error of the first pass). Nonetheless, we observed a
tendency to go a little faster in the most demanding tasks
(with categorization). This effect was only observable on the
executive time part (ES) and not in the perceptivo-motor time
part (RRT). As RRT is contained in 1CRRT and 2CRRT, the
effect was not observable, but it appeared specifically when we
subtracted the RRT part, in the ES. Kruskal–Wallis (RRT0,RRT1,
k = 2.90, p = 8.86%) (Figure 11A); (1CRRT0,1CRRT1, k = 0.32,
p = 57.03%) (Figure 11B); (2CRRT0,2CRRT1, k = 1.73,
p = 18.88%) (Figure 11C); (Error0,Error1, k = 0.55, p = 45.65%)
(Figure 11D); (ES0,ES1, k = 3.40, p = 6.54%) (Figure 11E),
(RD0,RD1, k = 0.00, p = 96.90%) (Figure 11F); this was a very
interesting result which suggests that the retest effect was linked
to the decision time (reflecting executive process), and not to the
perceptual-motor time.

In Figure 11 we plotted the distributions of reaction times
for test and retest, and in Figure 12 we plotted the distribution
of the difference.

Consideration About Alternative Methods
Testing the methods of Godefroy et al. (1999), i.e., taking as
a baseline (that we subtracted from the choice reaction times)
the minimum RRT = minRRT, instead of mean RRT, we looked
for the method that would provide the best test–retest stability
for an individual. We tested Pearson correlations of min day0
and min day1 and found: corr (minRRT0, minRRT1, r = 0.51,
p = 0.0014); corr (min1CRRT0, min1CRRT1, r = 0.47, p = 0.0037),
corr (min2CRRT0, min 2CRRT1, r = 0.7, p = 2.5e-06). This
method showed correct test-retest stability but was not better
than our method (by subtracting the average from the RRT). We
therefore kept the method of removing the mean or the median
rather than the minimum RRT obtained. It will be interesting
to pursue investigation on these questions in the future. It is
noticeable, however, that removing the average removed some of
the attentional functions contained in the variability of the RRT.
Since we subtracted the RRT from the go/no-go tasks RT, this did
not affect the measures of ES or RD.

DISCUSSION

Objectives
Our goal was to present our technique to dissociate RTs in
order to provide clinicians around the world with a short
digital test to assess decision-making skills and disabilities by
taking into account the particularities of the subject’s reaction
following his/her own perception of the complexity of the
task. We hypothesized that depending on their capacities of
adaptation, individuals will play on both speed and precision,
with some subjects going faster while others slow down when
facing difficulty. Finally, the ultimate goal was to observe the
balance governing the speed-precision compromise that each
individual achieves.
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FIGURE 10 | Plotsshowing the test-retest effects. The slope of the linear regression asserts the Pearson r-coefficient. The correlation is significative for (A) RRT,
(B) 1CRRT, (C) 2CRRT, (D) ES, and not for (E) Delta and (F) RD. An ideal test would have r = 1 (regression line parallel to the diagonal), but this never happens in
any reaction time tests.

FIGURE 11 | Comparison of medians for re-tests effects on (A) RRT, (B) 1CRRT, (C) 2CRRT, (D) Errors, (E) ES, and (F) RD. Kruskal-Wallis test asserts that medians
are not significantly different.
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FIGURE 12 | Distributions of differences re-test–test.

We can summarize our method as follows: By taking three
reference points requiring attentional and executive processing
of different complexity we introduced a method for comparing
the reaction times of different tasks, making it possible to
calculate the deceleration specific to the reaction time linked
to complexity. On a set of healthy subjects, we defined the
difficulty coefficient of a task as being the ratio of the average
time of this task minus the base time/average time of the unit
task minus the base time. As we know that a subject’s motor
response undergoes large individual variations (Gueugneau et al.,
2017), it seemed important to distinguish the component linked
to attentional and executive processes from that associated to
perceptual-motor latency. We found that RT was composed of
3 more elementary uncorrelated components. We hypothesized
that the first part RRT, not linked to the difficulty of the task,
reflects the perceptivo-motor component, that ES reflects the
ES, and RD reflects how the subject reacts to difficulty by
accelerating (RD < 0) or decelerating (RD > 0). Recording
the number of errors and their type also gives a picture of
precision of the subject’s response. The objective was to capture
the balance between speed and precision in perceptual-motor
decision-making. Ecologically, it is an essential issue as it allows
adaptation to a potentially changing environment (Godefroy
et al., 2018). In addition, it is a unique index of a subject’s reaction
to the perception of the difficulty of a given task.

Two New Indices of Brain Function
Executive Speed
The need to process reaction time to extract executive
components from perceptual-motor components comes from
the known between-subject and within-subject variability in
psychomotor speed. This variability is linked to a natural
variation of the perceptual-motor part of processing speed in
aging (Ebaid et al., 2017) and because execution parameters,
motor planning mechanisms are modulated during the day
(Moore, 1997; Gueugneau et al., 2017). Since between-subjects

perceptual-motor times are less fluctuating than decision time,
reaction time is more the reflection of the time needed to
decide (Noorani, 2014). As a consequence, RTs measurements
need to separate perceptual-motor and execution time, to better
understand the origin of the variations in a given subject, in
particular if a pathology is suspected.

Our model takes this variation into account by providing for
each subject his/her own initial baseline regarding perceptual-
motor time. However, calculating a simple ratio, as is the case
for Trail Making Tests [i.e., an index of executive function
is provided by the B/A ratio (Arbuthnott and Frank, 2000)],
assumes that there is a proportionality between the executive
time and the perceptual-motor time. In our paradigm, we
wanted to observe executive time by clearly separating it from
perceptual-motor time. Moreover, if we want to go further
in the observation of the fundamental elements of executive
functioning, it is necessary to be able to acquire more data and,
in particular, to have at least three levels of RT measurements, all
of them with comparable movement time. Calculating the second
derivative makes it possible to extract from these 3-reaction time
measures the Reaction to Difficulty, which is a new measure
of brain function.

Our approach was a little different from that of Godefroy et al.
(2010), while adopting the same reasoning of the separation of
the perceptual-motor part of the slowing from an attentional
part. Godefroy and his team argued that the time of action
depends heavily on motor and perceptual processes; attention
is considered to be an extension of the peak and right tail of
the RT distribution. They assessed the “generalized slowing”
(the extra time taken to perform a dual-task compared to a
single reaction time task) by taking the ratio of the dual-taskRT,
which amounts to taking the single taskRT as a baseline. In
our study we also consider the RRT as the baseline perceptual-
motor part and we take the executive part as the difference with
the baseline rather than the ratio. Taking the difference rather
than the ratio has the advantage of producing an index that
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is decorrelated from the simple RT, whereas the ratio remains
correlated to simple RT.

Our study is compatible with the diffusion model (Ratcliff and
McKoon, 2008) (a fundamental model for describing reaction
times). One of the parameters of the diffusion model amounts
to subtracting a baseline time (the non-decision-time) to RT
and considers that the remaining part is proportional to a drift
parameter linked to the difficulty of the task (its perception by
the subject). This is precisely what we do in our approach and
confirm in our data.

The only difference between the 1-Choice-reaction time and
the 2-Choice-reaction time is the difficulty of the task, and we
find that the RT distributions are proportional. This is what is
predicted by the diffusion model if we assume that the only
parameter that changes between the 2 tasks is the drift parameter.
Our approach, consisting in increasing the difficulty of the task
while keeping everything else constant, can be viewed as a way of
measuring the drift parameter of the subject. Our coefficient of
difficulty can be interpreted as the measure of the drift parameter
of the 2-Choice-task, in units of the 1-Choice-task. It seems
important to explore this idea further in larger studies.

Other important parameters to take into account are the
temporal course of the signal and the subject’s inhibitory abilities.
Inhibition is a fundamental cognitive function involved in every
organized cognitive behavior (Bari and Robbins, 2013). A model-
based approach (Mulder and Van Maanen, 2013) provides a
subtle explanation of how the underlying dynamics of the
decision process might give rise to these various effects. The
validity of the attentional cue affects the decision-making process,
but the temporal proximity of a cue might interfere with general
processing of a subsequently presented target stimulus (Mulder
and Van Maanen, 2013). Therefore, in the speed/accuracy
compromise, the subject’s inhibitory abilities come into play.
Choice RT paradigms integrate information in a gradual process
with at least one stimulus-related level and one response-
related level made of information accumulators: a given response
is emitted as soon as one accumulator reaches a predefined
threshold. Therefore, RT is a function of the “time” necessary
to reach this threshold. When only one response is correct, the
possible responses are in competition to reach the threshold first.
Burle et al. (2004) demonstrated that the activation of the motor
structures involved in a required motor response is accompanied
by the inhibition of structures involved in alternative responses
and that inhibiting incorrect responses shares some mechanisms
with the need to withhold a response.

Reaction to Difficulty Quantification
Our method allowed us to define two new indices of brain
functions: ES (which is the executive time dedicated to selecting
the correct answer) and Reaction to Difficulty.

We show here that Reaction to Difficulty (RD) is correlated
with the Hospital Anxiety and Depression scale, HAD (Zigmond
and Snaith, 1983), and more precisely with its “Depression”
component but not with its “Anxiety” component. This result
suggests a relationship between our new index of brain function,
Reaction to Difficulty, and the subject’s emotional state.

Very interestingly, while the test and retest consistency of
RTs was excellent, the RD score was not correlated between test

and retest. This observation reinforces the hypothesis of a link
between RD and the subject’s emotional state. Indeed, subjects
may react differently on the second day as compared to the
first day. Some participants reacted by taking a little less time
in the most complex part of the test whereas others took a
little more time. This suggests that the former benefited from
a learning process (and felt more confident) while the latter
anticipated difficulty (and became more cautious). This result
is consistent with studies showing a link between emotion and
reaction time. Emotions modify response times in the initiation
of motor actions and emotional states influence the speed with
which goal directed movements are initiated (Beatty et al., 2016).

We previously showed that in healthy subjects there were
specific and different patterns of activation associated with
different levels of performance in a decision-making and
planning task (Cazalis et al., 2003). These data evidenced that,
beside behavioral outcome, healthy subjects react to task difficulty
by mobilizing distinct neural networks. In this previous work
there were higher and lower performers who mobilized distinct
neural networks. In the work presented here, we raised the
question of similar or different neural networks that a person
mobilizes according to his/her way of coping with higher
levels of difficulty.

Our most fundamental result is the observation that the
measures of cognitive processing of single categorization on
the one hand and double categorization on the other hand
show a similar statistical distribution, after rescaling double
categorization via a coefficient of difficulty. This raises many
questions about brain functions and cognitive processes and will
require specific research in the future. We hypothesize that the
2 similar distributions [1CRRT-RRT and (2CRRT-RRT)/Coef],
with ES being the average of the 2, are undertaken by the
same neural networks and that the reaction to the difficulty is
supported by another network, in interaction with the first one.

The processing of speed and response variability is very
well illustrated in ADHD, for which it is one of the best
predictors of emotional lability (Kuntsi et al., 2010). Indeed, the
link between emotional lability and neuropsychological variables
(most strongly by processing speed and response variability) in
ADHD patients cannot be explained by cognitive or motivational
deficits (Banaschewski et al., 2012). Therefore, by breaking down
the speed process (i.e., psychomotor slowing) into elementary
processes (perceptual-motor reaction time, ES, and Reaction to
Difficulty, which is itself correlated to emotional processes as seen
in the depressive questionnaire), the MindPulse test could be
expected to provide meaningful information for this pathology.

The Balance Between the Response
Speed and Its Accuracy
We observed that there is a linear relation between ES and Errors,
thus providing support for the idea that selective attention is the
result of a balance between speed and precision which may be
continuously readjusted according to experience. The fact that
Errors are correlated to ES confirms this interpretation. On the
other hand, we observed no relationship between the RRT and
Errors, thus reinforcing the idea that the attentional component
of the task is indeed contained in ES and mostly excluded from
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RRT. This very important result will have to be reproduced
for confirmation and/or completed with a larger number of
subjects. Another question that it will obviously be important to
raise is how the speed-precision balance breaks down for each
type of error. In particular, it would be important to establish
whether the same mechanism applies for anticipation, omission,
or choice errors.

In our test, we can observe the average balance reached
by a person, taking into account his/her speed, precision,
errors (which influence an adjustment of the subject) and
his/her reaction to difficulty. The notion of reaction to difficulty
raises the question of whether it refers to the system of
permanent adjustment to errors described by Vidal et al.
(2020), or if it is an emotional reaction, or finally if the two
phenomena work together.

Validity, Scalability, and Limitations
We showed the validity of our model and the ability to extract
new markers of healthy brain function by analyzing reaction
times with at least three conditions of different complexity.
Consistency and reliability were very strong and showed the good
validity of our construction. We did not evaluate consistency
across different laboratories (inter-rater reliability) which makes
little sense in this study, since examiners have only a minor
role and take no measurements. With written instructions,
subjects without cognitive impairment can even take the test on
their own. In subsequent studies, however, it will be interesting
to observe the consistency of the measurements on different
operating systems (Mac versus Windows and their various
versions) and the inter-rater reliability of examinations with
patients needing assistance.

As the type of stimuli, the way in which they are presented,
and the motor response are strictly identical from one subject
to another, our analyses provide a reliable index revealing
how a subject reacts to increasing decision difficulty, and to
simultaneously observe the speed/accuracy compromise.

The test was constructed in such a way as to avoid the retest
effect as far as possible, but we know from the literature that
there is an effect of pre-exposure on executive functioning score
in general (Calamia et al., 2013) and in reaction time tests
(Lowe and Rabbitt, 1998). The “waiting time” (time elapsing
before the stimuli appeared on the screen), and the categories to
respond to were randomly attributed between subjects. Correct
and incorrect responses were equiprobable in the two choice
tasks, making it impossible for subjects to predict the response.
In the subgroup who took the test again the following day we
did not observe any retest effect for RRT, but we observed a
tendency to go a little faster on the executive time part (ES).
This result supports the idea that the ES measures something
different from the RRT. However, it is clear that the retest effect
will need to be evaluated on a sample of people representative of
the population and by observing the variations of this effect from
1 day to 6 months.

Variance is inherent in these tests and lengthening the
repetitions and the duration of the experiment tends to increase
the variance rather than stabilize it.It is therefore extremely
difficult to measure reaction times with a higher precision.
However, the variance is an interesting index in itself, as argued

by several articles. The issue is not really the variance but
rather the presence in the data of very slow responses (the
extremes). A meta-analysis investigating the RT variability in
controls and ADHD children, adolescents, and adults (Kofler
et al., 2013) concluded that the variability in the task performance
of ADHD was primarily due to a set of abnormally slow
responses, rather than ubiquitous variability across all trials
in the task. In similar tasks to those of the MindPulse test,
children with ADHD showed increased variability on simple
and complex Go/No-go tasks (each task lasting round 8 min)
with significantly increased RTs on the complex Go/No-go task.
Given that children with ADHD show higher variability, the
slower RTs on the complex task may not reflect a generalized
pattern of slowing but rather, occasional “outlier”slow responses
(Vaurio et al., 2009). Variance also concerns pathologies such
as schizophrenia where increased reaction time intra-subject
variability in fast decision tasks has been confirmed in patients
and might be linked to a deficit in the inhibitory control
of action (Panagiotaropoulou et al., 2019). From the analysis
according to the three parameters of ex-Gaussians, our data
are generally comparable with those in the literature (Swick
et al., 2013; Dotare et al., 2020). Our values of tau are slightly
higher, which shows that our test tends to generate extreme
RTs, which is recognized as being a good indicator in certain
pathologies of attention such as ADHD (Tarantino et al.,
2013).

Our objective is to seek for an overall equilibrium, in a
relatively short test with an approach consisting in first removing
a “perceptual-motor” part from the data, before breaking down
the residual RT.

The analysis of the shape of the RTs curve, as in ex-Gaussian
(Tarantino et al., 2013), which generally requires a lot of trials
over a long period of testing, can be considered, even if it is
not our main objective, we show in this article that our data
allow us to obtain these curves. However, the interest and the
ability to do so with the test will have to be demonstrated in
pathological conditions.

We do not seek to measure reaction times over a long period
of time but to use precise reaction time measurements to look at
aspects of fundamental decision-making, by superimposing tests
to derive more basic components, the objective being to finally
having clues which can then separate the normal conditions
from the pathological ones with a few set of data.In this we are
closer to the Stroop (Stroop, 1935) or Trail Making Test (Reitan,
1992). These tests are largely useful in clinical neuropsychology
with very few data taken: For example, The TMT takes 2 times
measurements and 2 speed measurements, the Stroop, depending
on the version, between 3- and 4-timesmeasurements and 3 or
4 precision measurements. By taking more data, with a test that
remains in the category of “short tests,” we wanted to repeat
the exploit of these known tests, to provide useful indices while
remaining very short and taking little data.

The test has an excellent potential for scalability, as it is a
computer software that can be downloaded online and installed
on most computer systems.

As this first study was just a proof of concept, our population
is not representative of the general population, with a very
homogeneous group in terms of age and socio-cultural level,
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and a large majority of women. These results will have to be
reproduced on a more varied and larger population.

The reaction to difficulty could also be related to the
residual fluctuation of the data, but the fact that the data
show a correlation (p < 1%) with the HADS depression score,
encouraged us to propose that RD contains an emotional
component. Subsequent studies should take up this idea, on the
one hand by analyzing this phenomenon on a large, socially
representative sample of people, and on the other hand with
clinical studies on subjects having an emotional state that
alters their ability to make precise and fast decisions (for
example, depression).

The test shows a great sensitivity to measures of RT. It is
therefore necessary to scrutinize the extreme responses very
carefully, for example the extremely slow responses which can be
caused by external disturbances.

Practical Implications and Suggestions
for Future Research
We provide here a first proof of concept of our ability to measure
4 axes of the speed-precision balance of a subject’s fundamental
decision making: these axes are perceptual-motor speed, ES,
subject accuracy and reaction to difficulty.

We plan to continue our research on the one hand on the
possibility of using MindPulse as a tool for the clinical evaluation
of cognitive functions and on the other hand on the calculation
of the difficulty gradient.

With the objective of using MindPulse as a clinical test,
our goal now will be to repeat these results on a larger
and less homogeneous population by performing a MindPulse
assay calibration (normative data on a large and representative
population). The initial results presented here have raised many
questions regarding its utility as a test for cognitive functions:
issues that require further exploration concern from what age
it can be used, how to handle aberrant responses according to
their distribution, and how to evaluate the contributions of the
different types of errors to the analysis. We also need to launch
clinical trials in several pathologies known to involve problems of
psychomotor speed and attentional functions in order to assess
both sensitivity and specificity.

From a fundamental research point of view, other questions
are interesting: to measure the speed of cognition and perception
of stimuli, the order of appearance of the conditions of “difficulty”
could be reversed; a fourth level of difficulty could also be
added to calculate the consistency of the calculation of the
difficulty index, and it would also be interesting to investigate
whether this model is linked only to the visual modality,
or if the same kind of results are found with the auditory
modality for example.

We propose a general method to compare tasks of the same
kind but of different difficulty in general. Our method consists
in first devising at least three tasks that are strictly comparable
in stimuli presentation and motor output. One of the tasks must
be the base, its characteristic being to be sufficiently basic so that
its level of difficulty is as low as possible (level “zero” difficulty).
We then define another task as the one that will serve as a
reference for the unit of difficulty (the task of “difficulty 1”).
Our method is to calculate the “difficulty coefficient” to make
other tasks comparable to our level zero and one. We speculate
that whatever new task we introduce will always have the same
statistical distribution for ES. This rescaled variable appears to be
a fundamental signature of attentional functioning.
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