
PERSPECTIVE
published: 06 April 2021

doi: 10.3389/fnins.2021.651141

Frontiers in Neuroscience | www.frontiersin.org 1 April 2021 | Volume 15 | Article 651141

Edited by:

Guoqi Li,

Tsinghua University, China

Reviewed by:

Anup Das,

Drexel University, United States

Yujie Wu,

Tsinghua University, China

*Correspondence:

Simon Davidson

simon.davidson@manchester.ac.uk

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 08 January 2021

Accepted: 09 March 2021

Published: 06 April 2021

Citation:

Davidson S and Furber SB (2021)

Comparison of Artificial and Spiking

Neural Networks on Digital Hardware.

Front. Neurosci. 15:651141.

doi: 10.3389/fnins.2021.651141

Comparison of Artificial and Spiking
Neural Networks on Digital Hardware

Simon Davidson*† and Steve B. Furber †

APT Group, Department of Computer Science, University of Manchester, Manchester, United Kingdom

Despite the success of Deep Neural Networks—a type of Artificial Neural Network

(ANN)—in problem domains such as image recognition and speech processing, the

energy and processing demands during both training and deployment are growing at

an unsustainable rate in the push for greater accuracy. There is a temptation to look

for radical new approaches to these applications, and one such approach is the notion

that replacing the abstract neuron used in most deep networks with a more biologically-

plausible spiking neuron might lead to savings in both energy and resource cost. The

most common spiking networks use rate-coded neurons for which a simple translation

from a pre-trained ANN to an equivalent spike-based network (SNN) is readily achievable.

But does the spike-based network offer an improvement of energy efficiency over the

original deep network? In this work, we consider the digital implementations of the

core steps in an ANN and the equivalent steps in a rate-coded spiking neural network.

We establish a simple method of assessing the relative advantages of rate-based

spike encoding over a conventional ANN model. Assuming identical underlying silicon

technology we show that most rate-coded spiking network implementations will not be

more energy or resource efficient than the original ANN, concluding that more imaginative

uses of spikes are required to displace conventional ANNs as the dominant computing

framework for neural computation.

Keywords: artificial neural network, spiking neural network, deep neural network, rate-based encoding,

neuromorphic hardware

1. INTRODUCTION

Within the broad field of Artificial Neural Networks (ANNs) the development of Deep Neural
Networks (DNNs) over the last decade has made a number of significant applications possible
(Graves et al., 2013; Barsoum et al., 2016; Howard et al., 2017; Vinyals et al., 2019), elevating the
neural network from a laboratory-bound curiosity to a dependable tool for real world applications
in the areas of image and speech recognition (Graves et al., 2013; Kepuska and Bohouta, 2018;
Brown et al., 2020). The focus of much recent research has been classification accuracy while other
considerations such as the energy and computational cost during both training and deployment
have arguably been of secondary interest. Each year brings new progress—with higher recall
accuracy on industry standard benchmarks—but also brings with it greater computational, energy,
and data storage demands (Han et al., 2015; Strubell et al., 2019). Researchers in both industry and
academia are now searching for disruptive new approaches to avoid this barrier to future progress.

One approach is to go back to neuroscience. Deep neural networks are—after all—highly
abstracted from the biological networks in Nature. While real neurons communicate using spikes
of potential, sent between neurons via a web of connections, in ANNs the output of each artificial

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.651141
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.651141&domain=pdf&date_stamp=2021-04-06
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:simon.davidson@manchester.ac.uk
https://doi.org/10.3389/fnins.2021.651141
https://www.frontiersin.org/articles/10.3389/fnins.2021.651141/full

Davidson and Furber Comparing Implementations of ANNs and SNNs

neural unit is a multi-valued activation often described as a proxy
for the firing rate of the true neuron, or as a measure of the mean
activity of a group of neurons (Averbeck et al., 2006). Research
into Spike-based Neural Networks (SNNs) has continued in
academia but is only recently received much attention from
industry (such as the Intel Loihi; Davies et al., 2018) for a variety
of reasons: the lack of a robust learning rule for spiking networks
comparable with the backpropagation learning rule in ANNs; the
immaturity of rules for the design and composability of networks
of spiking neurons in contrast to the established frameworks for
ANNs such as TensorFlow (Abadi et al., 2015); and the lack
of a compelling demonstrator for spiking networks. With this
renewed focus on spiking neurons it is timely to re-examine the
capabilities of spike-based networks in the domains currently
dominated by Deep ANNs. Do they offer potential savings in
energy or computational cost over ANNs for the same work
done?

In this paper we examine this possibility with respect to the
rate-coded spiking network, a commonly used neural architecture
in which information is transmitted through the rate at which
a neuron produces spikes and for which the precise time of
individual spikes has no significance. Such networks are of
interest in part because a spiking equivalent can be readily
obtained from a pre-trained ANN (Rueckauer et al., 2017) and in
part because the output of a neuron can easily be interpreted by
an external observer (for example, a higher spike rate indicates
a higher degree of belief in the presence of a particular feature
in the input). In this work we restrict our focus to digital
implementations of such networks.

By comparing the digital implementations of the core
computations for both the conventional neural network and
the spike-based equivalent, under the assumption of identical
silicon substrates, we show that most rate-coded spiking network
implementations will not compete with the ANN.

The structure of the paper is as follows. We present a brief
overview of the key processes in a deep neural networks (section
2), then present two implementations of these processes: one as
a conventional ANN and the other as a spiking neural network
(section 3). Our key evidence is presented as an elaboration of
the computational steps of these circuits for a standard silicon
process (section 4) before concluding (section 5).

2. OVERVIEW OF NETWORK STRUCTURE
AND COMPUTATIONS

A Deep Neural Network consists of multiple layers of artificial
neurons with more than one hidden layer between unique layers
receiving input and producing output, respectively. Layers are
connected in a stack with the output of one connecting forward to
one (and occasionally more) of the layers higher in the stack (Liu
et al., 2017; Alom et al., 2019). Input is presented at the lowest
layer and activity propagates up to the highest layer, where output
activity can be decoded (Figure 1). Layers typically implement
a convolution kernel with each neuron in a layer receiving the
activations from a patch of the neurons in the layer below.
The neuron performs a weighted sum of these input activations

weighted by the kernel coefficients and this sum passes through
an output non-linearity to produce its own activation value, to be
passed upwards.

Many layers in a DNN implement this weighted sum
operation, while others implement normalization and pooling
operations, which are computationally much less demanding
(Howard et al., 2017). We focus our attention on the basic
convolutional layer, which consumes the majority of the
resources.

Processing for a single neuron in a convolutional layer of an
ANN consists of the following steps:

• Input handling: Receiving incoming activity from neurons in
the layer(s) below.

• Kernel coefficient retrieval: For each incoming activation,
obtain the value of the strength of the connection from the
source neuron to each target neuron in the layer.

• Processing: For each target neuron update an accumulator
with the product of the incoming activation and the associated
synaptic weight.

• Threshold and output: Once all inputs have been processed,
perform the non-linear threshold operation (typically ReLU)
on each neuron and transmit the output activation values to
the next layer(s).

For convolutional layers the set of synaptic weights forming one
kernel may be shared by all of the neurons in the layer (LeCun
et al., 2015). Typically, for the upper layers of the stack weight
sharing is no longer possible as neurons specialize but the size
of these layers is usually much smaller than the lowest layers
(Howard et al., 2017).

As noted earlier, it is straightforward to translate a deep
neural network into an equivalent rate-encoded spiking neural
network and there are open-source tools available to do this
(Rueckauer et al., 2017). Such a conversion process leads to a
network with a one-to-one correspondence both between the
neurons in the two networks and with regards to the inter-neuron
connections. A given activation value in the ANN domain then
maps to a number of spikes in the spiking domain. From this
simplified overview we can now consider the form of a digital
implementation of the key processing steps in both the ANN and
the SNN.

3. IMPLEMENTATIONS OF THE ANN AND
SNN VERSIONS OF KEY PROCESSES

In this section we describe the implementations of the ANN and
SNN in standard digital hardware based on how this is done
in software on SpiNNaker, the million core neural simulation
platform developed at The University of Manchester (Furber
et al., 2014; Rhodes et al., 2018). From the literature describing
other implementations, such as the Intel Loihi (Davies et al., 2018;
Lines et al., 2018), we expect these basic steps to be representative
of other implementations.

As noted in section 2, it is convenient to view the principal
steps on the neural algorithm beginning with the arrival of a spike
or activation from a source neuron arriving at a target neuron. In

Frontiers in Neuroscience | www.frontiersin.org 2 April 2021 | Volume 15 | Article 651141

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Davidson and Furber Comparing Implementations of ANNs and SNNs

FIGURE 1 | Schematic of a convolutional neural network, showing two layers. Each layer consists of multiple 2-D planes of neurons, one layer per output channel

(feature). A given neuron on layer k receives input from a patch of the layer below, each input weighted by a set of kernel coefficients. The same set of coefficients is

typically shared by every neuron on the same layer, although different output channels have distinct kernels.

a digital implementation of neural networks it is normal to map
a group of neurons to a single processing module or pipeline, the
neural state being updated sequentially using shared resources.
This is appropriate when the speed of execution of the module
(of the order of GigaHertz in a modern process) greatly exceeds
the arrival rate of incoming activations (of the order of one every
one tenth of a millisecond), allowing the efficiency gains that
can be obtained from the time-domain multiplexing of shared
hardware. Figure 2 shows a generic implementation of both an
Artificial Neural network (Figure 2A) and its spiking equivalent
(Figure 2B). The operations in the ANN are described first, for
hardware representing a group of neurons in a convolutional
layer of the network.

An activation arrives from a neuron in the layer below.
This information consists of an identifier of the neuron, Xi,
and its activation value. The identifier may be implicit if
activations arrive in a prescribed order. The activation value
is conveyed using a bus consisting of na bits. Fewer bits
require less energy to transmit and use, but reduces the
information content. Recent work with deep networks has
considered the trade-off of range versus performance, leading
to GPUs providing support for INT8 (8-bit) values (NVIDIA,
2019).

The incoming activation will come from a source neuron in
the receptive field of one or more of the neurons managed by
this neuron processor. While for the purposes of illustration we
normally consider the fan-in of one neuron through its kernel
connections, for the implementation the arrival of an activation
triggers the update of neurons to which it connects and so a fan-
out organization of data is more appropriate. To process each
affected connection, we require two pieces of state:

• Current accumulator value of the target neuron, Uj.
• Kernel co-efficient, representing the strength of connection

from the source to the target neuron,Wij.

Each neuron has a state variable, the accumulator, representing
the cumulative input it has received on this pass through the
network. The number of state bits per neuron is a function of
the number of bits in the connection weight and the fan-in of the
target neuron. It will typically be less than 32-bit and so for a few
hundred neurons it is practical to keep this information local to
the neuron pipeline in a small register file or RAM.

Since an incoming activation will fan-out to many target
neurons, an associative memory can be used to map the ID of
the incoming activation to a list of its targets. Each entry in the
list consists of:

Frontiers in Neuroscience | www.frontiersin.org 3 April 2021 | Volume 15 | Article 651141

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Davidson and Furber Comparing Implementations of ANNs and SNNs

FIGURE 2 | (A) One possible implementation of the neuron update pipeline for a conventional Artificial Neural Network (ANN). In the ANN the activation is a multi-bit

value (typically FLOAT16 and even INT8 in some recent hardware) which must be multiplied by the connection weight, Wij before being added to the soma potential

(or accumulator value), Uj . (B) In the equivalent SNN implementation the neuron output is a single spike whose arrival causes the associated weight Wij to be added

directly to the potential Uj and no multiplication is necessary.

• The ID of the target neuron, Yj.
• the weight strength,Wij, of the connection.

Parsing this list item by item, the target neuron ID Yj is used to
read the corresponding accumulator value, Uj, from the neuron
state memory and the weight strength from the weight memory;
the weight strength is multiplied by the incoming activation value
to produce a signed product; the accumulator is summedwith the
resulting signed product; the new accumulator is written back to
the neuron state memory. Each accumulator update is therefore a
multiply-accumulate (MAC) operation and there is one for each
target neuron.

The multiplier used to generate the product of the activation
and the weight would be implemented using a variant of Booth
encoding, which yields a fast, efficient circuit (He and Chang,
2008). The energy dissipated in each use of the multiplier is a
function of the bit patterns. Smaller values of the activation would
lead to fewer transitions in the multiplier logic, lower energy
usage and hence a more efficient processor. We return to this in
section 4.

Once all incoming activations have been processed, the
resulting accumulators are passed through a thresholding
function. The most commonly used is ReLU, whose output is
defined asmax(x, 0) for input x.

Frontiers in Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 651141

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Davidson and Furber Comparing Implementations of ANNs and SNNs

Each new activation is sent to the interconnect fabric for
transmission to neuron units managing the next layer of the
network.

Now consider the equivalent functionality in
the implementation of a spiking neural network
made up of Leaky-Integrate-and-Fire (LIF) neurons,
shown in Figure 2B. The input coming from
another neuron is now a stream of spikes that
capture the same information as the activation in
the ANN.

Each incoming spike must now trigger the reading
of the same associative memory defined for the ANN,
using the ID Xi as the key, retrieving the list of synaptic
weights Wij and their corresponding target neuron IDs,
Yj. Each entry in the list will trigger the reading of the
neural state UJ of a target neuron, given its identifier
YJ .

Where the functionality of the SNN begins to diverge
from that of the ANN is that no multiplication is required
at this point. The synaptic weight Wij is merely added to
the current state Uj, which can then be written back to the
state memory. If the neuron state has surpassed the pre-
defined threshold then an output spike is generated and the
neuron state value is reset (either to an absolute value or by
a fixed amount) before it is written back (Rueckauer et al.,
2017).

4. ANALYSIS OF COMPUTATIONAL AND
ENERGY COSTS FOR THE ANN AND THE
SNN

We now quantify the energy consumption in the two network
types (ANN and SNN), again focusing on the processing of pre-
synaptic input arriving at a neuroprocessor pipeline responsible
for a group of neurons.

For the ANN, the following energy costs are required to
process the input activation arriving from a single neuron:

• Transmission cost of the activation to this neuroprocessor,
EsendActivation.

• For each target neuron:

– Retrieval of one item from a list of synaptic connections,
from local weight memory, EretrieveWeight .

– Retrieve neural state for that neuron from state memory,
EgetState.

– Multiply activation by weight, Emultiply.
– Add product to the neuron state, EstateAdd.
– Writeback neuron state to state memory, EwriteState.

The total energy consumed depends on the number of resident
target neurons, NmeanTargets to which the pre-synaptic neuron
connects. The size, NactivationBits and number of set bits, NsetBits

in the activation will also affect the energy consumed in the
multiplier, which would typically be Booth encoded (He and
Chang, 2008).

Thus we can express the total energy, EtotalANN , consumed in
the processing of a single incoming activation as:

EtotalANN = EbroadcastActivation + EretrieveWeights +

NmeanTargets × [EgetState + Emultiplication + EAddition

+ EwriteState] (1)

The read, multiply, and writeback operations each consume
about 300 fJ and these occur for each target neuron in the
pipeline.

For the spiking network the cost is the same per incoming
event except that there is no multiplication step and the initial
energy cost of transmitting the spike, EbroadcastSpike, will be lower
since it requires fewer bits. However, the entire cost of processing
this event will occur for each spike. If the mean number of spikes
required to represent an activation is NmeanSpikes, then the total
energy cost per received neuron output for the spiking network,
EtotalSNN , is:

EtotalSNN = NmeanSpikes × (EbroadcastSpike + EretrieveWeights)

+ NmeanSpikes × NmeanTargets × (EgetState + EAddition

+ EwriteState) (2)

To quantify the two models we draw on energy consumption
estimates from post-layout analysis of the data for the
SpiNNaker2 development using TSMC 22FDX technology
assuming average process at room temperature (Höppner et al.,
2019; Höppner et al., 2020). All energy estimates take account of
both dynamic switching power and leakage. A single 32-bit read
access to 2K word SRAM costs 296 fJ, while a 32× 8 bit multiply-
accumulate costs 293 fJ. We will assume that the write back cost
to the SRAM is approximately the same as the read and that a
32-bit addition costs one fifth the cost of the MAC operation.
To simplify the discussion, let E represent the adder energy cost
(approx 60 fJ), thus the multiply costs 5E, SRAM read 5E, and
SRAM writeback E. We shall use the SRAM cost for both weight
and neuron state accesses.

The broadcast energy will be highly dependent on the
implementation. We will neglect it for this reason, which benefits
the SNN over the ANN since this cost is borne more times in the
former than in the latter.

In the ANN case the weight retrieval costs 5E and the loop
over each target costs 5E + 5E + E + E = 12E. This cost occurs
NmeanTargets times.

In the SNN case, the loop for each arriving spike over each
target costs 5E + E + E = 7E. This cost also occurs NmeanTargets

times for each arriving spike.
For the SNN energy to be lower than the ANN for this

technology would require the expected number of spikes used to
transmit an output to be <12E/7E or 1.72. At this low level of
activity, the coding of outputs using spikes is arguably no longer
a rate-based code. This is our result.

5. DISCUSSION

The argument presented above focuses on the fundamental
computation in the ANN and SNN cases. It suggests that only

Frontiers in Neuroscience | www.frontiersin.org 5 April 2021 | Volume 15 | Article 651141

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Davidson and Furber Comparing Implementations of ANNs and SNNs

networks with very low spiking activity justify the use of spikes
over conventional ANNs. A crucial factor in this result is the
cost of accessing both neuron state and the weight matrix. These
energy costs typically exceed the computational cost and must
be taken into consideration when assessing the efficiency of the
encoding mechanism for output values. While acknowledging
that variations in process technologies will have some impact
on the relative costs of memory, adders and multipliers, these
variations will be small and the essential conclusion should not
change significantly. The design is free to modify the parameters
of our proposed metric for their technology.

Does our result imply that spiking networks implemented
on digital hardware have no potential benefit? We believe that
the opposite is true, but success or failure is strongly linked
to the choice of encoding. We have demonstrated that to beat
an conventional ANN representation requires sparse and/or
temporally-coded vectors of spiking neurons for which the
presence of a spike carries more information than is achieved
with rate-coded networks in which spike rates per neuron
measured in the tens or even hundreds of Hertz are the norm.
The intent of this work is to focus on more information rich
coding schemes, which necessitate moving away from an SNN
as merely a re-coding of an equivalent ANN.

Such approaches do exist and we wish to encourage others
to adopt the same mindset. A group of researchers at TU
Graz demonstrated an image recognition network in which each
neuron produces at most one spike (Stöckl and Maass, 2021),
while also proposing another distinct encoding using two spikes
per neuron (Stöckl and Maass, 2020). Very sparse codes have
been demonstrated as more energy efficient than equivalent
ANN networks, even with spike rates as low as 0.24 spikes per

neuron to perform an inference (Lee et al., 2019; Wu J. et al.,
2019; Wu Y. et al., 2019). FPGA-based circuits using very sparse
encoding combine good accuracy with low power when applied
to classification tasks (Mostafa et al., 2017). Another slightly older
line of enquiry is the use of rank-order coding, a form of temporal
encoding that may be relevant to understanding how the retina
encodes information (Thorpe and Gautrais, 1998; Furber et al.,
2007; Portelli et al., 2016).

These examples illustrate that more efficient encoding
methodologies are readily achievable. They have the potential to
avoid the inefficiencies we have outlined in the implementation
of rate-coded networks. The path towards truly mould-breaking
neurally-inspired computation for artificial systems should focus
on information encoding as the way forward.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SD wrote the paper, with feedback from SF. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was funded by Huawei Ltd., agreement no.
YBN2018085393 and by the EU ICT Flagship Human Brain
Project (H2020 785907 and 945539).

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available

online at: tensorflow.org

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., et al.

(2019). A state-of-the-art survey on deep learning theory and architectures.

Electronics 8:292. doi: 10.3390/electronics8030292

Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations,

population coding and computation. Nat. Rev. Neurosci. 7, 358–366.

doi: 10.1038/nrn1888

Barsoum, E., Zhang, C., Ferrer, C. C., and Zhang, Z. (2016). “Training

deep networks for facial expression recognition with crowd-sourced label

distribution,” in Proceedings of the 18th ACM International Conference on

Multimodal Interaction (Tokyo), 279–283. doi: 10.1145/2993148.2993165

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al.

(2020). Language models are few-shot learners. arxiv 2020. arXiv preprint

arXiv:2005.14165.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Furber, S. B., Brown, G., Bose, J., Cumpstey, J. M., Marshall, P., and

Shapiro, J. L. (2007). Sparse distributed memory using rank-order neural

codes. IEEE Trans. Neural Netw. 18, 648–659. doi: 10.1109/TNN.2006.8

90804

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Graves, A., Mohamed, A., and Hinton, G. (2013). “Speech recognition with

deep recurrent neural networks,” in 2013 IEEE International Conference

on Acoustics, Speech and Signal Processing (Vancouver, CA), 6645–6649.

doi: 10.1109/ICASSP.2013.6638947

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: compressing deep

neural networks with pruning, trained quantization andHuffman coding. arXiv

preprint arXiv:1510.00149.

He, Y., and Chang, C.-H. (2008). A new redundant binary booth encoding

for fast 2n -bit multiplier design. IEEE Trans. Circ. Syst. I 56, 1192–1201.

doi: 10.1109/TCSI.2008.2008503

Höppner, S., Eisenreich, H., Walter, D., Scharfe, A., Oefelein, A., Schraut, F.,

et al. (2020). Adaptive body bias aware implementation for ultra-low-voltage

designs in 22FDX technology. IEEE Trans. Circ. Syst. II 67, 2159–2163.

doi: 10.1109/TCSII.2019.2959544

Höppner, S., Eisenreich, H., Walter, D., Steeb, U., Clifford Dmello, A. S., Sinkwitz,

R., et al. (2019). “How to achieve world-leading energy efficiency using 22FDX

with adaptive body biasing on an arm cortex-M4 IoT SoC,” in ESSDERC 2019

- 49th European Solid-State Device Research Conference (ESSDERC) (Krakow),

66–69. doi: 10.1109/ESSDERC.2019.8901768

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.

(2017). MobileNets: efficient convolutional neural networks for mobile vision

applications. arXiv:1704.04861

Kepuska, V., and Bohouta, G. (2018). “Next-generation of virtual personal

assistants (Microsoft Cortana, Apple Siri, Amazon Alexa, and Google

Home),” in 2018 IEEE 8th Annual Computing and Communication

Workshop and Conference (CCWC) (Las Vegas, NV), 99–103.

doi: 10.1109/CCWC.2018.8301638

Frontiers in Neuroscience | www.frontiersin.org 6 April 2021 | Volume 15 | Article 651141

www.tensorflow.org
https://doi.org/10.3390/electronics8030292
https://doi.org/10.1038/nrn1888
https://doi.org/10.1145/2993148.2993165
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/TNN.2006.890804
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/TCSI.2008.2008503
https://doi.org/10.1109/TCSII.2019.2959544
https://doi.org/10.1109/ESSDERC.2019.8901768
https://doi.org/10.1109/CCWC.2018.8301638
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Davidson and Furber Comparing Implementations of ANNs and SNNs

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Lee, C., Sarwar, S. S., and Roy, K. (2019). Enabling spike-based backpropagation

in state-of-the-art deep neural network architectures. arXiv preprint

arXiv:1903.06379. doi: 10.3389/fnins.2020.00119

Lines, A., Joshi, P., Liu, R., McCoy, S., Tse, J., Weng, Y.-H., et al. (2018). “Loihi

asynchronous neuromorphic research chip,” in 2018 24th IEEE International

Symposium on Asynchronous Circuits and Systems (ASYNC) (Vienna), 32–33.

doi: 10.1109/ASYNC.2018.00018

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F. E. (2017). A survey of

deep neural network architectures and their applications.Neurocomputing 234,

11–26. doi: 10.1016/j.neucom.2016.12.038

Mostafa, H., Pedroni, B. U., Sheik, S., and Cauwenberghs, G. (2017).

“Fast classification using sparsely active spiking networks,” in 2017 IEEE

International Symposium on Circuits and Systems (ISCAS) (Baltimore, MD),

1–4. doi: 10.1109/ISCAS.2017.8050527

NVIDIA (2019). NVIDIA Tesla P4 Data Sheet.

Portelli, G., Barrett, J. M., Hilgen, G., Masquelier, T., Maccione, A., Di Marco,

S., et al. (2016). Rank order coding: a retinal information decoding strategy

revealed by large-scale multielectrode array retinal recordings. Eneuro 3, 1–18.

doi: 10.1523/ENEURO.0134-15.2016

Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A.,

et al. (2018). spynnaker: a software package for running PYNN simulations on

spinnaker. Front. Neurosci. 12:816. doi: 10.3389/fnins.2018.00816

Rueckauer, B., Lungu, I. A., Hu, Y., Pfeiffer, M., and Liu, S. C. (2017). Conversion of

continuous-valued deep networks to efficient event-driven networks for image

classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Stöckl, C., and Maass, W. (2020). Optimized spiking neurons can classify images

with high accuracy through temporal coding with two spikes. arXiv preprint

arXiv:2002.00860.

Stöckl, C., and Maass, W. (2021). Recognizing images with at most one spike per

neuron. Nat. Mach. Intell. doi: 10.1038/s42256-021-00311-4

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy

considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243.

doi: 10.18653/v1/P19-1355

Thorpe, S., and Gautrais, J. (1998). “Rank order coding,” in Computational

Neuroscience, ed Bower JM (Boston, MA: Springer), 113–118.

doi: 10.1007/978-1-4615-4831-7_19

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A.,

Chung, J., et al. (2019). Grandmaster level in starcraft ii using multi-

agent reinforcement learning. Nature 575, 350–354. doi: 10.1038/s41586-019-

1724-z

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2019). A tandem learning

rule for efficient and rapid inference on deep spiking neural networks. arXiv

preprint arXiv:1907.01167.

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct

training for spiking neural networks: faster, larger, better,” in Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 33, 1311–1318.

doi: 10.1609/aaai.v33i01.33011311

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Davidson and Furber. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 7 April 2021 | Volume 15 | Article 651141

https://doi.org/10.1038/nature14539
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1109/ASYNC.2018.00018
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1109/ISCAS.2017.8050527
https://doi.org/10.1523/ENEURO.0134-15.2016
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1038/s42256-021-00311-4
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.1007/978-1-4615-4831-7_19
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1609/aaai.v33i01.33011311
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Comparison of Artificial and Spiking Neural Networks on Digital Hardware
	1. Introduction
	2. Overview of Network Structure and Computations
	3. Implementations of the ANN and SNN Versions of Key Processes
	4. Analysis of Computational and Energy Costs for The ANN and the SNN
	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

