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The high prevalence of Alzheimer’s disease (AD) among the elderly population and
its lack of effective treatments make this disease a critical threat to human health.
Recent epidemiological and genetics studies have revealed the polygenic nature of
the disease, which is possibly explainable by a polygenic score model that considers
multiple genetic risks. Here, we systemically review the rationale and methods used to
construct polygenic score models for studying AD. We also discuss the associations
of polygenic risk scores (PRSs) with clinical outcomes, brain imaging findings, and
biochemical biomarkers from both the brain and peripheral system. Finally, we discuss
the possibility of incorporating polygenic score models into research and clinical practice
along with potential challenges.

Keywords: Alzheimer’s disease, polygenic score, APOE, genetics, polygenic risk score, polygenic hazard score,
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INTRODUCTION

Alzheimer’s disease (AD), an aging-related neurodegenerative disease and the most common form
of dementia, is a health threat to societies worldwide. AD has a complex etiology that is influenced
by both genetic and environmental factors, which account for its variable risk among individuals.
The presence of known coding mutations located in APP and PSEN genes that exhibit extremely
high disease penetrance for early-onset AD can be determined by genetic analysis well before
disease onset. Moreover, sporadic late-onset AD (LOAD), which accounts for most AD cases, is
suggested to be highly heritable (approximately 60–80%) in the general population (Gatz et al.,
2006). Therefore, studying individual genomes might identify individuals at high risk of developing
AD, create a time window for intervention, and aid the development of intervention strategies.

However, genome-wide association studies (GWASs) of LOAD have only revealed a few dozen
genetic risk loci with mild or moderate disease risk-modifying effects; individually, these cannot
adequately explain an individual’s risk of having AD at the population level (Lambert et al.,
2013; Jansen et al., 2019). The inconsistencies among epidemiological studies regarding the high
heritability of LOAD as well as the lack of causal genetic factors that adequately explain disease
risk imply that LOAD has a polygenic nature: its risk might be modulated by the aggregate effects
of many hidden variants as well as environmental factors. Accordingly, given that polygenic risk
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analysis has recently become a key facet in cohort studies of
LOAD, herein we systemically review the current approaches to
polygenic risk analysis along with their applications in AD.

KEY ELEMENTS OF POLYGENIC SCORE
MODELS

Polygenic score models consider the aggregate effects of multiple
variants to evaluate genetic contributions to continuous or
discrete traits—for instance, gene expression levels or disease
status (Chatterjee et al., 2016). Hence, polygenic score models
require knowledge about which variants modify the disease
in question. Variants are normally selected by screening the
summary statistics generated by GWASs with proper filtering
of the association p-values. Various p-value thresholds can be
applied (e.g., 0.0001, 0.01, or 0.5) to obtain the pools of variants
that exhibit optimal performance for AD classification (Escott-
Price et al., 2019b). Meanwhile, several methods have been
applied to overcome the redundancy of genetic information
(i.e., the effects of the variants on a given disease) due to high
linkage disequilibrium among selected variants. For instance,
linkage disequilibrium-based pruning, which removes variants
in high linkage disequilibrium, or linkage disequilibrium-aware
clumping, which simultaneously removes variants in high
linkage disequilibrium while retaining variants with the smallest
p-values, have been applied to select the most informative
variants to construct a polygenic score model. In addition
to p-value–based selection, other statistical learning methods
such as lasso regression, which can select the most informative
variants for AD classification by removing variants minimally
associated with the disease, have been also incorporated into
polygenic risk analysis for AD (Romero-Rosales et al., 2020;
Zhou et al., 2020).

Once the variants for model construction have been
determined, their genotype dosages are summarized into a
single value that can represent an individual’s status (i.e., their
relative risk of having AD). The easiest way to achieve this
is to simply sum the number of risk alleles across all selected
variants to generate an unweighted polygenic score (Tosto
et al., 2017). Meanwhile, two types of weighting measures are
commonly introduced into polygenic score models to account
for the variable impacts of individual variants on disease risk
and generate a more accurate polygenic score model. First,
the effect size can be determined from an association test,
meta-analysis, or log-transformed odds ratios, thus yielding
a weighted polygenic risk score (PRS) model (Tosto et al.,
2017). Second, log-transformed hazard ratios generated from
association analysis for disease onset age can also be introduced
to produce a polygenic hazard score (PHS), which indicates
an individual’s instantaneous risk of developing a given disease
(Tan et al., 2018).

Nevertheless, introducing statistical learning methods into
polygenic risk analysis enables simultaneous variant selection and
model construction. Such methods, including lasso regression
and support vector machines, can directly learn from the
raw genotype data and use the same framework to construct

models to predict various outcomes (e.g., phenotypes, cognitive
performance, and onset age). Moreover, they may perform better
than PRS and PHS models given their ability to better capture
both local and global genomic structures.

OVERVIEW OF POLYGENIC SCORE
RESEARCH FOR ALZHEIMER’S DISEASE

The number of published research articles associated with AD
polygenic score models has dramatically increased over the last
15 years (Figure 1A). In 2005, one study reported an AD
polygenic score model constructed from nine cholesterol-related
single nucleotide polymorphisms (SNPs) including APOE-ε4 that
exhibited superior performance for classifying AD compared to
APOE-ε4 alone [area under the receiver operating characteristic
curve (AUC) = 0.74 vs. 0.66 for the polygenic score model and
APOE-ε4, respectively] (Papassotiropoulos et al., 2005). That
study was also the first to demonstrate the applicability of
polygenic score models to predict AD risk—even before AD
GWASs demonstrated the polygenic nature of AD.

Large-scale AD GWASs in populations of European descent
bolstered AD polygenic score research in recent years by
providing comprehensive information about the effects of
individual variants on AD risk at a genome-wide scale. Those
studies’ summary statistics, which contain the effect sizes of
individual variants, can be directly applied as weighting factors
to construct a PRS model. In fact, several AD polygenic risk
studies were based on the summary statistics generated by the
IGAP Consortium published in 2013 (Lambert et al., 2013)
and investigated AD polygenic score models in populations of
European descent (Marden et al., 2014, 2016; Escott-Price et al.,
2015, 2017a,b, 2019a,b; Habes et al., 2016; Harrison et al., 2016;
Louwersheimer et al., 2016; Lupton et al., 2016; Mormino et al.,
2016; Walter et al., 2016; Darst et al., 2017; Desikan et al., 2017;
Foley et al., 2017; Gibson et al., 2017; Hayes et al., 2017, 2020;
Marioni et al., 2017; Morgan et al., 2017; Tan et al., 2017, 2019;
Xiao et al., 2017; Axelrud et al., 2018, 2019; Cruchaga et al.,
2018; Del-Aguila et al., 2018; Ge et al., 2018; Kauppi et al., 2018,
2020; Patel et al., 2018; Stephan et al., 2018; Tasaki et al., 2018;
Andrews et al., 2019; Chaudhury et al., 2019; Elman et al., 2019;
Guerreiro et al., 2019; Korologou-Linden et al., 2019a,b; Kremen
et al., 2019; Lancaster et al., 2019; Leonenko et al., 2019a,b; Logue
et al., 2019; Wang et al., 2019; Yu et al., 2019; Ajnakina et al.,
2020; Han et al., 2020; Matloff et al., 2020; Reus et al., 2020;
Yesavage et al., 2020). Meanwhile, a few other studies focusing
on populations of non-European descent also applied the IGAP
data to select variants for genotyping analysis (Marden et al.,
2014; Tosto et al., 2017; Axelrud et al., 2018, 2019; Li et al.,
2020). Notably, the study populations of most AD polygenic risk
studies (Figure 1B) and studied individuals (Figure 1C) were of
European descent.

The availability of GWAS results from AD genetics studies has
enabled the selection of variants for model construction. Studies
using the same IGAP summary statistics can generate models
with different numbers of variants (from 6 to 1.1 million sites)
by selecting different p-value thresholds (Ajnakina et al., 2020;
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FIGURE 1 | Summary of polygenic score research on Alzheimer’ disease. (A) Numbers of published papers by year. (B) Proportions of studies by population.
(C) Proportions of study participants by ethnic group.

Han et al., 2020; Reus et al., 2020). Meanwhile, the sample sizes
used for polygenic score models also vary among studies: from
less than 80 to more than 20,000 participants (Desikan et al., 2017;
Chandler et al., 2019). Regarding model construction, PLINK
and PRSice are the most widely used tools to select variants
and construct polygenic score models. Other statistical analysis
methods, such as linear support vector machine (Filipovych
et al., 2012), lasso regression (Romero-Rosales et al., 2020;
Zhou et al., 2020), multilocus genotype patterns analysis (Barral
et al., 2012), and decision tree (Yokoyama et al., 2015; Porter
et al., 2018c), have also been adopted to construct polygenic
score models for AD.

Of note, polygenic score models have been implemented to
investigate the effects of genetic variants on various aspects
of AD pathogenesis and progression. Most studies focus on
clinical outcomes, specifically the classification of patients with
AD (Papassotiropoulos et al., 2005; Sabuncu et al., 2012; Marden
et al., 2014; Adams et al., 2015; Escott-Price et al., 2015, 2017b,
2019b; Yokoyama et al., 2015; Lupton et al., 2016; Tosto et al.,
2017; Xiao et al., 2017; Cruchaga et al., 2018; Patel et al., 2018;
Chaudhury et al., 2019; Leonenko et al., 2019a,b; Zhang et al.,
2019; Altmann et al., 2020; Andrews et al., 2020; Zhou et al.,
2020). Some other studies investigated the possible associations
between AD polygenic score models and the risk of conversion
to AD or mild cognitive impairment (MCI) (Filipovych et al.,
2012; Rodríguez-Rodríguez et al., 2013; Verhaaren et al., 2013;
Carrasquillo et al., 2015; Desikan et al., 2017; Tosto et al., 2017;
Kauppi et al., 2018; Chaudhury et al., 2019; Elman et al., 2019;
Ajnakina et al., 2020; Altmann et al., 2020; Andrews et al., 2020),
cognitive function (Louwersheimer et al., 2016; Del-Aguila et al.,
2018; Ge et al., 2018; Kauppi et al., 2018, 2020; Porter et al.,
2018a,c,b; Stephan et al., 2018; Tan et al., 2018, 2019; Tasaki
et al., 2018; Korologou-Linden et al., 2019a; Han et al., 2020;
Zhou et al., 2020), and memory function (Barral et al., 2012;
Verhaaren et al., 2013; Marden et al., 2014, 2016; Adams et al.,
2015; Carrasquillo et al., 2015; Mormino et al., 2016; Hayes et al.,
2017; Marioni et al., 2017; Axelrud et al., 2018; Ge et al., 2018;

Porter et al., 2018a,b,c; Tan et al., 2018, 2019; Altmann et al.,
2020). Notably, given that the brain’s structure and functions
are closely associated with cognitive ability, several studies have
also investigated the use of polygenic score models to predict
brain status including changes in brain structure (Sabuncu et al.,
2012; Habes et al., 2016; Harrison et al., 2016; Nho et al., 2016;
Desikan et al., 2017; Foley et al., 2017; Hayes et al., 2017, 2020;
Xiao et al., 2017; Ge et al., 2018; Kauppi et al., 2018; Li et al.,
2018; Tasaki et al., 2018; Chandler et al., 2019, 2020; Tan et al.,
2019; Wang et al., 2019; Altmann et al., 2020; Matloff et al.,
2020; Zhou et al., 2020) and function (Xiao et al., 2017; Axelrud
et al., 2019; Chandler et al., 2019, 2020). Moreover, some studies
investigated biochemical changes indicative of brain status, such
as AD pathological hallmarks including amyloid-beta (Aβ) load
and tau tangles (Mormino et al., 2016; Darst et al., 2017; Desikan
et al., 2017; Laiterä et al., 2017; Ge et al., 2018; Porter et al.,
2018a,b,c; Tan et al., 2018, 2019; Tasaki et al., 2018; Leonenko
et al., 2019a; Yu et al., 2019; Altmann et al., 2020), enzyme
activity in brain samples (Martiskainen et al., 2015; Laiterä et al.,
2017), and levels of proteins (e.g., the “ATN” biomarker panel,
which comprises Aβ, tau, and neurofilament light polypeptide) or
metabolites (Papassotiropoulos et al., 2005; Sabuncu et al., 2012;
Martiskainen et al., 2015; Louwersheimer et al., 2016; Mormino
et al., 2016; Darst et al., 2017; Morgan et al., 2017; Cruchaga
et al., 2018; Porter et al., 2018a; Tasaki et al., 2018; Korologou-
Linden et al., 2019b; Tan et al., 2019; Altmann et al., 2020; Hayes
et al., 2020; Li et al., 2020; Reus et al., 2020; Zhou et al., 2020).
Some studies also used polygenic score models to evaluate the
extent to which certain diseases or pathways modulate AD risk
(Papassotiropoulos et al., 2005; Moskvina et al., 2013; Mukherjee
et al., 2015; Walter et al., 2016; Gibson et al., 2017; Hayes
et al., 2017; Demichele-Sweet et al., 2018; Creese et al., 2019;
Elman et al., 2019; Guerreiro et al., 2019; Kremen et al., 2019;
Lancaster et al., 2019; Andrews et al., 2020; Yesavage et al., 2020).
Collectively, those studies suggest that genetic factors have crucial
roles in modifying AD risk and highlight the potential utility
of polygenic score models in AD research and routine clinical
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practice. In the following section, we summarize the key findings
of each of those aspects.

POLYGENIC SCORE MODELS FOR
PREDICTING ALZHEIMER’S DISEASE
RISK

The primary goal of a polygenic score model is to classify
individuals according to disease risk (AD in this case).
Numerous studies conducted in recent decades have established
various polygenic score models and report their ability to
adequately distinguish patients with AD from cognitively normal
individuals. Reported AD prediction accuracy ranges from an
AUC of 0.57 (Tosto et al., 2017) to 0.84 (Escott-Price et al., 2017a).
Notably, Yokoyama et al. (2015) generated a PRS using a decision
tree model and report an AUC of 0.88 for the prediction of AD
(vs. 0.69 for APOE genotype) in their discovery cohort (n = 192).
However, this model failed to surpass the accuracy of using APOE
genotype to predict AD in their replication cohort (AUC = 0.62
vs. 0.63 for the PRS and APOE genotype, respectively; n = 276).
In contrast, several other studies demonstrate that PRS models
exhibit superior performance to APOE genotype for predicting
AD or associated cognitive states as indicated by significant
associations between AD and PRSs that do not include APOE
genotype (Sabuncu et al., 2012; Xiao et al., 2015; Leonenko et al.,
2019a,b; Zhang et al., 2019) or PRS results after controlling for
APOE genotype (Tosto et al., 2017; Escott-Price et al., 2019b).
Specifically, in one study recently published by Escott-Price
et al. (2019b), the application of a PRS to homozygous APOE-
ε3 carriers achieved an AUC of 0.831 for the prediction of AD
with a comparable AUC of 0.834 after excluding the variants
in the APOE region in homozygous APOE-ε3 carriers. Thus,
polygenic effects might account for the non-APOE–dependent
genetic mechanisms of AD pathogenesis. Meanwhile, a whole-
exome sequencing study conducted by Patel et al. (2018) revealed
the applicability of polygenic score models using exonic variants
to predict AD, yielding an AUC of 0.830 for AD prediction
with the inclusion of APOE genotype, age, sex, and 19 GWAS-
identified SNPs, further implying the polygenic contribution of
the exonic regions to the modulation of AD risk.

In addition to disease risk, a few studies investigated the
possible contribution of polygenic risk to the modulation of the
likelihood of AD conversion, specifically conversion from MCI
to AD (Rodríguez-Rodríguez et al., 2013; Tan et al., 2017; Kauppi
et al., 2018; Chaudhury et al., 2019) or conversion from cognitive
normality to MCI or AD (Carrasquillo et al., 2015; Tan et al., 2017;
Logue et al., 2019; Altmann et al., 2020), or the time to develop
AD (Verhaaren et al., 2013; Desikan et al., 2017; Tosto et al., 2017;
Ajnakina et al., 2020; Andrews et al., 2020). Of note, Tan et al.
(2017) studied 1,081 asymptomatic elderly adults and report a
PHS model based on 31 SNPs selected from IGAP and ADGC
phase 1 data that can accurately predict the risk of conversion
from cognitive normality to AD (hazard ratio = 2.36), from MCI
to AD (hazard ratio = 1.17), and from cognitive normality or MCI
to AD (hazard ratio = 1.31). Furthermore, Kauppi et al. (2018)
integrated the PHS with cognitive score and brain atrophy status,

resulting in relatively high accuracy for predicting conversion
from MCI to AD (AUC = 0.84).

Notably, Carrasquillo et al. (2015) suggest that only APOE-
inclusive PRSs are correlated with the likelihood of developing
MCI or AD in a longitudinally assessed cohort. Moreover,
Rodríguez-Rodríguez et al. (2013) also report that conversion
from MCI to AD cannot be successfully predicted by PRSs
after controlling for age, sex, and APOE genotype. However,
the models in both studies included fewer than 10 non-APOE
variants. Meanwhile, by integrating more variants into the
analysis, Altmann et al. (2020) observed significant associations
between AD polygenic risk and clinical conversion from non-
demented to demented status as well as Clinical Dementia Rating
Scale Sum of Boxes (CDR-SB) score after excluding the effect
of the APOE locus. Therefore, the polygenic risk effects from
non-APOE loci probably contribute to the likelihood of AD
development and progression.

POLYGENIC SCORE MODELS FOR
PREDICTING MEMORY AND COGNITIVE
FUNCTIONS

Besides disease states, polygenic risk is also correlated with
individual memory function (Barral et al., 2012; Verhaaren et al.,
2013; Marden et al., 2014, 2016; Adams et al., 2015; Carrasquillo
et al., 2015; Mormino et al., 2016; Hayes et al., 2017; Marioni et al.,
2017; Axelrud et al., 2018; Ge et al., 2018; Porter et al., 2018a,b,c;
Tan et al., 2018, 2019; Altmann et al., 2020). Specifically,
a multilocus mapping analysis conducted by Barral et al.
(2012) demonstrates an association between episodic memory
and specific genetic patterns from GWAS-identified variants;
a few other studies also suggest possible associations between
polygenic risk and episodic memory function. Specifically, a
PRS study conducted by Marden et al. (2014) suggests that AD
polygenic risk might modulate both baseline memory and its
rate of decline in people of non-Hispanic European descent
(n = 7,172) or African descent (n = 1,081). Again, there is some
controversy about the effects of non-APOE polygenic risks on
memory function. For instance, Carrasquillo et al. (2015) suggests
that only APOE-inclusive PRSs are correlated with worsening
memory function, while Verhaaren et al. (2013) and Porter
et al. (2018b) report a significant association between non-APOE
polygenic risk and memory function. Moreover, Ge et al. (2018)
report a significant correlation between high AD polygenic risk
and the rate of memory decline after controlling for APOE-ε4
genotype. Hence, the polygenic risk effects from non-APOE loci
likely also influence memory function.

Polygenic scores can also indicate individual cognitive
functions. Several studies report associations between polygenic
risk and cognitive functions (Louwersheimer et al., 2016; Del-
Aguila et al., 2018; Ge et al., 2018; Kauppi et al., 2018, 2020;
Porter et al., 2018a,b,c; Stephan et al., 2018; Tan et al., 2018,
2019; Tasaki et al., 2018; Korologou-Linden et al., 2019a; Han
et al., 2020; Zhou et al., 2020). For instance, Korologou-Linden
et al. (2019a) report an association between PRS and lower
total, verbal, and performance intelligence quotients in childhood
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and adolescence, and Kauppi et al. (2020) suggest that AD
polygenic risk is indicative of individual differences in the rate of
cognitive decline in normal aging. Meanwhile, Xiao et al. (2017)
and Li et al. (2018) did not identify a significant association
between AD polygenic risk and cognitive function in cognitively
normal individuals.

POLYGENIC SCORE MODELS FOR
PREDICTING BRAIN STATUS

The associations of polygenic scores with memory and cognitive
function imply possible alterations of brain structure and
functions. Several studies have examined the associations
between AD polygenic risk and MRI findings (Sabuncu et al.,
2012; Habes et al., 2016; Harrison et al., 2016; Mormino et al.,
2016; Nho et al., 2016; Desikan et al., 2017; Foley et al., 2017;
Hayes et al., 2017, 2020; Xiao et al., 2017; Ge et al., 2018; Kauppi
et al., 2018; Li et al., 2018; Chandler et al., 2019; Tan et al., 2019;
Wang et al., 2019; Altmann et al., 2020; Matloff et al., 2020; Zhou
et al., 2020), fMRI findings (Xiao et al., 2017; Axelrud et al., 2019;
Chandler et al., 2020), and PET imaging findings (Mormino et al.,
2016; Darst et al., 2017; Ge et al., 2018; Porter et al., 2018a,b,c; Tan
et al., 2018, 2019; Leonenko et al., 2019a; Altmann et al., 2020).

Notably, some studies have examined the associations between
AD polygenic risk and the volumetric changes of various brain
regions such as the retrosplenial and posterior cingulate cortices
(Sabuncu et al., 2012), frontal cortex (Chandler et al., 2019),
entorhinal cortex (Harrison et al., 2016; Desikan et al., 2017;
Hayes et al., 2020), amygdala (Lupton et al., 2016; Zhou et al.,
2020), and hippocampus (Harrison et al., 2016; Lupton et al.,
2016; Desikan et al., 2017; Foley et al., 2017; Xiao et al., 2017;
Axelrud et al., 2018; Ge et al., 2018; Lancaster et al., 2019;
Altmann et al., 2020; Hayes et al., 2020; Matloff et al., 2020;
Zhou et al., 2020).

Interestingly, some studies have focused on individuals of
varying ages including young adolescents (Li et al., 2018;
Chandler et al., 2019) and elderly people (Lupton et al., 2016;
Nho et al., 2016; Darst et al., 2017; Desikan et al., 2017; Tan
et al., 2019; Hayes et al., 2020). Specifically, Li et al. (2018)
and Chandler et al. (2019) report significant associations of AD
polygenic risk with gray matter cerebral blood flow and gray
matter volume, respectively, in young individuals, indicating a
potential long-term effect of polygenic risk on brain function well
before AD onset.

In addition to structural changes, AD polygenic risk might
be associated with brain Aβ load (Mormino et al., 2016; Darst
et al., 2017; Porter et al., 2018a,c; Tan et al., 2018, 2019;
Leonenko et al., 2019a; Altmann et al., 2020) as measured by
PET imaging. Moreover, several studies discuss the possible
effects of polygenic risk on brain functional changes including
hippocampal activation (Xiao et al., 2017; Chandler et al., 2020)
and connectivity between specific brain regions (Axelrud et al.,
2019), providing additional evidence for the effects of AD
polygenic risk on brain function. Meanwhile, Aβ measured by
PET imaging has been introduced to stratify AD patients prior
to PRS evaluation (Porter et al., 2018b).

POLYGENIC SCORE MODELS FOR
PREDICTING BIOCHEMICAL CHANGES
IN THE BRAIN AND PERIPHERAL
SYSTEM

Corroborating PET imaging findings, AD polygenic risk is
also associated with the levels of several hallmark proteins
of AD in postmortem brain tissues. For instance, AD PRSs
are reported to be significantly correlated with Aβ and tau
tangle levels (Tasaki et al., 2018), although some studies did
not identify such a correlation between AD polygenic risk and
Aβ levels (Laiterä et al., 2017; Yu et al., 2019). Notably, AD
polygenic risk might be correlated with the activity of brain
γ-secretase (but not β-secretase) (Martiskainen et al., 2015;
Laiterä et al., 2017) as well as levels of VGF, IGFBP5, and
STX1A in brain tissues as measured by proteomic analysis
(Tasaki et al., 2018).

As the ATN biomarkers in cerebrospinal fluid (CSF) are
correlated with the brain pathology in AD, several studies also
suggest possible correlations between PRSs and CSF biomarkers
including Aβ (Sabuncu et al., 2012; Martiskainen et al., 2015;
Darst et al., 2017; Cruchaga et al., 2018; Hayes et al., 2020;
Li et al., 2020) and tau or p-tau (Louwersheimer et al.,
2016; Darst et al., 2017; Cruchaga et al., 2018; Porter et al.,
2018a; Tan et al., 2018; Altmann et al., 2020; Li et al., 2020;
Reus et al., 2020). However, Louwersheimer et al. (2016) and
Mormino et al. (2016) did not observe a correlation between
AD polygenic risk and CSF Aβ levels. Meanwhile, Reus et al.
(2020) examined the associations between polygenic risk and
412 CSF proteins and protein fragments, and found that
48.8% of the candidate proteins were associated with at least
one of the 14 constructed scores, implying a possible global
alteration of the CSF proteome that is possibly associated
with polygenic risk.

Notably, a recent study also implies the involvement of the
peripheral immune system in AD pathogenesis (Zhou et al.,
2018), while other studies demonstrate associations between
AD polygenic risk and plasma proteins (Morgan et al., 2017;
Korologou-Linden et al., 2019b; Zhou et al., 2020) or metabolites
(Papassotiropoulos et al., 2005; Korologou-Linden et al., 2019b).
Specifically, by applying the proximity extension assay to plasma
proteomic analysis, we investigated 280 proteins and revealed
potential protein candidates (i.e., osteopontin and neurocan
core protein) along with a protein network associated with AD
polygenic risk—again implying global changes in plasma profiles
that might be modulated by polygenic risk (Zhou et al., 2020).

POLYGENIC SCORE MODELS FOR
EXAMINING THE INVOLVEMENT OF
OTHER DISEASES IN ALZHEIMER’S
DISEASE PATHOGENESIS

The complex etiology of AD is reflected by the identification
of various modifiable risk factors such as cardiovascular
risk factors, hypertension, and immune factors. Polygenic
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score models suggest that AD genetic risks are associated
with cholesterol levels (Papassotiropoulos et al., 2005),
depression (Gibson et al., 2017), schizophrenia (Demichele-
Sweet et al., 2018; Creese et al., 2019), frontotemporal lobar
degeneration, amyotrophic lateral sclerosis (Adams et al.,
2015), insulin sensitivity (Walter et al., 2016), microglial
dysfunction (Lancaster et al., 2019), and mitochondrial
dysfunction (Andrews et al., 2020). Meanwhile, the polygenic
risks for cardiovascular risk factors, frontotemporal lobar
degeneration, and amyotrophic lateral sclerosis are implicated
in the pathogenesis of MCI (Adams et al., 2015; Elman et al.,
2019). Thus, these findings collectively suggest the underlying
mechanisms of AD comorbidities and indicate possible pathways
for intervention.

APPLICATIONS AND POTENTIAL ISSUES

Given the high prevalence of AD, early risk prediction might
facilitate early intervention and greatly mitigate the future growth
of the AD patient population. Specifically, polygenic risk factors
rooted in individual genomes can be used as biomarkers for
the early assessment of relative risk at a population scale. To
illustrate the utility of such a strategy, delaying disease onset
by 5 years would reduce the predicted AD population among
people aged 70 years or above by 41% in the United States.
in 2050 (Zissimopoulos et al., 2015). Furthermore, inspiring
work by Solomon et al. (2018) further suggests that lifestyle
interventions might override the risk effects of APOE-ε4,
implying a possible means of delaying AD onset once an
individual is informed of their relative risk of developing
AD. Moreover, a recent study revealed that prior knowledge
of genetic risk would also be critical for drug discovery, as
drugs targeting proteins encoded in genetic risk loci would
be more likely to be successful in phase II and III clinical
trials (King et al., 2019). Notably, a polygenic score study of
coronary heart disease risk showed that compared to people
with lower genetic risk, those with higher genetic risk exhibited
a greater decrease in absolute disease risk after receiving statin
therapy (Mega et al., 2015). Therefore, conducting population-
scale genetic screening for AD might simultaneously support
the development of intervention strategies and enable the
stratification of individuals according to their risk of AD based
on their genetic patterns. More specifically, a hierarchal screening
strategy for AD risk evaluation combining genetic, circulatory
factors, and brain imaging techniques can be implemented at a
populational scale to facilitate disease risk screening and clinical
research on personalized interventions in a genotype-aware
manner (Figure 2).

Nevertheless, there are potential issues that could hinder
the development and implementation of polygenic scoring
in routine clinical practice. First, policies protecting patient
privacy must be carefully considered, because the results of
one person’s genetic test might not only indicate their own
risks of certain diseases but also those of their close relatives
(Clayton et al., 2019). Second, the possible consequences of
informing certain individuals about their estimated genetic

FIGURE 2 | Proposed hierarchal strategy for Alzheimer’s disease risk
screening. Individuals enrolled in a screening task are first examined according
to genetic risk as indicated by polygenic risk analysis. Individuals who have
relatively high risk and report symptoms are referred for biomarker
examination to evaluate amyloid-beta, tau (and p-tau), and neurofilament light
polypeptide levels (i.e., the “ATN” panel) in blood or cerebrospinal fluid (CSF).
Those who exhibit altered levels of biomarkers are further referred to clinicians
for cognitive assessment followed by brain imaging including magnetic
resonance imaging and positron emission tomography.

risks for certain diseases must be carefully considered, as this
could have positive and/or negative outcomes. Fortunately, after
receiving brain amyloid imaging, cognitively normal people with
elevated amyloid loads tend to make more changes to their
lifestyle and future plans than those who do not have elevated
amyloid loads (Largent et al., 2020). In addition, in one recent
study, providing genetic test results illustrating the 3-year risk of
developing AD to patients with MCI did not increase the risk
of anxiety or depression (Christensen et al., 2020). Meanwhile,
different diagnostic criteria across study cohorts might introduce
bias into genetics studies and the subsequent construction
of polygenic score models, although this can be reduced or
eliminated by further incorporating other biomarkers to refine
clinical diagnosis (Escott-Price et al., 2017a). Furthermore, the
application of polygenic score models can help refine the results
of genetic analyses based on control cohorts (i.e., controls in
whom the disease of interest has not been investigated in
detail) by ruling out individuals at risk of developing diseases
(Escott-Price et al., 2019a). Moreover, polygenic score models
may be used to define an individual’s risk of having a specific
neurodegenerative disease, as studies have demonstrated that
such models (or the genotyping of specific variants) can predict
the risk of Parkinson’s disease (Nalls et al., 2016), Huntington’s
disease (Kremer et al., 1994), amyotrophic lateral sclerosis (Saez-
Atienzar et al., 2021), and multiple sclerosis (The International
Multiple Sclerosis Genetics Consortium (IMSGC), 2010). In
addition, polygenic score models may help estimate the effects
of aging on disease risk. Finally, conducting polygenic risk
analysis requires the availability of population-specific genetic
risk information at the single-variant level. We previously showed
that a polygenic score model based on the Chinese population
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performs poorly when applied to an AD cohort of European
descent (Zhou et al., 2020). The poor performance of that
polygenic score model can be explained by the differences in
the genomic structures between populations of East-Asian and
European descent. Given that there are limited AD GWASs
on populations of non-European descent (Zhou et al., 2018;
Kunkle et al., 2020), it is critical to comprehensively analyze AD
genetic risk in such populations to facilitate the development
of polygenic score models and their associated applications in
populations worldwide.
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