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Alzheimer disease (AD) is mainly manifested as insidious onset, chronic progressive
cognitive decline and non-cognitive neuropsychiatric symptoms, which seriously affects
the quality of life of the elderly and causes a very large burden on society and families.
This paper uses graph theory to analyze the constructed brain network, and extracts
the node degree, node efficiency, and node betweenness centrality parameters of the
two modal brain networks. The T test method is used to analyze the difference of graph
theory parameters between normal people and AD patients, and brain regions with
significant differences in graph theory parameters are selected as brain network features.
By analyzing the calculation principles of the conventional convolutional layer and the
depth separable convolution unit, the computational complexity of them is compared.
The depth separable convolution unit decomposes the traditional convolution process
into spatial convolution for feature extraction and point convolution for feature
combination, which greatly reduces the number of multiplication and addition operations
in the convolution process, while still being able to obtain comparisons. Aiming at
the special convolution structure of the depth separable convolution unit, this paper
proposes a channel pruning method based on the convolution structure and explains
its pruning process. Multimodal neuroimaging can provide complete information for
the quantification of Alzheimer’s disease. This paper proposes a cascaded three-
dimensional neural network framework based on single-modal and multi-modal images,
using MRI and PET images to distinguish AD and MCI from normal samples. Multiple
three-dimensional CNN networks are used to extract recognizable information in local
image blocks. The high-level two-dimensional CNN network fuses multi-modal features
and selects the features of discriminative regions to perform quantitative predictions on
samples. The algorithm proposed in this paper can automatically extract and fuse the
features of multi-modality and multi-regions layer by layer, and the visual analysis results
show that the abnormally changed regions affected by Alzheimer’s disease provide
important information for clinical quantification.

Keywords: Alzheimer’s disease, quantification of cognitive function, deep separable convolution, channel
pruning, convolutional neural network
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INTRODUCTION

Alzheimer disease (AD) is a neurodegenerative disease in the
brain. It is one of the most common types of dementia,
accounting for about 60–80% of the total number of dementia
patients (Lee et al., 2019; Spasov et al., 2019). AD usually
has a chronic or progressive nature, and a variety of high-
order cortical dysfunctions appear, manifested by symptoms
such as cognitive decline, reduced judgment and memory loss,
and ultimately lead to the loss of independent living ability.
Many AD patients need to rely on the help of others to
maintain a normal life, which brings a huge burden to caregivers
(Martinez-Murcia et al., 2019; Noor et al., 2020). These burdens
include various pressures on social life, psychological aspects,
physical activities, and economic levels. AD has become a
common problem faced by the whole world. To overcome the
pathogenesis of AD, it is urgent to carry out early quantification
and treatment. Mild Cognitive Impairment (MCI) is the early
stage of AD. The annual conversion rate of MCI to AD is as
high as 10–15%, while the annual conversion rate of healthy
people to AD is only 1–2% (Ju et al., 2017). Certain cognitive
training and rehabilitation can delay the development of AD,
and some can return to normal. However, once it enters the
AD stage, no effective therapeutic drugs have been developed
clinically, and this process is irreversible (Bi et al., 2020a;
El-Sappagh et al., 2020).

In recent years, the research on the combination of artificial
intelligence technology and medical big data has achieved a
lot of research success in the medical field (Li et al., 2019).
Artificial intelligence technology can help doctors and patients
predict more potential diseases. At the same time, medical big
data also provides a good foundation and platform for the
application of artificial intelligence technology. Among them,
deep learning is a member of the artificial intelligence army.
The core concept of deep learning is to simulate the multi-level
information processing method of the brain, and interpret the
input information in layers to obtain a series of characteristics
of the input information (Luo et al., 2017; Shi et al., 2017). In the
medical field, deep learning can not only perform image analysis
and intelligent quantification of diseases, but also improve the
efficiency of medical data collection and processing, thereby
improving the accuracy of doctors in diagnosis and treatment of
diseases, so that patients can get more timely, more complete, and
more accurate treatment (Chen et al., 2019).

In actual clinical quantification, doctors often need to analyze
multiple modalities of image data, and integrate multiple
quantitative information, combined with experience knowledge,
in order to make an objective judgment on the patient’s
condition. This paper uses graph theory to extract brain network
features and verify the effectiveness of the features. In this
paper, two kinds of brain networks are established, and three
graph theory parameters of node efficiency, node degree, and
node betweenness centrality are extracted respectively. Through
significant difference analysis, graph theory parameters with
obvious differences between normal people and AD patients are
taken as brain network characteristics. Specifically, the technical
contributions of this article can be summarized as follows:

First: This article analyzes the computational complexity in
the convolutional layer, introduces several special convolution
structures, and focuses on the depth separable convolution
structure, and based on the convolution unit, a new channel
pruning is developed. We elaborated the channel pruning
process for a single convolution unit, analyzed the compression
effect of this method on the convolution unit, and then
introduced the pruning process for the entire network. The
key issues of channel selection, pruning ratio selection and
model performance recovery in the overall pruning process are
discussed. The channel selection was carried out according to the
APo Z channel importance evaluation criteria, and the channel
pruning was carried out on Mobile Net.

Second: We try to use multi-modal brain imaging data,
such as MRI images. Through non-invasive imaging technology,
clear tissue structure of the patient’s brain can be obtained,
PET images and changes in the function of various brain
tissues can be obtained through changes in glucose metabolism.
We combine the two modal data for comprehensive analysis,
which can improve the specificity and sensitivity of AD
and MCI quantification, effectively prevent misdiagnosis and
missed diagnosis, and improve the credibility of computer-
aided quantification.

Third: In this paper, 3D-CNNs are used to extract the
features of local 3D image blocks, and the feature output of
the intermediate convolutional layer corresponding to the MRI
and PET images at the same location is taken as the input of
the feature fusion network, and the local features at different
locations are stitched together, and then we use the trained
network to make the final quantification of the sample. In
the experiment based on multi-modal data, the quantization
accuracy of AD and NC based on cascaded 3D-CNNs reached
the ideal level.

The rest of this article is organized as follows. Section 2
discusses related work. Section 3 carried out the extraction and
analysis of the parameter features of Alzheimer’s disease brain
network graph theory. Section 4 designs a channel pruning
algorithm based on efficient convolution unit. Section 5 presents
the results and analysis of cognitive function quantitative
experiments. Section 6 summarizes the full text.

RELATED WORK

AD is essentially a disease that continues to deteriorate and is
incurable, and the direct cause is still unknown. The main factors
that cause Alzheimer’s are genetic, neurotransmitter, immune
and environmental factors (Lu et al., 2018a; Jain et al., 2019;
Raza et al., 2019). Although the pathological changes of AD
begin to appear very early, its typical clinical symptoms do not
show up until later. According to estimates by the Alzheimer’s
Association, if there is no major breakthrough in AD prevention,
by 2050, the number of AD patients worldwide is expected to
exceed 155 million (Zeng et al., 2018). Studies have found that
about 12% of MCI patients convert to AD every year, while
the annual probability of converting to AD for elderly people
with normal cognitive function is only 1–2% (Oh et al., 2019).
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The high conversion rate of MCI to AD on the one hand
shows that MCI is a high-risk group of AD, on the other
hand, it also reflects the importance of early quantification of
AD (Bi et al., 2020b). Therefore, if the patients with MCI can
be screened out based on the early quantitative examination
reports of the patients and their disease development can be
predicted, preventive intervention can be carried out on the
patients and standardized drug treatments can be given to the
patients, thereby preventing or delaying the occurrence of AD
(Choi et al., 2018; Lu et al., 2018b).

When doctors are faced with huge medical pathology
data, the workload of quantifying AD is too complicated
and there are some subjective predictions. For example, MRI
images require doctors to go through the naked eye, linear
measurement, area measurement, volume measurement, and
MRI value measurement. Therefore, the accuracy and efficiency
of AD quantification results may be further improved. At
present, most researches use simple data analysis techniques and
machine learning techniques to make quantitative predictions
on MRI images, and on the other hand, researches are based
on a single AD neuroimaging data, molecular biology data or
genetic examination data. The use of deep learning technology
to analyze MRI image performance text reports and multiple
AD clinical examination data has not been studied in depth. In
response to the above problems, related scholars proposed a new
quantitative model and predictive model based on deep learning,
designed and implemented an Alzheimer’s assisted quantitative
medical system, which separately reported on MRI images.
And multiple AD clinical examination data quantification can
assist doctors in quantifying and predicting the development
of the patient’s condition, providing more treatment time for
preventing or delaying AD.

The quantification of Alzheimer’s disease needs to be
combined with the patient’s medical history, family history,
neuropsychological evaluation and other examinations, and
the cause of the quantification needs to be based on clinical
manifestations, biomarkers and structural images (Tang
et al., 2019). Nowadays, domestic and foreign researches
on quantitative prediction methods for Alzheimer’s disease
are mostly based on MRI images in structured images, and
then use different research methods for research, as well
as using biomarkers and neuropsychological examinations
(Wang et al., 2019).

Structured images include Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI). The early lesions of AD
mainly involve the hippocampus, and CT is difficult to accurately
display the structure of the hippocampus. Therefore, the role of
CT in distinguishing and quantifying AD is limited. MRI shows
that the abnormal changes of dementia are more sensitive than
CT, and is recognized as the best imaging method to quantify
and display the morphological abnormalities of dementia (Li
et al., 2018). Therefore, MRI is more popular in quantitative
research on the development of AD. Relevant scholars have
investigated the gray matter and differences in MRI images, using
posture morphology and statistical analysis methods to achieve
the quantification of normal, mild cognitive impairment, and
Alzheimer’s disease (Zeng et al., 2019). Based on Adaboost, the

researchers analyzed the hippocampus volume in MRI images
and studied the significant differences in the low-frequency
amplitude of the three brain regions of normal, mild cognitive
impairment, and Alzheimer’s, so as to quantify the condition
of Alzheimer’s disease (Choi et al., 2019). Relevant scholars
use principal component analysis to reduce the dimensionality
of MRI images, and then use linear regression models to
predict the development trend of the MMSE scale for patients
with Alzheimer’s disease in one year (Gulhare et al., 2017; Vu
et al., 2018). However, principal component analysis is used for
dimensional reduction techniques. The disadvantage is that the
interpretability of the established model is poor.

The method based on the prior knowledge area is based on
the prior knowledge obtained by researching AD histological
or imaging data. Generally, the features of some important
regions can express information with rich discriminative power
for AD, and these features can be extracted for quantification.
The hippocampus is located in the medial temporal lobe
and is one of the few areas where severe structural changes
occur in AD (Mazurowski et al., 2019). Therefore, the
geometrical characteristics of the hippocampus are often used
as effective biomarkers. Research by related scholars has shown
that hippocampal texture is better than volume shrinkage
measurement in terms of predicting the conversion from MCI
to AD based on SVM (Kumar et al., 2017). In fact, the effects of
AD also manifest in other brain regions. Related scholars use the
shape differential morphology measurements of the left and right
amygdala, hippocampus, thalamus, caudate nucleus, putamen,
globus pallidus, and lateral ventricle as features, and use LDA to
predict AD transformation (Zhang et al., 2019).

The rapid development of deep learning has become a
good supplement to traditional machine learning algorithms,
and has also provided new means for the quantification and
prediction of various neurodegenerative diseases, and has been
increasingly used in the field of neuroimaging (Kam et al., 2019).
However, deep learning algorithms still have certain limitations
in neuroimaging research. The existing quantification methods
of AD, MCI, and HC based on deep learning have generally
achieved high accuracy in the quantification of AD group vs.
HC group, but the accuracy rate is slightly less in AD group vs.
MCI group and MCI group vs. HC group. This is due to the
large differences in the imaging data of AD and NC patients. In
the current quantification of AD, MCI and HC by researchers,
the accuracy rate is relatively low. On the one hand, although
deep learning models usually do not require pre-defined features
and can search for and discover complex structural features that
characterize the problem based on data, the feature extraction
and analysis technology of neuroimaging is currently relatively
mature and will be based on neuroimaging preprocessing (Vieira
et al., 2017; Le et al., 2019). The extracted features are used to
construct a deep learning model, which is very likely to accelerate
the convergence speed of model training, reduce the demand for
training data, and improve model performance (Liu et al., 2018).
On the other hand, the large data training samples required for
deep learning and the large number of parameters required for
model adjustment can easily lead to a much higher computational
complexity and the amount of data required for training models
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than traditional machine learning models (Jha and Kwon, 2017;
Huang et al., 2020; Wingate et al., 2020). Therefore, although
current neuroimaging databases have been well developed, their
scale may limit the performance of deep learning to a certain
extent. Therefore, this article uses traditional machine learning
methods to analyze and study the quantitative problems of
AD, MCI, and HC.

ALZHEIMER’S DISEASE PARAMETER
FEATURE EXTRACTION

Multimodal MRI Image Preprocessing
The scanned magnetic resonance images are all images output
by the machine. These images have noise and the format is not
convenient for computer processing. In order to facilitate the
further processing and research of the image, it is necessary to
perform the image preprocessing process first. There are many
steps in the preprocessing process of the three modalities of
magnetic resonance images are similar. We will introduce the
preprocessing process of the different modalities one by one.
Figure 1 shows the flow of magnetic resonance image processing
for Alzheimer’s disease.

First we complete the preprocessing process of T1 weighted
image. The first step is format conversion, which converts
DICOM files into NIFTI files. The format of the original MRI
image is generally DICOM format. DICOM is the unified output
format of medical imaging machines. The images scanned in this
format are independent images and need to be read with specific
software, which is very inconvenient. It is not conducive to
continue processing research. NIFTI file is an advanced medical
image storage format, which has many advantages, such as
convenient calculation and analysis, strong format universality,
and centralized collection of corpus. We can continue processing
the converted data.

The second step is head movement correction. When a patient
is scanning for magnetic resonance imaging, it is inevitable
that there will be some slight jitter, which will cause noise and
artifacts in the collected images. In order to remove artifacts
and noise, it is necessary to perform head movement correction
on the scanned T1-weighted image. Spatial standardization
is an important step to eliminate individual differences. Due
to differences in the patient’s head volume, shape, etc., all
images are mapped once and mapped to the MNI standard
space. This will eliminate the influence of patient individual
differences on subsequent experiments and make the results
more accurate. The fourth step of smoothing filtering is also
mainly to eliminate the noise of the patient during the scanning
magnetic resonance.

The last step is the division of brain regions. The brain division
of T1-weighted image is not actually a routine preprocessing
step. In this study, the T1 weighted image is mainly used as a
template for the construction of the brain network using f MRI
and DTI data. So here is included in the preprocessing process.
This process will use the brain division method to divide the brain
into 52 brain regions. The preprocessing process of T1 weighted
image is now completed.

The f MRI preprocessing process is implemented on the
MATLAB open-source toolkit GRETNA (Graph Theoretical
Network Analysis Toolbox). The second preprocessing step of f
MRI is to remove the initial data. The initial 5 data of f MRI are
unstable because of the unstable blood oxygen signal, so the data
obtained by f MRI scan is not reliable and needs to be removed.
The third step of preprocessing is time level correction. f MRI
scans the odd-numbered slices first and then the even-numbered
slices during the scanning process. The scanning time of adjacent
slices is very different, and the processing can be continued after
time correction.

The process of DTI preprocessing is done on MATLAB’s
open source toolkit PANDA (Pipeline for Analyzing Brain
Diffusion Images). There are only two differences between DTI
preprocessing and T1 weighted image preprocessing. The second
step of pre-processing is to remove the skull. DTI is a structural
image, and the structure of the skull is more obvious. In
order to prevent the skull from interfering with the research
in the subsequent research process, it was removed in the
preprocessing process. The fourth step of pretreatment process
is eddy current correction. Due to the frequent switching of
the dispersion gradient, the image will produce eddy current
distortion. The eddy current correction can remove the eddy
current distortion and make the imaging result more accurate.
So far, the preprocessing of f MRI, DTI, and T1-weighted
images is all over.

Brain Function Connection Network
Acquisition
Brain functional connection is obtained from f MRI data, which
can reflect the synchronization of functional activities between
brain regions by calculating the correlation of time series signals
between brain regions. The network formed by the functional
connections between all brain regions of the whole brain is called
Functional Connectivity Network (FCN).

Through the preprocessing process, the text has obtained the
brain template. In this way, the nodes of the brain network can be
defined smoothly. In the process of defining the brain function to
connect the network edge, the text is defined by the correlation
of the mean value of all voxels between the two brain regions.
The formula for calculating the time series correlation coefficient
between any two brain regions is as follows:

ca,b(u) =
Cova,b(u)√

var(a) · var(b)
(1)

In the above formula, var(a) and var(b) respectively represent
the variance of the mean value of all voxel time series in the two
brain regions over time, and Cov a b(u) represents the covariance
of the time series mean value of the two brain regions. According
to the functional magnetic resonance imaging data, the time
series of each voxel can be obtained, and the calculation of the
time series correlation coefficient between any brain regions can
be completed through mathematical calculation.

The obtained correlation coefficient between brain regions is
the strength of the functional connection, but only when the
correlation coefficient between the two brain regions exceeds
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FIGURE 1 | The original image preprocessing process of Alzheimer’s disease.

the threshold, can it be determined that there is a functional
connection between the two brain regions. The larger the
correlation coefficient value, the higher the even strength.
The side of the brain function connection network is the
above-mentioned functional connection strength. The functional
connection strength between any two brain areas of the divided
52 brain areas is calculated, and the acquisition of the brain
function connection network is completed. The schematic
diagram of the acquisition of the entire brain function connection
network is shown in Figure 2.

The brain function connection network will be expressed
in the form of a mathematical matrix FC. The number of
rows and columns of the matrix corresponds to the number of
nodes in the brain network. The element values in the matrix
represent the magnitude of the functional connection strength
between the abscissa brain area and the ordinate brain area. All
elements together constitute the weight of the brain function
connection network edge.

The white matter structure connection measures the
connection of white matter fibers that actually exist between
two brain regions. The network formed by the connection of
white matter fibers between all brain regions of the whole brain
is called DTI Structural Connectivity Network (DTISCN). The
white matter structure connection network acquisition is similar
to the process of f MRI data acquisition FCN. It also defines
the nodes of the network first, and then calculates the edges of
the network. The process of defining nodes in the white matter
structure connection network is the same as that of FCN. The
two imaging methods of the same sample use exactly the same

templates, so the white matter structure connection network
also has 52 nodes.

The white matter structure connection network will use the
anisotropy value FA obtained from DTI data to define the white
matter fiber connections between brain regions. The physical
meaning of FA value indicates the strength of dispersion, and the
number and density of white matter fibers can be reflected by the
size of FA value. The method of solving the FA value of each voxel
is as follows:

FA =

√
3 ·
[
(η1 − η′2)+ (η2 − η′2)+ (η3 − η′2)

]√
2 ·
(
η2

1 + η2
2 + η2

3
) (2)

Different values of η indicate the degree of dispersion of
each voxel in different directions, and η’ indicates the average
value of the degree of dispersion in different directions. The FA
value between any two brain regions can be obtained from the
FA value of each voxel of these two brain regions. However,
not all the FA values of the brain regions are reasonable and
effective, because some FA values cannot describe the white
matter fiber connections in the brain regions. Here we will
introduce a probabilistic fiber tracking algorithm, which can
eliminate invalid FA values and leave valid FA values. The
probabilistic neural tracking algorithm calculates the relationship
between the gradient information and the anisotropic FA. The
threshold of FA is 0.2. If the anisotropy value is lower than 0.2,
it is assumed that there are no nerve fibers in the voxel or that
nerve fiber disconnection occurs. The threshold of the angle is set
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FIGURE 2 | Schematic diagram of brain function connection network acquisition.

to 35◦. If the angle exceeds 35◦, it is considered the intersection
of two nerve fibers instead of one nerve fiber.

In this paper, the white matter structure connection network
is obtained with the assistance of MATLAB toolkit PANDA. We
can obtain the nodes and edges of the white matter structure
connecting network. When the FA value is still confirmed after
the fiber tracking between the two brain regions is completed, it is
assumed that there is a white matter fiber connection between the
two brain regions. The larger the FA value, the stronger the white
matter fiber connection strength. Similar to FCN, DTISCN will
be obtained by the anisotropic FA matrix between brain regions.
The FA matrix can also be visualized for intuitive observation.
Similar to the FC matrix, each point of the FA matrix represents
the strength of the white matter fiber connection between the
abscissa brain area and the ordinate brain area. Because the
fiber connection has no directionality, the matrix is a symmetric
matrix. Through the visualized graph, it can be seen that the FA
value does not exist in many places. One part of the FA value
does not exist originally, and the other part is that the FA value
is removed after the fiber tracking is completed. The FA matrix
can be used to extract the connection network characteristics of
the white matter structure.

Extraction of Parameter Features
Graph theory parameters include node degree, node efficiency,
and node betweenness centrality. The calculation methods and
physical meanings of different parameters are different. The node

degree is a description of the importance of a node in the network,
specifically expressed as the sum of the weights of all other node
edges in the network that have a connection relationship with
the node. The larger the node degree, the closer the connection
between the node and other nodes, and it also reflects the high
importance of the node in the entire network. The calculation
formula of node degree of i-node is as follows:

Di =
∑
j→N

wij (3)

In the above formula, wij represents the weight value of the
edge between node i and node j, and N represents the node
in the network. The value in the connection matrix FC reflects
the weight of the brain function connecting the network edge.
The anisotropy matrix FA reflects the weight of the white matter
structure connected to the network edge. In this study, changes
in the degree of nodes can reflect changes in the importance of
corresponding brain regions. By comparing normal people with
AD patients, changes in the importance of brain regions in AD
patients can be found.

Node efficiency, also known as local efficiency, mainly reflects
the efficiency of the information transfer process between the
node and surrounding nodes. This indicator can not only reflect
the efficiency of information flow between the neighbors of the
node, but also reflect the degree of optimization of the local
network. Therefore, the node efficiency can be expressed as the
average of the sum of the reciprocal of the shortest path of each
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node in the network composed of the node’s neighborhood. The
calculation formula for node efficiency of i-node is as follows:

Ei =
∑
j 6=k

1
Ljk

1
NGi(NGi − 1)

(4)

In the above formula, Gi is a network formed by the
neighborhood of node i, and j and k are two nodes in the
neighborhood network. Ljk is the shortest path between any
two nodes in the neighborhood network. According to the FA
matrix and the FC matrix, the node efficiency of each node
in the two networks of FCN and DTISCN can be calculated
respectively. Node efficiency can reflect the efficiency of brain
processing information and the ability to resist attacks. The
decline in the efficiency of brain nodes will reflect the damage to
the brain by diseases.

Node betweenness centrality is also an index used to describe
the role and status of a node, which is different from the
perspective of node degree description. Betweenness centrality
describes the criticality of nodes in the process of network
information processing from the perspective of information flow.
Node betweenness centrality is defined as the ratio of the number
of paths containing the node among all the shortest paths in the
entire network to the number of all shortest paths in the entire
network. If the betweenness centrality of nodes changes, it means
that the shortest path of the whole brain network will change, and
the efficiency of the entire network will also change. The formula
for calculating betweenness centrality of i-node is as follows:

Bi =
∑
i6=j 6=k

σjk(i− 1)

σjk
(5)

Node betweenness centrality can also be obtained through
FA and FC matrices. Betweenness centrality is a very useful
indicator for brain networks, it reflects the size of the brain
area in processing information. The change of betweenness
centrality in AD patients can reflect the damage and involvement
of the brain area.

Graph theory parameters are obtained above, and each graph
theory parameter is a characteristic component. But these graph
theory parameters can only be used as feature components,
and only feature components with significant differences can be
called features. Therefore, this article will verify the differences of
graph theory parameters, and select the feature components with
significant differences as the features of FCN and DTISCN.

In the DTISCN features, the left side of the basal forebrain
and the right side of the basal forebrain showed changes in
graph theory parameters. It can be inferred that the structure
of the basal forebrain has been damaged. Of course, there are
many features that are also corroborated with the symptoms
of AD patients. I cannot explain them one by one here, but
it is certain that there are some abnormalities in the brain
function network and white matter structure connection network
of AD patients. At the same time, these features are reasonable
and effective.

CHANNEL PRUNING ALGORITHM

Complexity of Convolutional Neural
Network
In deep neural networks, complexity is divided into
computational complexity and space complexity, which
have the following effects on the network:

(1) Computational complexity
The training and prediction speed of the model is
determined by the computational complexity. The higher
the computational complexity, the more time it takes for
the forward calculation of the model. The model cannot be
tested quickly and cannot be applied in scenarios with high
real-time requirements. At the same time, the higher the
computational complexity, the more time it takes to train
the model. The longer it is, the more it is impossible to
verify and improve the model in time.

(2) Space complexity
The number of parameters in the model determines the
space complexity of the model. Generally speaking, a larger
model has more parameters, and the better the fitting
ability of the model. Then the larger the model, the more
data is needed to perform the model. The data set in real
life is usually not too large, which makes the model more
prone to overfitting.

The main operation layer in the convolutional neural network
is the convolution layer, and the calculation principle of the
convolution layer is as follows:

S(i, j) =
∑
m

∑
n

K(i−m− 1, j− n− 1) · I(m, n) (6)

Suppose I is the input layer, K is the convolution kernel,
the size of I is D1 × D1 × M, D1 is the width and height of
the input feature map, M is the dimension of the input feature
map, and the convolution kernel size is D2 × D2 × M × N, I
get an output feature map with a dimension of D1 × D1 × N
through the convolution kernel, so the computational complexity
is O(D1 × D1 × D2 × D2 × M × N), and the convolutional
layer space complexity is O (D2 × D2 × M × N), the
total computational complexity and space complexity of the
convolutional neural network is the sum of the computational
complexity and space complexity of each convolutional layer.

Some convolution kernels in Alex Net use a size of 5 × 5 or
even 7× 7, which greatly increases the complexity of the network.
Starting from the VGG neural network, convolutional neural
networks have generally adopted 3 × 3 convolution kernels to
obtain features. When cutting the model, since the spatial size of
the convolution kernel (3× 3) is already small, the cutting of the
network model usually starts with the number of channels, that
is, reducing the value of M or N.

Inception_V1 constructs four parallel convolution/pooling
modules of different sizes in an Inception structure, which
effectively increases the width of the network, but doing so
also causes a surge in the time and space complexity of
the network.
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The Inception module first uses 1 × 1 convolution to
reduce the dimensionality of the input feature map, and
performs a weighted feature combination on the features
of different channels, and then uses 3 × 3 convolution to
simultaneously map the spatial dimension and the channel
dimension. It first uses 1 × 1 convolution on the channel
correlation to map the input feature map to a space with
several dimensions smaller than itself, which is equivalent to
multiplying each channel map by a different factor to make
a linear combination, using 3 × 3 Convolve these small
spaces, and map its space and channel correlation at the same
time. The convolutional neural network structure is shown in
Figure 3.

Using 1 × 1 convolution to reduce dimensionality can
reduce the computational complexity by more than 3 times.
According to the two-dimensional convolution input and output
size relationship, for the same input size, the output of a
single 5 × 5 convolution is exactly the same as the output
of two 3 × 3 convolution cascades, that is, the receptive
field is the same.

Also according to the complexity analysis formula, this
replacement can effectively reduce the space and time complexity.
Using this convolution structure can use the saved complexity to
increase the depth and width of the model, so that the complexity
of the model remains unchanged.

Depth Separable Convolution and
Pruning
For convolution, the convolution kernel can be regarded as a
three-dimensional filter: channel dimension+ spatial dimension
(corresponding to the width and height of the feature map).
The conventional convolution operation is actually to realize
the combination of channel correlation and spatial correlation.
There is an assumption behind the Inception module: the

combination of spatial features of the convolutional layer and
the combination of channel features can be performed separately,
and better results can be achieved by doing it separately.
Depth separable convolution solves traditional convolution into
deep convolution and channel convolution. The comparison
of ordinary convolution, spatial convolution and channel
convolution is shown in Figure 4.

The 1 × 1 convolution method of the deep separable
convolution structure greatly reduces the amount of
calculation in the forward operation process. Not only that,
in Mobile Net, about 95% of the multiplication and addition
operations come from 1 × 1 convolution (accounting for
parameter 95% of the number), the large use of 1 × 1
convolution means that it can be directly implemented
using highly optimized matrix multiplication algorithms
(such as GEMM), which greatly improves computational
efficiency. The method of network pruning has been widely
used in convolutional neural network model compression.
In early work, network pruning was considered as an
effective method to reduce network complexity and reduce
overfitting. Pruning the model with the best performance so
far reduces the network complexity without loss of accuracy.
Generally speaking, the following methods are used for
network pruning:

(1) Use ordinary methods to train a complete convolutional
neural network. (2) Sort the weight of each layer according to the
absolute value of its weight. (3) Select the weight whose absolute
value is lower than a certain threshold and remove it. (4) Retrain
the network after pruning to achieve the performance before
pruning as much as possible.

Usually this method can greatly reduce the number of
network parameters in the fully connected layer. The method
of network weight pruning can often greatly reduce the amount
of network parameters, but weight pruning often has the
following disadvantages.

FIGURE 3 | Convolutional neural network structure.
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FIGURE 4 | Comparison of ordinary convolution, spatial convolution and channel convolution.

(1) These network pruning methods are only for the fully
connected layer. The fully connected layer is often the
part with the most redundant parameters. In practical
applications, we often abandon the fully connected layer
and replace the corresponding part with the average
pooling layer. Therefore, in the existing convolutional
neural networks, the convolutional layer often accounts
for most of the calculation and is the most time-
consuming part. In general, the above algorithms can
achieve faster speeds or less storage capacity, but they
rarely achieve significant acceleration while compressing
the entire network.

(2) Weight pruning is easy to produce sparse connections,
and the computational efficiency of sparse neural network
structure is not as good as that of ordinary tightly
connected neural networks.

Channel pruning is another weighted pruning method.
Unlike the pruning method that removes a single neuron
connection in neuron pruning, channel pruning removes less
important channels in the entire convolutional layer. Each
filter corresponds to a channel of the activation layer, and
the expressive ability of each channel filter is closely related
to its corresponding activation layer. A simple strategy to
calculate the expression ability of the filter is to calculate
the average percentage of zero activation value (Average
Percentage of Zeros, APo Z) for each channel of the activation
layer. The higher the APo Z, the lower the importance
of the filter, and the lower it should be removed after a
certain threshold.

Channel Convolution
Currently, for the problem of network pruning, there is no
suitable benchmark network architecture as a criterion for
judging the performance of pruning. At present, the most
commonly used convolutional neural network structures in
network pruning, such as Alex Net, Goog Le Net, Res Net,
etc., these models are effective in image quantization tasks,
but they are in order to achieve the best performance and
performance in the Image Net competition. The extreme
accuracy rate increases, and the design parameters are seriously
excessive, so these convolutional neural networks can easily
obtain extremely large multiples of compression. Therefore,
these methods can often only prove that a certain method is
correct, but it is of little significance. The more meaningful
challenge is to compress those models that are inherently more
efficient in terms of speed and accuracy trade-offs. This article
tries to simplify the Mobile Net itself. The channel pruning
operation is performed on the network. The main structure in
Mobile Net is a depth separable convolution unit, so this paper
proposes a channel pruning method based on a depth separable
convolution unit.

(1) Pruning process
The depth separable convolution unit is composed of
multiple 3 × 3 spatial convolution layers and multiple
1 × 1 channel convolution layers. The main calculation
amount of this unit is concentrated in the 1 × 1 channel
convolution. If the pruning operation is performed on
the channels obtained by the 3 × 3 spatial convolution
layer, the number of input channels of the 1 × 1
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convolution layer can be significantly reduced, thereby
reducing the computational complexity of the 1 × 1
channel convolution.
Now we consider explaining this method from another
angle. In the depth separable convolution, the 3× 3 spatial
convolution can be regarded as the feature extraction
process, and the features of each channel of the feature
layer are filtered to obtain the features. After the features
are obtained, the features are performed by the 1 × 1
channel convolution method. The introduction of channel
pruning after the spatial convolutional layer can be
regarded as introducing a feature selection process to
retain the more important features in image quantization,
detection or segmentation tasks, and filter out the less
important features.
We use a triple < Li,Di,Pi > to represent the i-th depth
separable unit, Li refers to the input unit, Di refers to
the spatial convolution in the depth separable convolution
structure, and Pi refers to the channel convolution in the
structure, namely convolution part. The activation layer in
the figure refers to the activation layer after the Di layer,
which is the input unit of channel convolution. The goal
of channel pruning is to cut the less important channels in
the activation layer. At the same time, the corresponding
convolutional layers in Di and Pi will also be removed.
Each filter in Di corresponds to a channel in the activation
layer, and the importance of the feature channel is often
evaluated by some index. The light-colored layer in the
activation layer represents the output channel with lower
importance and should be removed. The corresponding
convolution filter in Di is removed, and the convolution
filter that uses this channel as input is removed at the same
time, and the output dimension of the depth separable
convolution unit remains unchanged. From the calculation
principle of the depth separable convolution, we know that
a certain channel j of the activation layer is obtained by
convolution of the j-th channel of the input unit with the
3 × 3 filter of the j-channel of the spatial convolution
layer. The channel is removed, which means that the
j-th channel of the input layer should also be removed.
For the convolution filter that should be removed, in the
pruning process, the corresponding convolutional layer
weight value is set to 0, and the corresponding learning
rate is also set to 0. Therefore, the training and inference
process of the convolutional neural network is not in
calculations. After the network fine-tuning training is
completed, the convolutional filter with an ownership
value of 0 in the network will be removed. At this
point, the unimportant convolutional layer in the neural
network has been completely removed. The calculation
amount of the entire module has been calculated as
D1 × D1 × D2 × D2 × M + M × N × D1 × D1.
Now some channels are removed by the method of channel
pruning. It should be noted that the pruning process does
not reduce the output dimension of the convolution unit,
but only cuts off the less important feature layer and its
corresponding weight. Therefore, assuming that M × ε

channels (0 < ε < 1) are removed, the entire depth can
be separated, the calculation amount of the convolution
unit becomes D1 × D1 × D2 × D2 × M × (1−
ε) + M × N × D1 × D1 × (1− ε), which is
greatly reduced compared to the original convolutional
neural network. And the output dimension size N
will not change.
The pruning of the i-th depth separable convolution unit
will also affect the i-1th convolution unit. Assume that
the j channel of the input layer Li of the i-th depth
separable convolution unit is removed, and Li is generated
by the channel convolution part Pi-1 of the i-1th depth
separable convolution structure, so the corresponding
1 × 1 convolution part can also be removed. It can be
seen that the channel pruning method based on the depth
separable unit has better interpretability than the ordinary
convolution unit, especially when dealing with multilayer
structure pruning.
A complete channel pruning process based on depth
separable convolution unit is shown in Figure 5. For the
i-th depth separable convolution unit < Li,Di,Pi >, all
channels of the spatial convolution layer Di output are
obtained according to a certain importance evaluation
criterion degree of importance. Then you sort the
convolution channels in the order of importance from
small to large, remove some of the least important
channels in the output, and then remove the corresponding
convolution filters in Pi and Di and the corresponding
ones in Li input channel. You remove the convolution filter
corresponding to Li in the layer < Li-1,Di-1,Pi-1 > of the
depth separable convolution unit, so that the pruning of
the i-th depth separable convolution unit process is over.
After the pruning of all convolutional units is completed,
the network fine-tuning method is used to restore the lost
performance of the model after pruning.

(2) Evaluation of channel importance and selection of pruning
ratio
The first and most important step of channel pruning is
to evaluate the importance of feature channels. Important
feature channels retain some of the more important
features in the model. If removed, the accuracy of the
model will be greatly affected. This article chooses APo
Z as the evaluation standard for the importance of the
convolution channel. In the depth separable convolution
unit, the spatial 3 × 3 convolution layer is convolved
separately for each input channel to obtain image features.
Therefore, there is a one-to-one correspondence between
the convolution channel and the output feature layer.
After the feature of the spatial convolutional layer Di
is taken, nonlinearity is introduced through the linear
rectification activation function (Re Lu) to obtain the
activation layer Ai. Therefore, the higher the APo Z in
the activation layer, the greater the proportion of 0 in
the activation layer, indicating the most positions of the
feature layer are not activated, and their importance is
low, and their corresponding spatial convolutional layer Di
should be removed.
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FIGURE 5 | The overall process of channel pruning.

The Softmax function, also known as the normalized
exponential function, is a generalization of the logical function,
and the function form is as follows:

σ(z)j =
e−zj∑K
k=1 e−zk

(7)

It can be seen from the formula that the Softmax function is
actually the normalization of the discrete probability distribution
of finite items, and Softmax is widely used in neural networks for
multi-quantization problems.

It can be seen from the Softmax formula that the Softmax
function is actually the gradient log normalization of the discrete
probability distribution of finite items. Softmax is widely used
in neural networks for multi-quantization problems. According
to the Softmax function, the probability value corresponding to
each soft label is obtained. In deep learning tasks, the goal of
training is to optimize the loss function, and maximum likelihood
estimation is generally used to construct the loss function in
quantization problems. For the input x, assuming our class label
is t, the goal of the quantization task is to find the most suitable
model to maximize p(t| x). In the second quantification problem,
we can know from the probability knowledge:

p (t |x ) = (1− y)t−1
· yt (8)

y = f(x) is the probability value predicted by the model, and
t is the class label corresponding to the sample. Generalizing the
two-quantization problem to a more general multi-quantization
problem, p(t| x) is expressed as follows:

p (t |x ) =

C−1∏
i=0

p (ti |x )ti−1
=

C−1∏
i=0

yti−1
i (9)

In actual calculations, continuous multiplication may cause
the final result to approach 0, and in the process of network back
propagation, the exponential function is inconvenient to handle,
so the likelihood function is generally taken as the negative
logarithm of the logarithmic likelihood function to convert the

problem of maximizing p(t| x) into a problem of minimizing the
log-likelihood function.

L(t, x) = −t · log p(t |x ) = −

C−1∑
i=0

ti · log yi (10)

Using the cross entropy function not only can measure
the effect of the model very well, but also can easily
calculate the derivative.

Now we need to select a data set, and get the output of each
channel after activation of the spatial convolution layer Di for
each image sample of the data set. We calculate the number of
activation values of 0 in the feature map, divide it by the size of
the feature map, and finally average all samples to get the APo
Z value of the convolution channel corresponding to the spatial
convolution layer. After that, we sort the feature channels in the
order of APo Z from small to large, and remove the M × ε

channel with the largest APo Z value according to a certain
pruning ratio ε, and retain the convolution channel with the
smaller APo Z value. The APo Z-based convolutional channel
importance evaluation algorithm has the advantages of simple
method and fast calculation, and is widely used in convolutional
neural network channel pruning tasks.

According to APo Z, channels with low APo Z retain
more effective information than channels with high APo Z.
A spatial layer will output hundreds or thousands of characteristic
channels. The more channels removed, the more effective the
network performance, the greater the impact. There is currently
no standard answer to this question. Different models and
different data sets will have different pruning ratios.

The pruning of the upper layer of convolutional unit will have
a certain impact on the next layer of convolutional layer unit, so
there are two methods for the performance recovery after model
pruning, one is the greedy pruning method, that is, the upper
and lower layers are not considered as a result, all convolutional
channels of the network are pruned at one time, and then the
network is fine-tuned to restore network accuracy. Another way
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is to prun and fine-tune the neural network convolution channel
layer by layer from shallow to deep until the network achieves
the best performance. Both methods have their own advantages
and disadvantages. The process of the greedy pruning algorithm
is relatively simple, and the pruning steps and fine-tuning steps
are time-consuming; the advantage of the layer-by-layer pruning
method is that it is often more accurate.

COGNITIVE FUNCTION QUANTITATIVE
EXPERIMENT ANALYSIS

Experimental Data
All the data in the experiment comes from the ADNI database,
and the age information of the subjects is shown in Figures 6, 7.
We use all the initial moment data. There are a total of 800 subject
samples containing MRI data, including 168 AD, 403 MCI and
229 NC, and a total of 339 multimodal data samples containing
both MRI and PET, including 93 AD, 146 MCI and 100 NC.

The original image size is 256 × 256 × 256, and the
surrounding pixels without information are removed after
sampling by down 2. The maximum enclosing size of MRI and
PET is 100 × 81 × 80. The cross-validation method is used to
do ten-fold cross-validation. The training data set is enhanced by
shifting sampling in all directions, which is increased by eight
times. The verification data set and the test data set are not
enhanced. We use the Adadelta gradient optimization algorithm
to learn the weights of the network, and the batch size is set to 64.
During training, the model tends to converge about 20 iterations.
In this experiment, we will take several experiments to evaluate
the model comprehensively on the three quantitative tasks of AD
vs. NC, p MCI vs. NC and s MCI vs. NC. When training local 3D-
CNN, the network weight of AD vs. NC is initialized in the same
way as 2D-CNN, using Xavier for random initialization. Since
the difference between mild cognitive impairment samples and
NC is small, the transfer learning method is used to alleviate the
problem of insufficient training caused by the small amount of
training data. We will use the trained AD vs. NC network for the
p MCI vs. NC network. The NC network is initialized. In the same

way, the network of s MCI vs. NC is initialized with the network
of p MCI vs. NC.

In order to more comprehensively verify the effectiveness of
the cascaded neural network proposed in this paper, we launched
a comparative experiment. It is worth noting that the following
MRI monomodal experimental results are based on all the 800
MRI images at the initial moments. The PET monomodal and
multimodal experiments used 339 recipients who participated
in both MRI and PET scans. The following are the results and
analysis of each experiment.

Parallel 3D-CNNs Experiment
We use single-modal images to quantify AD vs. NC, and compare
the results of benchmark tests, single CNN quantification of
the entire brain image, and single CNN quantification of the
performance of partial images. Figure 8 shows the comparison
results. Among them, the method used in “benchmark test”
is to calculate Propensity Score Matching (p-score) based on
two categories, obtain the probability estimation of each pixel,
and use the verification set to select the first n pixels with the
most discriminative ability, and then use the support vector
machine to quantify the result. “A single image block with
the best performance” represents the block with the highest
quantization accuracy among the 27 image blocks. “Single CNN
quantization” downsamples the entire brain image by 4 and
inputs it to the same network as the quantized partial image block
for quantization. “Parallel 3D-CNNs integration method” refers
to the network structure.

From the experimental results in the observation table, it
can be found that the 3D convolutional neural network model
proposed in this article has a significant improvement in the effect
of the benchmark test. The method of integrating 3D-CNNs can
further improve the prediction of AD disease in a single modal
3D image. These evaluation indicators verify the effectiveness of
the parallel multiple CNNs model proposed in this paper.

Multimodal Fusion Experiment
We combined the local features of MRI and PET, and
used the multi-modal data fusion method of cascaded
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FIGURE 6 | Age characteristics of Alzheimer’s disease of MRI subjects.
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FIGURE 7 | Age characteristics of Alzheimer’s disease of PET subjects.
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FIGURE 9 | Comparison of AD vs. NC accuracy of 3D image blocks at various positions before and after multi-modal fusion.

multi-CNNs to quantify AD vs. NC, p MCI vs. NC and
s MCI vs. NC, respectively, to verify the advantages of
single-mode analysis.

We take AD vs. NC as an example to analyze the multi-modal
fusion effect of a single location image block. The histogram

shown in Figure 9 represents the accuracy results of the multi-
modal fusion of 80 image blocks.

From the histogram shown in Figure 9, we can find that
we use 2D-CNN to perform feature fusion of the local image
blocks of the two modalities compared to the accuracy of
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the quantization of a single mode, which can improve the
quantization performance in almost all positions. It can be
seen that the multimodal fusion method proposed in this
paper is effective.

We then quantify the features of multiple local image blocks
through a fully connected layer combination. Figure 10 shows
the three quantization tasks of AD vs. NC, p MCI vs. NC and s
MCI vs. NC in single mode and multi-mode. Among them, the
results of “MRI” and “PET” in the figure are obtained directly
from a single mode image. It can be seen from the results in
Figure 10 that the quantified performance of the multi-modal
data is greatly improved in all indicators compared with the
single-modal data.

We drew the ROC curves of AD vs. NC, p MCI vs. NC, and s
MCI vs. NC based on the network prediction results, as shown in
Figures 11–13, respectively. Observing the ROC curve, it can be
found that the performance of multimodal fusion is significantly

better than that of single mode, and the performance of PET is
slightly lower than the quantitative performance of MRI.

Comparison With Other Fusion
Algorithms
The features extracted based on the network are compared
with the multi-modal fusion method with multiple feature
fusion methods such as direct averaging method, feature
stitching method, parallel method, and feature bilinear point
multiplication. As shown in Figure 14, “average” refers to the
average predicted probability of a single sample using two
modalities as the final predicted probability of the sample, and
“splicing” means concatenating the features of the fully connected
layers of the two modalities into one. The dimensional features
are re-quantified as the total features of the sample. “Parallel”
means to connect the features of the last convolutional layer in
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FIGURE 10 | Performance comparison of single-mode and multi-mode under three quantitative tasks.
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parallel and then perform subsequent quantification. “Bilinear”
means to use the features of the fully connected layers of MRI
and PET for bilinear multiplication, which is fused into a feature
matrix for processing.

The experimental results shown in Figure 14 show that the
performance of our proposed multimodal fusion method is better
than other methods for each quantitative task. The above results
show that our proposed multi-modal fusion method can capture
the correlation of high-level features.

Discriminative Quantitative Analysis
Different from traditional manual feature extraction methods,
the features extracted in this paper are automatically learned in
image quantization through cascaded neural networks. The gray
information on the original image is transformed from shallow

to high-level by non-linear transformation of the cascaded neural
network, gradually transformed into high-level information with
discriminative ability, and finally these expressive features are
mapped to disease prediction. In the neural network, the direct
display of these “high-level” hidden layer features is usually poor
in interpretability. In the quantification of medical images, the
neuroimaging is calculated to qualitatively and quantitatively
analyze the relevant brain regions affected by AD disease. It is
very important to analyze the pathological causes of Alzheimer’s
disease and drug research.

Aiming at the problem of poor feature interpretation of deep
convolutional neural networks, we try to visualize the areas that
have a large impact on quantitative prediction. In order to achieve
this goal, we systematically slide the 3D gray cubes on the original
image to cover the information of different brain regions, and

FIGURE 15 | Alzheimer’s disease area that the neural network focuses on.
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FIGURE 16 | Comparison of the quantification accuracy of the multi-modal cascaded 3D-CNNs proposed in this article and other methods.
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use the trained model to monitor the changes in the probability
output of the network quantification under different masking
positions of the original image. If the excluded patch covers the
area related to AD, the predicted probability of the correct class
will decrease significantly. Therefore, by predicting the change in
probability, we can roughly determine the key focus areas that
have an impact on AD.

In the experiment, we used MRI and PET images of 10
Alzheimer’s disease patient samples in the test set for visual
analysis. First, we select three image blocks with the best overall
quantization performance in the two modalities for analysis.
Then, each image block uses a 15× 15× 15 gray cube block (the
gray value is the mean value of the input image block) to slide
and mask each area on the image block. Probability prediction is
made in the corresponding 3D neural network model. Finally, we
calculate the decrease in AD prediction probability after masking
to generate the probability change of each sample in each region.

Figure 15 shows the area that the neural network focuses on
the MRI image. The red part represents the area with the largest
probability change, that is, the structural position most relevant
to AD. Furthermore, we compare the experimental results of
this method with the results of other methods. Figure 16 shows
the overall accuracy of the quantification results, comparing the
overall results of multimodal quantification for AD vs. NC, p
MCI vs. NC, and s MCI vs. NC. It can be seen from the results
in the figure that the method proposed in this paper is better
than other methods in the quantification of AD vs. NC, and has
better sensitivity and greater ROC curve line in MCI vs. NC. The
area helps to detect MCI earlier and prevent missed diagnosis.
These results once again prove the effectiveness of the method
proposed in this paper.

CONCLUSION

In this paper, DTI, f MRI, and T1 data are preprocessed and the
brain function connection network and the brain white matter
structure connection network are respectively constructed. Then
the graph theory parameters are introduced into the analysis
of the two kinds of brain networks, and the graph theory
parameters with significant differences between AD patients and
normal people are found as features by T test. This article

introduces the calculation principle of the efficient convolution
structure-depth separable convolution unit existing in Mobile
Net, analyzes its computational complexity and compares it with
the traditional convolution layer, and explains that the depth
separable convolution unit is in the convolution efficiency in
product operations. On this basis, a channel pruning method
based on a depth separable convolution unit is presented. The
pruning process and the effect of network compression are
analyzed with the help of a flowchart. This article is the use
of single, parallel and cascaded convolutional neural networks
to extract and quantify the experimental process and results of
FDG-PET images and MRI. The first is the introduction to the
experiment, which describes the sample selection we used for the
experiment and the preprocessing work done before the sample
is input to the network. The comparative experiment of the
evaluation model is introduced, and the experimental results are
given to verify the effectiveness of our algorithm framework. This
article analyzes the experimental results, and uses the trained
model to reversely analyze the affected area of CNN to infer
the discriminative brain areas of Alzheimer’s disease. The results
prove that the method of combining 2D-CNNs and BGRU
proposed in this paper has excellent distinguishing ability for
PET monomodal data, indicating that the combination of CNN
and RNN can capture the functional change information of brain
images. The model of cascaded three-dimensional convolutional
neural network can fully utilize the information of multi-modal
data while extracting single-modal structural features. The brain
image calculation and analysis model proposed in this paper
can accurately and effectively quantify the cognitive function of
Alzheimer’s disease according to the characteristics of the modal.
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