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Multisensory integration research has allowed us to better understand how humans
integrate sensory information to produce a unitary experience of the external world.
However, this field is often challenged by the limited ability to deliver and control sensory
stimuli, especially when going beyond audio–visual events and outside laboratory
settings. In this review, we examine the scope and challenges of new technology in
the study of multisensory integration in a world that is increasingly characterized as a
fusion of physical and digital/virtual events. We discuss multisensory integration research
through the lens of novel multisensory technologies and, thus, bring research in human–
computer interaction, experimental psychology, and neuroscience closer together.
Today, for instance, displays have become volumetric so that visual content is no longer
limited to 2D screens, new haptic devices enable tactile stimulation without physical
contact, olfactory interfaces provide users with smells precisely synchronized with
events in virtual environments, and novel gustatory interfaces enable taste perception
through levitating stimuli. These technological advances offer new ways to control
and deliver sensory stimulation for multisensory integration research beyond traditional
laboratory settings and open up new experimentations in naturally occurring events in
everyday life experiences. Our review then summarizes these multisensory technologies
and discusses initial insights to introduce a bridge between the disciplines in order to
advance the study of multisensory integration.

Keywords: multisensory integration, human–computer interaction, multisensory technology, interaction
techniques, sensory stimulation

INTRODUCTION

We perceive the world through multiple senses by collecting different sensory cues that are
integrated or segregated in our brain to interact with our environment (Shams and Beierholm,
2011). Integrating information across the senses is key to perception and action and influences
a wide range of behavioral outcomes, including detection (Lovelace et al., 2003), localization
(Nelson et al., 1998), and, more broadly, reaction times (Diederich and Colonius, 2004; Stein, 2012).
Advancing the study of multisensory integration helps us to understand the organization of sensory
systems, and in applied contexts, to conceive markers (based on deficits in integration) of disorders,
such as autism spectrum disorder (Feldman et al., 2018) and schizophrenia (Williams et al., 2010).
This, in turn, demonstrates the importance of assessing and quantifying multisensory integration
(Stevenson et al., 2014).

Many studies have been conducted to quantify multisensory integration. However, different
challenges are highlighted in the literature (Stein et al., 2009; Stevenson et al., 2014; Colonius
and Diederich, 2017, 2020). One of the most notable challenges is the need to control timing,
spatial location, and sensory quality and quantity during stimulus delivery (Spence et al., 2001).
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Another challenge is the complexity of studying integration
involving the chemical senses (smell and taste). Many studies
typically rely on audio–visual interactions (Stein, 2012; Noel et al.,
2018) because, among other reasons, the technology to deliver
audio–visual stimuli is relatively well-established and widely
available (e.g., screens, headphones). Emerging multisensory
technologies from computer science, engineering, and human–
computer interaction (HCI1) enable new ways to stimulate,
replicate, and control sensory signals (touch, taste, and smell).
Therefore, they could expand the possibilities for multisensory
integration research. However, due to their recent emergence and
rapid development, their potential to do so might be overlooked
or underexplored.

For example, as shown in Figure 1, acoustic levitation
techniques are employed to display visual content (that can be
also heard and felt), addressing the common limitations of 2D
screens and stereoscopic displays typically employed to deliver
visual stimuli (Figure 1a). Acoustic metamaterials are used to
“bend” the sound so that auditory stimuli can be directed from
a static source to a specific location while, at the same time,
providing tactile sensations (Figure 1b). Moreover, it is now
also possible to control and deliver tactile sensations to the
skin without the need of additional attachments (e.g., gloves
or physical actuators) using focused ultrasound (Figure 1c).
With regards to smell and taste stimulation, we are seeing
growing development efforts to create more flexible and portable
solutions that vary in their capabilities compared to established
laboratory equipment, such as gustatometers and olfactometers.
Importantly, emerging olfactory displays and smell-delivery
technologies are becoming smaller, wearable, and more modular,
enabling less invasive stimulation within and outside laboratory
settings (Figure 1d). Similarly, we can see novel gustatory
stimulation approaches emerging, such as taste levitation systems
that exploit the principles of acoustics for delivering precisely
controllable taste stimuli to the user’s tongue (Figure 1e).

In this review, we discuss the potential of these new and
emerging multisensory technologies to expand the study
of multisensory integration by examining opportunities to
facilitate the control and manipulation of sensory stimuli beyond
traditional methods and paradigms. The set of novel digital
interfaces and devices that we review exemplifies technological
advances in multisensory stimulation and their associated
opportunities and limitations for research on multisensory
integration. The ultimate aim of this review is to introduce a
bridge between disciplines and encourage future development
and collaboration between the engineers developing the
technologies and scientists from psychology and neuroscience
studying multisensory integration.

We close our review with a reflection on the growing
multisensory human–computer integration2 symbiosis—when
technology becomes an integral part of everyday life and

1We refer to human–computer interaction as a stimulus–response interplay
between humans and any computer technology that can go beyond common
devices, such as PC or laptops (Dix et al., 2004).
2We refer to human–computer integration to a partnership between humans and
any computer technology that can go beyond common devices, such as PC or
laptops (Farooq and Grudin, 2016).

activities. This fast-growing integration raises a range of ethical
questions and considerations regarding shared responsibility
between humans and systems. One highly important question
is related to the sense of agency (SoA), often referred to as
the feeling of being in control (Haggard, 2017). We live in an
increasingly digital world in which intelligent algorithms (e.g.,
autonomous systems and autocomplete predictors) assist us and
influence our behavior. We are therefore not always aware of the
extent to which technology makes decisions for us, which raises
the question, who is in control now? While emerging technology
can provide further multisensory signals to promote a SoA (I
am, who is acting), further discussion is needed in light of the
rapid development of artificial intelligence systems. This review
also aims to promote further discussion and reflection upon
the role of the SoA and other relevant questions that emerge
through the relationship between the senses and technology
(Velasco and Obrist, 2020).

EXPANDING MULTISENSORY
INTEGRATION: CURRENT
TOOLS/METHODS AND EMERGING
TECHNOLOGY

Studying how multiple sources of sensory information are
integrated into a unified percept, often referred to as the “unity
assumption” (Chen and Spence, 2017), has been a subject
of intense research for many years. Studies employ different
perspectives to explore multisensory integration. For example,
some use weighted linear combination theories consisting of
linear sums of unimodal sensory signals, wherein certain sensory
modalities become more dominant than others to produce a
unified perception (Ernst and Banks, 2002; Ernst and Bülthoff,
2004). Others explore sensory integration at the level of a single
neuron (Stanford and Stein, 2007; Stein and Stanford, 2008)
and explain the integration of sensory information through
neural circuitry.

One common aspect to the study of multisensory integration
is the need for a carefully controlled stimulus delivery.
Computational and psychophysical studies must precisely
present subjects with multisensory cues that have carefully
controlled properties. Many such studies build on the modulation
of the reliability of sensory cues to weigh the influence of
individual sensory modalities (Ernst and Banks, 2002; Fetsch
et al., 2012). For example, in a visuo–tactile task (e.g., size
estimation of an object), I rely on my vision and touch to
estimate the size of the object. Then, to examine how both of
my senses are integrated, the researchers modify the reliability
of the sensory information I perceived from the object. They
might alter the clarity of my vision (e.g., by means of a special
screen) or my perceived object size (e.g., by means of a shape-
changing object). This modulation implies changing and varying
the stimulus properties (Burns and Blohm, 2010; Parise and
Ernst, 2017) requiring precise computer-controlled delivery.
However, it has been suggested that many behavioral studies
on multisensory integration rely on “century-old measures of
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FIGURE 1 | Emerging multisensory technologies exemplifying interface and device advancements. (a) Particle-based volumetric displays (Hirayama et al., 2019). (b)
Acoustic metamaterials that bend the sound (Norasikin et al., 2018). (c) Mid-air haptic 3D shapes produced by focused ultrasound (Carter et al., 2013). (d) On-face
olfactory interfaces (Wang et al., 2020). (e) Gustatory experiences based on levitated food (Vi et al., 2020).

behavior—task accuracy and latency” (Razavi et al., 2020) and
are commonly constrained by in-laboratory and desktop-based
settings (Wrzus and Mehl, 2015).

In the following sections, we present an overview of
current challenges that can be overcome in light of new and
emerging multisensory technologies. We particularly focus on
technologies that illustrate the kinds of novel devices and
methods emerging from HCI, which provide new functionalities
for studying the human senses and which have not been used
in multisensory integration research, although they can be of
great interest and help in such research. Accordingly, we review
novel, recently emerging technology that (1) is claimed to be
multisensory/multimodal, (2) can be easily integrated with other
multisensory technology, (3) allows naturalistic environments
beyond laboratory settings, or (4) enables a move from physical
to digital interactions.

We live in a time in which technology is ubiquitous, which
means that delivering, measuring, and assessing multisensory
signals in daily life can be facilitated. We have selected these
particular technologies to highlight their potential to advance
the study of multisensory integration not only by offering
precision and controllability but also by enabling more natural
study environments beyond desktop-based experiments. With
this focus, we aim to examine opportunities that permit studies
to take place over time (e.g., longitudinal studies) or outside
a laboratory (e.g., at home) while still being precise. In the
following sections, we describe the representative technological
advancements for each of the main senses: vision, audition,
touch, olfaction, and gustation (summarized in Table 1). We
present separated sections for each of those senses to give
focused information to readers with a particular interest (e.g.,
researchers interested in new olfactory technologies). In each
section, we first introduce the emerging technology and benefits
for individual sensory modalities, we then discuss and exemplify
how it can aid multisensory integration research, and we
further highlight how they can be integrated dynamically
into multisensory paradigms, i.e., by capitalizing on the

different technologies as modules to conduct studies involving
multiple senses.

Visual Stimulation Beyond the Screen
In the well-studied audio–visual integration space, visual
information is modulated by altering the frequency or
localization of seen and heard stimuli (Rohe and Noppeney,
2018), often by employing the established McGurk paradigm
(Gentilucci and Cattaneo, 2005). In another example, for visuo–
haptic integration studies, visual information is modulated in size
estimation or identification tasks through the manipulation of an
object’s physical shape (Yalachkov et al., 2015) or the alteration of
digital images through augmented (Rosa et al., 2016) and virtual
reality (VR) headsets (Noccaro et al., 2020).

For these studies, visual stimulus presentation is typically
limited to 2D screens that show visual cues (static or in
movement) in a two-dimensional space. While high-frequency
2D screens offer a good image presentation quality and low
latency, they are still limited to 2D content, thus constraining
depth perception. The stereoscopic displays used in VR headsets
offer great advantages for 3D content visualization and full-
body immersion also allowing the study of visuo-vestibular and
proprioceptive signals (Gallagher and Ferrè, 2018; Kim et al.,
2020) and even visuo–gustatory interactions (Huang et al., 2019).
However, it is suggested that stereoscopic displays typically
used in VR have disadvantages for psychology experiments. For
example, people tend to consistently underestimate the size of the
environment and their distance to objects (Wilson and Soranzo,
2015) even when motion parallax and stereoscopic depth cues
are provided to the observer (Piryankova et al., 2013). This can
be limiting for spatial tasks (e.g., in visuo–tactile interactions).
Additionally, immersion in VR can cause cybersickness due to
the brain receiving conflicting signals about the user position and
its relation to the movement observed in the virtual environment
(Gallagher and Ferrè, 2018).

The aforesaid challenges could be overcome through novel
visual display technologies, such as advances in particle-based
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TABLE 1 | Key properties of emerging multisensory technologies for each sensory modality.

Sensory
modality

Emerging
technology

Key stimulation
opportunities

Multisensory integration flexibility Main advantages for multisensory
experiments

Primary
reference

Vision Volumetric displays Depth Visual content can be heard and felt
simultaneously

No need of head-mounted displays
while giving 3D cues in the real world

Hirayama et al.,
2019

Audition Acoustic lenses
and metamaterials

Directionality Audio signals can be felt and used to
levitate and direct objects that create
visual displays

Enable directional sound stimulation
while giving freedom to navigate

Norasikin et al.,
2018, 2019

Touch Focused ultrasound Un-instrumented
3D tactile
sensations

The sound waves used to produce
tactile sensation can also be heard and
easily integrated into visual paradigms
(e.g., virtual reality)

No need of physical actuators; open
opportunities to introduce the study of
integration of mid-air touch with other
senses

Carter et al.,
2013; Martinez
Plasencia et al.,
2020

Smell Wearable smell
technology

Portable and
body-responsive

Its portability makes it easily integrated
into other multisensory technologies

Delivery on-demand outside a
laboratory setting, enabling daily life
testing and longitudinal studies

Amores et al.,
2018; Wang
et al., 2020

Taste Levitated food Sterile,
un-instrumented

Integration of levitated food with visual,
olfactory, auditory, and tactile stimuli

Delivery actual food (multiple morsels)
simultaneously in 3D, enabling the
manipulation of food’s trajectories

Vi et al., 2017b,
2020

volumetric displays (PBDs) (Smalley et al., 2018). These displays
provide a benefit over traditional 2D screens since they are
not limited by two-dimensional content. PBDs show 3D images
in mid-air, thus allowing depth perception, which could be
integrated into traditional experimental paradigms, such as depth
discrimination tasks (Deneve and Pouget, 2004; Rosa et al., 2016).
Furthermore, PBDs also offer a benefit over VR headsets as these
novel displays do not require wearing of a head-mounted display
(HMD). That is, the user is not brought to a virtual world, but
the 3D content is shown in the real world, avoiding cybersickness
and the size and distance underestimations typical when using
stereoscopic displays, while also avoiding user instrumentation.

These PBDs allow the creation of 3D visualizations by freely
moving a particle in 3D space at such a high speed (e.g.,
∼8 m/s) that visual content is revealed using the persistence
of vision (POV) effect (Hardy, 1920), i.e., when an image is
perceived as a whole by the human eye due to rapid movement
succession (see Figure 1a). Particularly, the class of PBDs that
uses acoustophoresis (Hirayama et al., 2019; Martinez Plasencia
et al., 2020) is able to deliver visual stimuli that can be felt and
heard simultaneously (spatially overlapping). For this reason, this
technology is called a multimodal acoustic trap display (MATD)
(see Figure 1a).

To produce an image that exists in real 3D space, the MATD
uses sound waves (emitted from an array of speakers) to trap a
lightweight particle (a polystyrene bead) in free space, which is
called acoustic levitation. The position of this particle is updated
at a very high update rate so that the POV effect occurs, and
the observer perceives it as a full object. Since the particle is
updated at such a high speed, the display can create audio (any
sound that you could play with a traditional speaker) and tactile
feedback (a gentle sensation of touch coming from the display)
simultaneously. Since this new volumetric display technology
offers multisensory stimulation, it could enable the study of
multisensory integration beyond pairs of senses (e.g., visual,
auditory, and haptic tasks), as it offers the flexibility to deliver
and precisely control visual content alongside tactile stimuli and
sound within the same setup. Therefore, this technology could
be used in studies exploring multisensory distractor processing,

where sensory targets and distractors often need to be placed and
presented from the same location (Merz et al., 2019).

The spatio-temporal features of these displays can be
considered for possible experimental design around multisensory
integration in future studies, replacing 2D screens or HMDs. For
instance, the MATD proposed by Hirayama et al. (2019) manages
two types of refresh rate, one for particle position and one for
rendered images. The particle position refresh rate is ∼10 kHz,
taking ∼0.1 ms to update the position of the particle in 3D space.
Each image rendered with the MATD is composed from several
updates of a single particle. The image refresh rate is ∼10 Hz,
taking ∼100 ms for a 3D image to be fully rendered. The particles
that this display can levitate and accelerate can have a maximum
diameter of ∼2mm and a minimum diameter of ∼1 mm. The size
of the images rendered is ∼10 cm3, with a maximum velocity of
∼8 m/s. For instance, a sphere of 2-cm in diameter takes ∼100 ms
to be fully rendered using a single particle. When an image is
rendered at ≤100 ms, it is considered POV time, i.e., when a
single moving object along a trajectory is perceived as a whole
image and the human eye can see it without flickering.

Similar volumetric displays use the principles of acoustic
levitation, although they do not quickly update the particles to
render an image (using POV). Instead, in real space, they levitate
particles attached to a piece of fabric onto which an image is
projected to created levitating displays. Recent work in HCI has
shown that these levitating displays enable a good control for
interactive presentations (Morales et al., 2019; Morales González
et al., 2020).

Other novel techniques that can offer benefits for visual
stimulus modulation, particularly for visuo–tactile tasks, include
retargeting techniques in mixed reality. These techniques deform
the visual space (conflicting an observer’s sense of vision and
touch) without the user noticing, thus creating different illusions
that can modulate the reliability of visual and tactile interactions.
For example, many studies on visuo–haptic integration are
limited to haptic modulation through force feedback (using
physical devices or motor actuators). Retargeting techniques
instead can modulate the perception of touch by exploiting the
dominance of the visual system (visual capture; Rock and Victor,
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1964), reducing the use of physical haptic devices. They can,
for instance, modulate the perception of the quantity of objects
(Azmandian et al., 2016), of an object’s weight (Rietzler et al.,
2018; Samad et al., 2019), of different textures (Cheng et al.,
2017), or of different geometries (Zhao and Follmer, 2018) using
limited physical elements (no motors or robots) and relying
mainly on visual cues.

In other words, emerging visual image processing and
mixed reality technology can enable the study of visuo–haptic
integration by reducing the use of physical proxies (e.g.,
deformable surfaces; Drewing et al., 2009; Cellini et al., 2013),
which can be inflexible and more complex to control. Instead,
these novel techniques deform the visual space which can be
more easily controlled by taking advantage of the visual capture,
which is particularly present in spatial tasks (Kitagawa and
Ichihara, 2002). Using translational gains, these techniques can
even be extended to modulate visual perception involving more
complex actions (beyond hand–object interaction in desktop-
based experiments), such as walking (Razzaque et al., 2001). Some
examples include techniques that modulate the perception of
walking speed (Montano-Murillo et al., 2017), walking elevation
(Nagao et al., 2017), and distance travelled (Sun et al., 2018).
These technologies could open up opportunities to expand
and facilitate the study of the integration between vision and
proprioception (Van Beers et al., 1999) or between visual and
vestibular stimuli (Gu et al., 2006), as well as extend the study of
the body schema, which is usually studied for hand interactions
(Maravita et al., 2003).

As retargeting techniques mainly employ HMDs to show
visual content, other multisensory technologies can easily be
combined, for example, headphones to present auditory stimuli,
haptic devices, such as vibrational attachments (controllers,
suits), and smell delivery devices (external or wearable), as
have previously been used in VR settings [e.g., in the work
by Ranasinghe et al. (2018)].

Auditory Stimulation Beyond
Headphones
Studies exploring auditory integration commonly modulate
sensory information by changing the frequency or synchrony
of auditory cues in identification or speech recognition tasks,
requiring audio–visual simultaneity (Fujisaki et al., 2004). In
these experiments, auditory stimulus delivery is limited to the
use of headphones and static sources of sound (speakers). To
avoid extra confounding factors, noise control or canceling is
also required. However, recent advances in sound manipulation
offer new opportunities to deliver and control sound, enabling,
for instance, the presentation of directional sound without
wearing headphones in a controlled manner. These technological
advances could not only help overcome existing limitations
but also open up new experimental designs for multisensory
integration studies.

Researchers in areas, such as physics, engineering, computer
science, and HCI are working on new concepts of controlling
sound using ultrasonic manipulation and acoustic metamaterials
(Norasikin et al., 2018; Prat-Camps et al., 2020), moving towards

the ability of controlling sound just like we do with light (Memoli
et al., 2019b). Advances in optics enable the modulation of
users’ visual perception through the use of filters and lenses
(e.g., cameras and VR headsets). Nevertheless, for sound, this is
more challenging, but researchers have already created acoustic
lenses to control, filter, and manipulate sound. These techniques
are possible thanks to ultrasound phased arrays integrated with
acoustic lenses (also called metamaterials) that direct the sound
by using acoustic bricks (Memoli et al., 2017). For example,
in a theater, a spotlight can be delivered to a single person
while others around are in the darkness. But, imagine that a
spot of sound is delivered to a single person in the audience
while others around that person cannot perceive it. In another
example, in a cinema, the movie audio could be played in different
languages and delivered to specific persons in the audience
(Memoli et al., 2019a). Figure 1b is a simplified representation of
sound “bending” around an object by Norasikin et al. (2018). This
technique directs sound waves to avoid obstacles (represented by
the dashed line in Figure 1b). At the same time, the directed
sound is able to not only levitate a small bead above an object
but also produce a tactile sensation above the bead in the user’s
finger.

The aforesaid sound manipulation can benefit the study of
multisensory integration in different ways. Since the direction
of sound can be controlled with these acoustic lenses, it is
possible to modulate the perceived position of the sound
source, even when it is static (Graham et al., 2019). This
technology could then be integrated into classical paradigms
used in multisensory integration studies, such as temporal/spatial
ventriloquism (Vroomen and de Gelder, 2004) and other
experimental paradigms studying spatial localization and sound
source location using multisensory signals (Battaglia et al., 2003).

Other benefits include the possibility to avoid
instrumentation, i.e., avoiding the use of headphones for
noise canceling; the ability to precisely modulate the perception
of sound location, direction, and intensity inside a room in spatial
and temporal tasks, even when the sound source is static; or the
possibility to have multiple subjects in an experimental room
while auditory stimuli are delivered individually and without
causing distractions. Furthermore, through the use of body
tracking sensors, this technology could identify a moving person
in order to deliver an auditory stimulus while they are walking
(Rajguru et al., 2019), which could be suitable for navigation
and spatial localization tasks (Rajguru et al., 2020). This opens
up opportunities for studies beyond desktop-based experiments
and therefore allowing navigation tasks that combine body
movement signals, such as auditory–vestibular integration.

Additionally, some of these devices allow multimodal delivery,
enabling interactions beyond pairs of senses. For example, the
methods by Jackowski-Ashley et al. (2017) and Norasikin et al.
(2018) allow the integration with touch (i.e., mid-air tactile
stimulation), while the approach by Norasikin et al. (2019)
allows visual stimulation via reconfigurable mid-air displays. This
technology controls directional sound while at the same time
producing a haptic sensation on the skin due to the specific
frequency of the emitted sound waves. This combination of
signals can allow us to present sound and haptic sensations from
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the same location, which could offer benefits in the study of
haptic–auditory integration studies (Petrini et al., 2012).

Moreover, directional sound can be achieved with more
traditional speakers (i.e., not involving ultrasound) using the
principles of spatial sound reproduction, making it possible
to “touch” the sound and interact with it (Müller et al.,
2014) and enabling the study of audio-tactile interactions.
This technology could be integrated into classical experimental
paradigms involving audio–tactile judgments; for example, the
audio–tactile loudness illusion (Yau et al., 2010) and other
combinations of signals, such as tactile stimulation and music
(Kuchenbuch et al., 2014).

While much of this research is still at an early stage (i.e.,
laboratory explorations), it already points to future opportunities
in real environments with promising benefits for expanding
research beyond the development of the technology itself and
towards its use in psychology and neuroscience research.

From Physical to Contactless Tactile
Stimulation
Much research on touch, in the context of multisensory
integration, has focused on visuo–haptic integration (Stein,
2012), although several studies also focus on the integration
between haptics and audio (Petrini et al., 2012) and smell
(Castiello et al., 2006; Dematte et al., 2006). In most cases,
however, haptic information is modulated in size estimation
or identification tasks. Haptic sensation is usually modulated
through deformable surfaces (Drewing et al., 2009), force
feedback (Ernst and Banks, 2002), data gloves (Ma and Hommel,
2015; Schwind et al., 2019), or vibration actuators on skin
(Maselli et al., 2016).

These studies rely on tangible objects, so therefore
findings on haptic integration with other senses have so
far been based on physical touch achieved by using either
mechanical actuators or user instrumentation. However, with
the accelerated digitization of human experiences produced by
social distance restrictions, we see increasing contactless and
remote interactions not only in light of the COVID-19 pandemic
but also in light of the proliferation of mid-air interactions
(Rakkolainen et al., 2020) and the digitalization of the senses
(Velasco and Obrist, 2020).

Mid-air interactions allow subjects to control objects from
a distance by means of hand gestures and without the need
of physical contact. To provide a tactile sensation in mid-
air, ultrasonic phased arrays composed of several speakers
(see Figure 1c) can be computer-controlled to emit focused
ultrasound over distance (e.g., 20 cm) and enable a person to
perceive tactile sensations in mid-air without the need of physical
attachments, such as a glove. These tactile sensations can be single
or multiple focal points on the hand, 3D shapes (Carter et al.,
2013), or textures (Beattie et al., 2020). This unique combination
is enabling novel interaction paradigms previously only seen in
science fiction movies. For example, it is now possible to touch
holograms (Kervegant et al., 2017; Frish et al., 2019), as well
as levitate objects (Marzo et al., 2015), and interact with them
(Freeman et al., 2018; Martinez Plasencia et al., 2020). We can
now interact with computers, digital objects, and other people

in immersive 3D environments in which we cannot only see
and hear but can also touch and feel. This technology is also
able to convey information (Paneva et al., 2020) with a huge
potential for mediating and studying emotions (Obrist et al.,
2015). Furthermore, it has become wearable (Sand et al., 2015)
and part of daily-life activities, suggesting a promising potential
for dynamic and more natural scenarios, such as online shopping
(Kim et al., 2019; Petit et al., 2019), in-vehicle interactions (Large
et al., 2019), and home environments (Van den Bogaert et al.,
2019), where people can naturally integrate sensory information
during daily tasks.

Despite the rapid development of mid-air technologies, efforts
to study haptic integration are uniquely directed to physical
touch to date, and it is therefore unknown how mid-air touch
is integrated with the other senses. For instance, we do not know
if the integration of vision, audio, or smell with mid-air touch
is similar to what has been found with actual touch, as there
are many factors that make physical and mid-air touch different
(e.g., physical limits, force, ergonomics, instrumentation, etc.).
Here, we see an opportunity to expand the knowledge around
mid-air interactions by applying the principles of multisensory
integration from the area of psychology and neuroscience.
Bridging this gap could open up a wide range of new studies
exploring the integration of multiple senses with mid-air touch
using the technology recently developed in HCI and further
taking advantage of the current knowledge generated in this
area. For example, a number of studies have already provided
insights that improve our understanding of mid-air haptic
stimuli perception in terms of perceived strength (Frier et al.,
2019), geometry identification (Hajas et al., 2020b), and tactile
congruency (Pittera et al., 2019b), providing compelling evidence
of the capability of mid-air haptics to convey information (Hajas
et al., 2020a; Paneva et al., 2020).

Recent studies have used mid-air haptics to replicate
traditional paradigms used in sensory experiments, such as the
rubber hand illusion (Pittera et al., 2019b) and the apparent tactile
motion effect (Pittera et al., 2019a). This suggests promising
opportunities to use mid-air touch in other tasks involving visuo–
tactile judgments, such as the cutaneous rabbit illusion (Geldard
and Sherrick, 1972). In the future, it may even be possible to apply
mid-air touch to tasks more complex than cutaneous sensations,
such as force judgments (e.g., the force matching paradigm;
Kilteni and Ehrsson, 2017).

Additionally, mid-air technology can be flexible enough to
allow for multisensory experiences. Ultrasonic phased arrays,
such as those developed by Hirayama et al. (2019), Shakeri et al.
(2019), and Martinez Plasencia et al. (2020) combine mid-air
tactile and auditory stimulation simultaneously. They employ
speakers emitting sound waves that, at specific frequencies, can
be both heard and felt on the skin. In particular, the methods
introduced by Jackowski-Ashley et al. (2017) and Norasikin
et al. (2018), not only deliver haptics but also parametric
audio (i.e., allowing continuous control over every parameter)
that can be directed by using acoustic metamaterials. Mid-air
haptics has also been largely integrated with visual stimulus
presentation via virtual and augmented reality (Koutsabasis and
Vogiatzidakis, 2019) and multimedia interactions (Ablart et al.,
2017; Vi et al., 2017a).
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While most of the technology described above is still in the
development phase, some devices able to provide mid-air haptics
are commercially available. For example, STRATOS Explore and
STRATOS Inspire are haptics development kits introduced by
Ultraleap3 that are are currently available in the market.

Emerging Smell Technologies and
Olfactory Interfaces
The sense of smell is powerful, and research shows that the
human nose has similar abilities to those of many animals
(Porter et al., 2007; Gilbert, 2008). Therefore, the sense of
smell has gained increasing attention in augmenting audio–
visual experiences (Spence, 2020). Some studies have explored
the integration of smell with vision (Gottfried and Dolan, 2003;
Forscher and Li, 2012), audition (Seo and Hummel, 2011), and
taste (Dalton et al., 2000; Small and Prescott, 2005). Common
strategies to modulate and deliver olfactory cues are based on
analog methods, such as smelling scented pens and jars of
essential oils (Hummel et al., 1997; Stewart et al., 2010) that
are limited by poor control over the scent stimulus delivery.
More sophisticated clinical computer-controlled olfactometers
have been employed but can often be bulky, static, and noisy
(Pfeiffer et al., 2005; Spence, 2012).

Novel olfactory interfaces developed by researchers in the field
of HCI can overcome some of those challenges. For example,
today smell delivery technology, in addition to being precise
and controllable (Maggioni et al., 2019), has become wearable
(Yamada et al., 2006), small (Risso et al., 2018), and even
fashionable (Amores and Maes, 2017; Wang et al., 2020; see
Figure 1c). This portability can facilitate scent delivery in daily
activities outside laboratory settings (e.g., home, work), offering
opportunities to study smell stimulation in various contexts,
such as longitudinal and field studies. For example, attention
ability might differ between lab studies and daily-life settings,
which can affect the study results (Park and George, 2018).
Researchers studying the behavior of the sensory system during
daily-life activities (e.g., Sloboda et al., 2001; Low, 2006) might
benefit from wearable and miniaturized devices that can be easily
carried. Some of these devices not only deliver sensory stimuli on
demand but also record data that can be stored in a smartphone
for further processing and analysis (Amores and Maes, 2017;
Amores et al., 2018).

Furthermore, since wearable scent delivery systems are small
and portable, they can easily be integrated with additional
multisensory technology and other actuators. For example,
Brooks et al. (2020) used a wearable smell delivery device attached
to a VR headset to show visual stimuli as well. Moreover,
Ranasinghe et al. (2018) added sensory stimulation, such as wind
and thermal feedback to provide a multisensory experience and
thus induce a sense of presence. In another example, Amores
and Maes (2017) and Amores et al. (2018) developed a wearable
smell delivery system in the form of a necklace that can be
combined with a VR headset and sensors to collect physiological
data (e.g., EEG, heart rate), suggesting opportunities for using
it while sleeping.

3https://www.ultraleap.com/haptics/

One interesting exploration of emerging wearable smell
delivery systems is how to deliver scent stimuli which are
released based on physiological data from the body, including
moods and emotions (Tillotson and Andre, 2002), brain activity,
or respiration (Amores et al., 2018). These new olfactory
devices make use of advances in sensors (e.g., biometric and
wearable sensors) and enable thinking beyond the constraints
of unisensory stimulation. For example, wearable scent delivery
systems have been used to modulate the perception of
temperature (Brooks et al., 2020), which can enable the study of
multisensory integration involving olfactory and somatosensory
signals (de la Zerda et al., 2020).

Based on the same principles of directed sound, ultrasound
can also be used to control and direct scent stimuli (Hasegawa
et al., 2018). Current air-based scent delivery devices such as
those employing compressed air (Dmitrenko et al., 2017), fans
(Hirota et al., 2013) and vortexes (Nakaizumi et al., 2006),
allow great control over the temporal and spatial diffusion of
scents (Maggioni et al., 2020). However, these air-based scent
transportation systems produce a turbulent flow that disperses
the scents with distance decreasing their intensity. Sound-based
smell delivery instead uses acoustic beams that produce more
laminar scent flow, suggesting promising additional control over
the spatial distribution of scents particularly, thus increasing
their intensity.

While these efforts are still in the early exploration stage,
they again illustrates how technological advances can enable
experimental studies to help advance our understanding of
multisensory integration. While it may seem far-fetched and
beyond current everyday life experiences, wearable and body-
responsive technology (e.g., a device that releases a scent based
on my heart rate) is in line with growing efforts to design and
develop technology that promotes a paradigm shift from human–
computer interaction to human–computer integration (Mueller
et al., 2020)—a future in which technology becomes part of us
(e.g., wearing a device that becomes part of my body and responds
based on my body’s signals). As prior research has shown, the
sense of one’s own body is highly plastic, with representations
of body structure and size particularly sensitive to multisensory
influences (Longo and Haggard, 2012). We are seeing initial
efforts, sometimes from an artistic design perspective, to explore
smell-based emotionally responsive wearable technology. For
example, smell has been shown to influence how we feel about
ourselves (Tillotson, 2017; Amores et al., 2018), affect our body
image perception (BIP) (Brianza et al., 2019) and support sleep
and dreaming (Carr et al., 2020). More opportunities around
smell can be studied with respect to human sensory perception
and integration due to these ongoing technological advances.

Emerging Gustatory Technologies and
Interfaces
Unlike other sensory modalities that can be stimulated externally
(e.g., vision, audio, and smell), taste stimulation occurs inside
the body, and this can be more complex and invasive.
A common area of study is around odor–taste integration
(Dalton et al., 2000) given the multisensory nature of flavor
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perception (Prescott, 2015). However, since food perception
is more broadly considered one of the most multisensory
experiences in people’s everyday lives (Spence, 2012), different
studies have also explored the integration of taste with vision
(Ohla et al., 2012), audition (Yan and Dando, 2015), and touch
(Humbert and Joel, 2012). In most cases, however, gustatory
cues have been modulated by changing the concentration of taste
stimuli in reaction and detection tasks (Overbosch and De Jong,
1989). For such tasks, precision is crucial, and while some studies
use simple methods, such as glass bottles (Pfeiffer et al., 2005),
precise taste control stimulation can be achieved through well-
established gustatometers consisting of either chemical or electric
stimulation (Ranasinghe and Do, 2016; Andersen et al., 2019).
However, controlling taste delivery through these methods can
be unnaturalistic and is constrained-to-in-lab settings.

Novel interfaces from HCI may represent more naturalistic
interactions and enable new contexts for studying the
multisensory integration of taste with other senses. For
example, mixed reality4 systems are also employed to modulate
the perception of taste in augmented (Narumi et al., 2011b;
Nishizawa et al., 2016) and virtual reality (Huang et al., 2019)
suitable for visuo–gustatory interactions in wearable settings.
Recent systems have also enabled the combination of multiple
senses, for example, involving vision, olfaction, and gustation
(Narumi et al., 2011a), which can facilitate studying integration
beyond pairs of senses. These systems alter the visual attributes
(e.g., color) of a seen physical item (e.g., cookie, tea) by means of
image processing to vary its flavor perception.

Meanwhile, emerging tongue-mounted interfaces
(Ranasinghe et al., 2012) do not use physical edible items
but are able to produce, to a certain degree, sour, salty, bitter,
and sweet sensations by electric and thermal stimulation
without using chemical solutions, promising to be user-friendly
(Ranasinghe and Do, 2016). These interfaces can be combined
with other sensory modalities as well, such as smell and vision,
using common objects for a more natural interaction, such as
drinking a cocktail (Ranasinghe et al., 2017).

In another example, touch-related devices have enabled the
study of taste perception by varying weight sensations (Hirose
et al., 2015), biting force (Iwata et al., 2004), or vibrotactile
stimuli (Tsutsui et al., 2016) suitable for studying a combination
of gustatory and proprioceptive signals. Precise control of taste
stimuli quantities can also be achieved through novel food
3D printing techniques (Khot et al., 2017; Lin et al., 2020),
which permit the design and creation of physical food structures
with controllable printing parameters, such as infill pattern and
infill density (Lin et al., 2020). This control capability could
be suitable for customizing and equalizing conditions during
multisensory integration experiments; for example, giving the
same concentration of taste stimuli across subjects while enabling
a more natural taste stimulation (e.g., an actual cookie or
chocolate treat), unlike using electrical stimulation (Spence et al.,
2017), which can be invasive. Many other examples can be seen
in the field of HCI for enhancing and modulating taste perception

4“Mixed reality is the merging of real and virtual worlds to produce new
environments and visualizations, where physical and digital objects co-exist and
interact in real time.” (Milgram and Kishino, 1994).

via different senses [e.g., see the work by Velasco et al. (2018) for
a review of multisensory technology for flavor augmentation].

An emerging approach based on the principles of acoustic
levitation is computer-controllable levitating food (Vi et al.,
2017b). This technology consists of a contactless food delivery
system able to deliver food morsels to the user’s tongue without
the need of pipettes or electrodes. This contactless interaction
can be suitable for delivering taste stimuli while maintaining
a sterile and clean environment. Unlike electrical stimulation,
levitating food techniques offer the possibility to deliver actual
food, i.e., multiple morsels simultaneously in 3D, enabling the
manipulation of the food’s trajectories. This technology has
been extended to synchronized integration of levitated food
with visual, olfactory, auditory, and tactile stimuli (Vi et al.,
2020), enabling systematic investigations of multisensory signals
around levitated food and eating experiences. For example, with
this system, Vi et al. (2020) found that perceived intensity,
pleasantness, and satisfaction regarding levitating taste stimuli
are influenced by different lighting and smell conditions. This
approach thus opens up experimentations into new tasting
experiences (e.g., molecular gastronomy; Barham et al., 2010).

The aforesaid new approach can extend the study of
multisensory integration in several ways. For example, studies
exploring olfactory–gustatory integration can benefit from the
multimodal functionalities of this technology. Different mixtures
could be created in mid-air by levitating different droplets
of different solutions with precision, allowing researchers to
dynamically change experimental conditions (e.g., different
tastes) while at the same time controlling smell stimulus
presentation in terms of time (precise control of delivery
duration) and location (directional delivery toward the subject’s
nose). Additionally, since levitated food does not involve physical
actuators, this could facilitate its implementation within VR
environments (e.g., in visuo–gustatory interactions), avoiding
the need to track additional elements (e.g., the subject’s hands,
spoons) (Arnold et al., 2018). Finally, levitating food approaches
can also facilitate the study of multisensory spatial interactions,
given that food stimuli can be delivered to the subject’s mouth
from different locations.

The multimodal properties of these new gustatory
technologies and interfaces can be applied to classical paradigms
used in the study of multisensory integration, for example, in
studies involving gustatory and olfactory interactions, such
as odor–taste learning (Small and Green, 2012) or involving
gustatory and auditory interactions, such as the sonic chip
paradigm (Spence, 2015). Overall, the technology described in
this section is opening up a wide range of opportunities not only
in multisensory integration research but also in the context of
eating and human–food interaction (Velasco and Obrist, 2021).

DISCUSSION, CONCLUSION, AND
FUTURE RESEARCH

The aim of this review was to reflect upon the opportunities
that advances in multisensory technology can provide for
the study of multisensory integration. We have exemplified
how researchers in the field of multisensory integration
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could derive inspiration and benefit from novel emerging
technologies for visual, auditory, tactile, and also olfactory
and gustatory stimulation. Apart from describing the level
of control that new interfaces and devices offer, we have
highlighted some of the new flexibility such technologies
provide, such as how the different senses can be stimulated
simultaneously and how the study of multisensory integration
can be moved beyond the laboratory into more naturalistic
and newly created settings, including physical/real and
digital/virtual worlds.

While multisensory technology is advancing and revealing
new opportunities for the study of multisensory integration, a
major issue we would like to highlight is how responsibility is
shared between humans and technology. Computing systems
today have become ubiquitous and increasingly digital. An
example of this is the evolution from human–computer
interaction—a stimulus–response interplay between humans and
technology (Hornbæk and Oulasvirta, 2017)—towards human–
computer integration (Mueller et al., 2020)—a symbiosis in
which humans and software act with autonomy (Farooq and
Grudin, 2016). For example, multisensory technology becomes
more connected to our body, emotions, and actions since
sensors can be worn that allow mobile interactions (Wang
et al., 2020). Responses from systems are mediated by the
user’s biological responses and emotional states (Amores and
Maes, 2017). Virtual environments allow one to embody
virtual avatars, thus creating the feeling of body ownership
and the sense of presence (i.e., the feeling of being there),
with realistic environments no longer limited to audio–
visual experiences but also including touch (Sand et al.,
2015), smell (Ranasinghe et al., 2018), and taste experiences
(Narumi et al., 2011b).

This increased symbiosis between humans and technology
(Cross and Ramsey, 2020) leads to the challenge of a shared
“agency” between humans and digital systems. Agency or,
more precisely, the sense of agency (SoA) is crucial in our
interaction with technology and refers to the feeling of “I
did that” as opposed to “the system did that,” supporting
a feeling of being in control (Haggard, 2017). The SoA
arises through a combination of internal motoric signals and
sensory evidence about our own actions and their effects
(Moore et al., 2009). Therefore, increasing sensory evidence
by giving the subjects multisensory cues during interactions
can make technology users more aware of their actions
and the consequences of these, thus promoting a feeling
of responsibility (Haggard and Tsakiris, 2009). Since recent
technology posits the user in environments that are not fully
real (e.g., virtual or augmented) and where users’ actions are
sometimes influenced (e.g., autocompletion predictors) or even
automated (e.g., autonomous driving), multisensory signals can
help the users to feel agency during the interaction with
technology, even though they are not the agent of the action
(Banakou and Slater, 2014). Emerging research is examining
how to improve the SoA during human–computer interaction,
for example, by exploring motor actuation without diminishing
the SoA (Kasahara et al., 2019), exploring appropriate levels
of automation (Berberian et al., 2012), or exploring how the

SoA can be improved through olfactory interfaces (Cornelio
et al., 2020). Despite such efforts, it has been suggested that
“the cognitive coupling between human and machine remains
difficult to achieve” (Berberian, 2019), so therefore further
research is needed. However, in light of this review, we
argue that, in a digital world in which users can see, hear,
smell, touch, and taste just like they do it in the real world,
it can provide the sensory signals that they need to self-
attribute events, thus facilitating the agency delegation between
humans and systems.

In summary, we believe that the SoA is a key concept
that may become increasingly important to consider in the
study of multisensory integration especially when moving from
laboratory to real-world environments. Despite the astonishing
technological progress, it is worth acknowledging that some
of the technologies—interfaces and devices—described in this
review are still in the development phase, and although their
principles are possible in theory and often demonstrated in
proofs-of-concepts, more testing is needed. Additionally, some
of the devices discussed in our review lack studies with human
participants. For example, the volumetric displays illustrated
in Figure 1c have only been tested in laboratory settings
with no further exploration of areas in which they could be
useful (e.g., psychophysics studies). This highlights the main
motivation underlying our review – to make researchers aware
of these emerging technological opportunities for studying
multisensory integration. While technological feasibility has
been demonstrated, there is a lack of understanding of how
these new devices can benefit the study of human sensory
systems. We hope that this review sparks interest and curiosity
among those working in other fields and opens up mutually
beneficial research avenues to advance both engineering and
computing and our understanding of the human sensory systems.
Indeed, we believe that strengthening the collaborations between
psychology, neuroscience, and HCI, maybe prove to be fruitful
for the study of multisensory integration.

Bringing these disciplines closer together may benefit the
study of multisensory integration in a reciprocal fashion, that is,
new technologies can easily be adapted to classical experimental
paradigms used in neuroscience research. Similarly, principles
and theories emerging from neuroscience research that have
provided evidence of how the human sensory system works can
be used to develop new technologies, contributing to a more
accurate human–computer integration symbiosis.
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