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Face processing is a spatiotemporal dynamic process involving widely distributed
and closely connected brain regions. Although previous studies have examined the
topological differences in brain networks between face and non-face processing, the
time-varying patterns at different processing stages have not been fully characterized.
In this study, dynamic brain networks were used to explore the mechanism of face
processing in human brain. We constructed a set of brain networks based on consecutive
short EEG segments recorded during face and non-face (ketch) processing respectively,
and analyzed the topological characteristic of these brain networks by graph theory.
We found that the topological differences of the backbone of original brain networks (the
minimum spanning tree, MST) between face and ketch processing changed dynamically.
Specifically, during face processing, the MST was more line-like over alpha band in
0-100 ms time window after stimuli onset, and more star-like over theta and alpha
bands in 100-200 and 200-300 ms time windows. The results indicated that the brain
network was more efficient for information transfer and exchange during face processing
compared with non-face processing. In the MST, the nodes with significant differences of
betweenness centrality and degree were mainly located in the left frontal area and ventral
visual pathway, which were involved in the face-related regions. In addition, the special
MST patterns can discriminate between face and ketch processing by an accuracy of
93.39%. Our results suggested that special MST structures of dynamic brain networks
reflected the potential mechanism of face processing in human brain.

Keywords: face processing, dynamic brain network, minimum spanning tree, electroencephalography,
classification

1. INTRODUCTION

Face processing is a well-developed human capability, and thanks to it, we can recognize faces more
quickly and accurately than non-face objects in complex environments. In the past decades, the
distinct processing mechanism of faces in the brain has been extensively explored by neuroscientists
and psychologists (Bentin et al., 1996; Ishai et al., 2005; Yang et al., 2015; Uono et al,, 2017; Fan
et al., 2020; Muukkonen et al., 2020; Wang et al., 2020; Yin et al., 2020). It is well-accepted that
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face processing is a spatiotemporally dynamic process involving
widely distributed and closely connected brain regions (Ishai
et al., 2005; Uono et al., 2017; Muukkonen et al., 2020). From
the perspective of temporal dimension, the event related potential
(ERP) studies show that face processing is distinctive from non-
face processing in human brain in different time windows (Bentin
et al.,, 1996; Yang et al,, 2015). Specifically, the amplitude of P1
occurring around 80-100 ms after stimuli onset is larger for
faces than for non-face objects; the amplitude of N1 increases
and the latency of N1 is about 30 ms longer for faces (arising
around 160-190 ms) than for non-face objects (arising around
130-160 ms). From the spatial dimension, researches with high
spatial resolution (such as fMRI) propose that the neural activities
in and between the face-related brain regions are distinctive
compared with non-face processing (Ishai et al., 2005; Axelrod
and Yovel, 2013; Renzi et al., 2013; Duchaine and Yovel, 2015;
Muukkonen et al., 2020), demonstrating that these regions
and their connections construct a unique topology for face
processing. However, few studies have investigated the time-
varying patterns of the topology at different processing stages to
fully characterize the mechanism of face processing.

The human brain is a complex network with highly connected
and widely distributed regions (Meunier et al., 2010; van den
Heuvel and Sporns, 2011; Bullmore and Sporns, 2012). Analyses
based on graph theoretical approaches suggest that human brain
networks are organized according to an efficient topology that
integrates brain regions with similar function into groups (called
communities) and maintains short path lengths between regions,
i.e., the small-world organization (Sporns and Honey, 2006;
Bullmore and Sporns, 2012).The efficient topology of brain
networks has been considered to play a key role in cognitive
processing, and different topologies are associated with specific
stages of the cognitive process (Zhang et al., 2019; Allegra et al.,
2020; Delgado Reyes et al., 2020; Finc et al., 2020; Si et al., 2020).

Topological organization analysis of brain networks
characterizes the integration and segregation of information
between distributed brain regions, whereas dynamic brain
networks investigate changes in the topological organization
of a set of brain networks which are typically constructed
from brain activities recorded in sequential time windows.
When employed to study human cognitive processes, dynamic
brain networks enable the integration of multiple dimensions
of the information about neural activities in the brain (Bola
and Sabel, 2015; Hassan et al., 2015; Rizkallah et al., 2018). In
this study, we investigated the differences in brain networks
corresponding to face processing and non-face processing in
different time windows. The goal is to understand how the
differences change in different processing stages, thus enabling
us to reveal the underlying mechanism of face processing from a
spatiotemporal perspective.

When comparing the topologies of graph networks, the
conventional operations suffer from some methodological
problems (van Wijk et al., 2010; Fornito et al., 2013; Tewarie
et al, 2015). Specifically, for binary network analysis, the
networks being compared are obtained by binarizing the original
weighted networks using a fixed threshold, which may change
the average degree of the networks differently. As the graph

measures are influenced by the average degree of network,
the comparison may lead to biased results. Although weighted
network analysis can alleviate the bias caused by the thresholding
operation, the difference in the averaged weights will influence
the graph measures of weighted networks. Recently, the
minimum spanning tree (MST) has been adopted to tackle the
aforementioned issues (Stam et al., 2014; Tewarie et al., 2015;
van Dellen et al., 2018). The MST is a sub-network without
loops and is the backbone of the original network. It has been
used to explore the mechanism of mental illnesses and cognitive
functions (Fraschini et al., 2016; Téth et al., 2017; Utianski et al.,
2017; Cao et al., 2020; Das and Puthankattil, 2020). Moreover,
various measures of MST were used as features to distinguish
different cognitive states or different groups via machine learning
methods (Cui et al., 2018; Guo et al., 2018; Mehraram et al., 2019;
Saba et al., 2019).

In this study, we made an exploratory research on the
mechanism of face processing by dynamic brain networks based
on electroencephalography (EEG) recordings. Firstly, the EEG
data recorded during face and non-face (ketch) processing were
filtered into 5 classical frequency bands, including delta (0.5
4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and
gamma (31-46 Hz) bands. Secondly, trials were extracted and
each trial was divided into 5 time windows with the length of 100
ms. Thirdly, MSTs of the brain networks corresponding to face
and ketch processing in each time window over each frequency
band were constructed. Fourthly, the MST topologies of face
and ketch processing were compared and the MST measures
with significant differences were selected as features. Finally, the
discriminability of the selected MST measures was validated by a
classification model using the support vector machine (SVM).

2. MATERIALS AND METHODS

2.1. Participants

Twenty-eight volunteers (15 male, 13 female; age = 27.41 £ 5.47,
mean =+ standard deviation) were recruited from the Xidian
Community. They were all right-handed, reported normal or
corrected to normal visual acuity, and did not have any history of
psychiatric or neurological disorders. All the volunteers provided
written informed consents and received monetary payment for
the participation. The experimental procedures complied with
Helsinki Declaration of 1975 which was revised in 2000.

2.2. Experimental Design

The stimuli were three categories of pictures, including 48 faces
(24 males and 24 females), 48 ketches and 48 watches. Face and
ketch pictures were presented in two conditions: upright and
inverted. In addition, 48 scrambled pictures were included as
the baseline stimuli. The scrambled pictures were obtained from
face pictures by two steps. First, each picture was divided into
small blocks, and then, the small blocks were rearranged until
the identity of the scrambled picture could not be discerned. The
face pictures were collected from public-accessed websites, the
ketch and watch pictures were chosen from the Caltech256 image
set (Griffin et al., 2006). To eliminate the influence of physical
properties of stimuli, grayscale pictures were used, and all of
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them were cropped into 300 x 300 pixels. Pixel values of pictures
were normalized to make them have similar luminance levels.
Moreover, the object in each picture occupied as least 75% space
of the picture. Figure 1 shows examples of the stimuli.

The experiment was conducted in an electromagnetically
shielded and semi-dark room. The introduction and stimuli were
presented on an LCD screen (resolution: 1980 x 1080 pixels,
refresh rate: 60 Hz). The participants were positioned at a viewing
distance of approximately 80 cm and seated in a comfortable
armchair with their eyes fixating on the center of the screen. The
stimuli were presented using E-Prime 2.0 presentation software
running under Windows 7 with an Nvidia GeForce GTX 750
graphics card.

During the experiment, before a stimulus was presented, a
red cross was displayed in the center of the screen for 500-800
ms. Each stimulus was presented for 500 ms and followed by
an empty screen for 500-700 ms. The red-cross, stimulus and
empty screen constituted an experimental trial the duration of
which was approximately 1,750 ms. All the stimuli were divided
into 3 blocks. Each block included 96 different stimuli (16 upright
faces, 16 inverted faces, 16 upright ketches, 16 inverted ketches,
16 watches and 16 scrambled pictures), and lasted approximately
2.8 min. Each block was repeated six times, and the pictures were
shuffled in each block. There were 18 blocks in this experiment,
with 288 trials for each type of pictures, and the total time
was about 70 min. The participants were requested to observe
the stimuli carefully and make keyboard responses during the
empty screen after they saw the watches. During the experiment,
after one block was finished, the experiment was paused. Then,
the subject could pressed the “space key” to go on or had a
short break when he felt tired. The block design avoided the
subjects’ fatigue. The experimental procedure was similar to the
ones used in previous studies (Bentin et al., 1996; Uono et al.,
2017), in order to keep them consistent, the inverted faces and
ketches were included. The goal of our study was to investigate
the potential mechanism of face processing by compared with
non-face processing, so the EEG data of inverted faces and
ketches was not analyzed in this study. Figurel shows the
experimental procedure.

2.3. EEG Recording and Preprocessing
When the participants undertook the task, EEG data were
recorded using a 64-channel amplifier provided by Brain
Products Company (ActiCHamp system). All the channels,
including a reference channel (channel Iz) and 63 EEG channels,
were deployed over the head according to the international 10-
10 system (Robert and Peter, 2001; Jurcak et al., 2007). The
sampling rate was set to 1,000 Hz, the contact impedance of each
channel was kept below 10k€2, the pass-band filter with 0.5-100
Hz and notch filter with 50 Hz were employed when EEG data
were recorded.

The EEG data were preprocessed off-line in the following
steps. Firstly, EEG data were re-referenced to the common
average reference and inspected by visual observation
using EEGLAB (Delorme and Makeig, 2004) to remove
epochs containing artifacts such as slow drift. Secondly, the
electrooculogram (EOG), electromyography (EMG) and other

non-cognitive related artifacts were removed by independent
component analysis (ICA). Thirdly, five narrowband filters
were used to obtain 5 classical frequency-band EEG data [delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz),
gamma (31-46 Hz)]. In this study, the delta, theta, alpha, and
beta frequency bands were similar with other EEG studies on
face processing (Sakihara et al., 2012; Yu et al., 2016; T6th et al,,
2017). The gamma bands were defined according to face studies
(Gao et al, 2013; Uono et al., 2017; Frauscher et al., 2018).
Finally, trials were extracted according to the type of stimuli,
ranging from —200 ms before to 800 ms after the stimulus
onset. Each trial was baseline-corrected by subtracting the mean
amplitude over the epoch between —200 and 0 ms.

In this study, the total number of the trials of all the subjects
per category was 8064 (28 x 48 x 6). After preprocessed, noisy
trials were removed. Then, we chose nearly equal number of trials
corresponding to faces, ketches, and scrambled pictures for each
subject for further analysis. The number of the trials of each
subject per category was about 274. Finally, the total number
of trials was 7,665 per category. The dataset was randomly
divided into two subsets, where the first subset contained 70%
of trials (5,366 trials per category) and the second contained
the remaining 30% of trials (2,299 trials per category). The
first subset was used to investigate the distinctive processing
of face compared with non-face (ketch) through dynamic
brain network analysis. The second one was used to test the
discriminatory ability of brain network features in face and
non-face processing classification.

2.4. Data Analysis

Figure 2 shows the methodological workflow for data analysis
in this study. The data processing and analysis were performed
in MATLAB 2015b including EEGLAB (version 13_6_5b, http://
sccn.ucsd.edu/eeglab/).

2.4.1. Time Window Division

For each trial, the data segment from 0 to 500 ms after stimulus
onset was selected for analysis. Each data segment was divided
equally into 5 time windows (0-100, 101-200, 201-300, 301-400,
401-500 ms), denoted as T1 to T5, respectively. In each time
window, a brain network was constructed over each frequency
band separately.

In this study, the length of 100 ms was used for two reasons.
First, we found that longer data segment may lead to severe
averaging effects that reduced the temporal resolution, while
too short data segments caused excessive computational load.
Second, the P1-N170-P2 effect of face processing indicates that
the unique processing of face may occur in 0-100, 100-200, and
200-300 ms sequentially (Gu et al., 2010; Yang et al., 2015).

2.4.2. Functional Connectivity

The phase lag index (PLI) (Stam et al, 2007) was used to
estimate the strength of correlations between EEG channels that,
in neuroscience research, is referred to as functional connectivity.
The PLI evaluates the phase synchronization between EEG
signals of two channels. Before calculating PLI, the instantaneous
phases of an EEG channel data x(t) should be obtained from the
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Inverted Ketch Watch

Inverted Face

FIGURE 1 | (A) Examples of each kind of stimuli. (B) Procedure of experiment.

500-800 ms

corresponding analytical signal z(¢) which is a complex signal
with a real part of x(¢) and an imaginary part of x(¢):

2(t) = x(t) + ix(t) = A(t)e'?D, (1)

where X(t) is the Hilbert transform of x(¢). The instantaneous
amplitude A(#) and phase ¢(t) of x(t) can be calculated as

A = J[&0] + [x0)], )

¢(t) = arcmn%. 3)
The PLI between EEG signals of two channels is computed as
LN
PLI = ‘N kg;szgn {sm [A@(tk)]} , (4)

where A®(ty,) is the phase difference between two time series at
time instant k, N is the total number of samples, “sign” refers to
the Heaviside function, and “sin” is the sinusoidal function. As
the “sign” function is introduced in Equation (4), the zero-lag
synchronization is removed, which makes the PLI less affected
by the volume conduction effect compared with other methods
(Stam et al., 2007). The value of PLI ranges from 0 to 1. A
PLI value of 0 indicates either no coupling or coupling with
phase difference locking at a value different from 0, such that the
functional connectivity will be 0. The larger the PLI, the stronger
the functional connectivity. More details of the PLI computation
can be found in Stam and his colleagues’ work (Stam et al., 2007).

The functional connectivities of channel pairs constitute
the adjacency matrix of a brain network. For each trial, each
frequency band and each time window, a brain network was
constructed accordingly.

2.4.3. MST Construction and Representation

To investigate the topological organization of the brain networks,
the MST of each brain network was constructed and the graph
theoretical representations of the MSTs were analyzed. Only
a brief description of the MST is given here, the detailed
information can be found in previous studies (Stam et al., 2014;
Tewarie et al., 2015; van Dellen et al., 2018).

MST is a sub-network of the original network in which
all nodes are connected without forming loops and has the
minimum total weight of all possible spanning trees (Tewarie
et al.,, 2015). Since the PLI values, which can be considered
as an inverse distance, were used in this study as the link
weights for the original brain network, we retained the maximum
link weights to construct the MSTs (formally a maximum
spanning tree) using the Kruskal’s algorithm (Kruskal, 1956).
Specifically, given an original network, the weights of all its
links were sorted and the link with the maximum weight was
added to the MST. Then, the link with the next largest weight
was added, and this process continued until all nodes were
connected. If adding a link resulted in the formation of a
loop, the link was skipped. At the end of the link addition
process, a weighted MST was generated. Finally, the weighed
MST was binarized.

Several measures are usually used to characterize the MST,
including degree (K), leaf fraction (Lf), eccentricity (E), diameter
(D), betweenness centrality (BC), and tree hierarchy (Th).
The detailed information of these measures can be found
in Boersma et al. (2013), Stam et al. (2014), and Tewarie
et al. (2015). In addition to the graph measures, the sum
of PLI (denoted as MST PLI) is also an important measure
of MST, which estimates the degree of regional coupling in
the MST.

There are two extreme structures of MST—line and star
structures, corresponding to regular and random networks,
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FIGURE 2 | Methodological workflow. (A) EEG recording and pre-processing. Five frequency bands of EEG data were calculated and divided equally into 5 time
windows. (B) Original brain network construction for each time window and each frequency band. (C) MST construction. (D) MST representation and analysis.
Measures with significant differences between face and ketch processing were concatenated as features for classification. (E,F) Classification of face and ketch
processing using MST features and EEG time segments, respectively. (G) Evaluation of classification performance.

respectively. For an MST with N nodes and N-I links, the
two extreme structures have deterministic measures. For a line
structure, the maximum of degree K is 2, the number of leaf
nodes is 2 and the diameter D is N-1. For a star structure, the
maximum of K is N-1, the number of leaf nodes is N-1, and D
is 2. An MST is considered as line-like if its measures are closer
to that of a line structure than to a star structure, otherwise it is
star-like. In general, the structure of a brain network is between a
line and a star structure.

When comparing the topologies of two MSTs, the dissimilarity
between them should first be estimated. In this study, the
dissimilarity is quantified using a measure based on the
information theory. For two different MSTs (MST,, and MSTy,)
with the same number of nodes, the dissimilarity measure
computes how much information is needed, on average, to
explain MST,, given MSTy, (Lee et al., 2006). The dissimilarity

is defined as

1 N S 10
n(i
Sn/m = N ;_1 lOgIO Si > (5)

m(i)

where S,,; and S,,(;) are the sum of distances from a reference
node i to all its neighbors in MST,, and MST,, respectively.
Distances refer to the path length based on the PLI. More detailed
explanations about the dissimilarity can be found in Lee et al.
(2006) and Tewarie et al. (2014).

In this study, the dissimilarity of MSTs between face and
ketch processing was evaluated through a reference MST .
Specifically, a reference MST,.f was firstly constructed from
the network obtained by averaging the adjacency matrixes
corresponding to all the scrambled pictures. Then, the
dissmilarities of MSTs during face (MSTy) and ketch processing
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(MSTy) compared with the reference MST ¢ (Sx/ref and Sy/ref)
were calculated, respectively. Finally, Sy/f and S,/ was
compared to evaluate the dissimilarity of MSTs betweeen face
and ketch processing.

2.4.4. Statistical Analysis

Wilcoxon rank sum test was conducted for each measure
of the MSTs between face and ketch stimuli in each time
window and each frequency band. The dissimilarity between the
corresponding MSTs was analyzed firstly. Further analyses were
carried out only for the pairs of MSTs demonstrating significant
dissimilarity. The measures including D, Ly, maximum BC
(MaxBC), maximum degree (MaxK), Th, MST PLI, and each
node’s BC and K were calculated. Wilcoxon rank sum test was
performed for each measure and the p-values were corrected by
false discovery rate (FDR). The correction took two factors into
account - the time window (T1, T2, T3, T4, T5) and the frequency
band (delta, theta, alpha, beta, and gamma). Moreover, for the K
and BC of each node, the number of nodes was also considered.
In this study, the significant level was set to 0.05.

In this study, Wilcoxon rank sum test with FDR correction
was chosen for the statistical analysis for two reasons. Frist,
Wilcoxon rank sum test does not require the data to follow
a normal distribution. Second, since there were several factors
(including time windows and frequency bands) that influenced
the analysis results, the multiple comparison correction should
be used to correct the statistical results. There are two routine
methods of multiple comparison correction, FDR and Bonferroni
correction. Bonferroni correction is stricter than FDR correct,
but it often rejects not only false positives but also many positive
results (Benjamini and Yekutieli, 2001), so we used FDR.

In summary, in this study, the EEG data were firstly filtered
into five frequency bands and then each original EEG trial was
divided into five time segments. For each time segment, a brain
network was constructed based on the adjacency matrix defined
by phase lagged index. After the brain networks were constructed,
we extracted MSTs of the brain networks and calculated their
measures. Then, we compared and analyzed the topology of MSTs
corresponding to faces and ketches in each time window over
each frequency band across subjects.

2.5. Classification Based on SVM

A machine learning approach was used to validate the single-trail
discriminatory ability of the MST measures for face and non-
face processing classification. After analysis of the first dataset,
all the MST measures with significant differences between the
two types of stimuli across all time windows and frequency
bands were concatenated as features. For the second dataset,
we calculated the network features, and a SVM classifier was
adopted for classification. The total number of the second
dataset was 2299 for face and ketch stimuli respectively. We
performed five-fold cross-validation to train SVM classifiers
using the LIBSVM library (Chang and Lin, 2011) and reported
the results averaged over 5 repetitions. For comparison with
the MST measures, we also used the EEG time segments (TS)
over occipito-temporal areas as features for SVM classification.
Details about the construction of TS samples was presented

in the Supplementary Material. The classification performance
was quantified using the receiver operating characteristic (ROC)
curve, mean accuracy, sensitivity, specificity, and area under the
ROC curve (AUCQ).

3. RESULTS
3.1. MST Dissimilarity Test

The results of dissimilarity test demonstrated that there were
significant differences in the processing of faces and ketches in
certain time windows and frequency bands, as shown in Table 1.
Specifically, over theta band, the dissimilarity presented in T2 and
T3; over alpha band, the dissimilarity presented in T1, T2, and
T3. Figure 3 shows the sketch maps of MSTs of face and ketch
processing in different windows over theta and alpha bands. The
MSTs were constructed from the adjacent matrices averaged from
all trails of each situation, respectively. The balls represent the
nodes (channels) and their size is the degree of the node. The red
balls are leaf nodes, other colored balls are hub nodes with degree
greater than 1. The larger the size of the ball, the greater the node’s
degree, and the more important the hub node is in the MST. The
sketch maps were made by BrainNet Viewer (Xia et al., 2013).

3.2. MST Measure Analysis

Table 2 and Figure 4 present the statistical results of the MST
measures of face processing compared with ketch processing.
From these, we can draw the following observations.

Over theta band, in T2, the face processing had a significantly
shorter MST diameter compared with ketch processing, whereas
the other measures (including Ly, MaxBC, MaxK, Th, and MST
PLI) were significantly larger. In T3, the MST diameter of
face processing was also significantly shorter than that of ketch
processing, but unlike in T2, only the leaf fraction and MST
PLI were significantly larger than that of ketch processing. These
results indicated that the structures of MSTs were more star-like
during face processing compared with during ketch processing in
T2 and T3 over theta band.

Over alpha band, in T1, the MST diameter was significantly
longer during face processing compared with ketch processing,
while the other measures (except for Th) were significantly
smaller. These results indicated that the structure of MST was
more line-like during face processing. In contrast, in T2 and
T3, the MST diameter was significantly shorter and the other
measures were significantly larger (except for Th in T3). These
results indicated that the MST structures were more star-like
during face processing in T2 and T3 over alpha band.

The statistical analysis of node BC presented that some nodes
had significantly larger BC values during face processing than
that during ketch processing. Specifically, over theta band and
in T2, these nodes were mainly located in the left frontal area,
and bilateral ventral visual pathway of the brain (including Fp1,
AF3, TP9, P7, PO7, PO3, O1, POz, Oz, 02, P4, P8, TP10, PO4,
and PO8). Over alpha band, in T2, these nodes appeared in the
left frontal region (Fpl and AF3), and right occipito-temporal
region (POz, PO4, PO8, P8, and TP10); in T3, these nodes mainly
appeared in the left frontal region (Fpl and AF3), and right
parietal-temporal region (Pz, P8, and TP10). The results of node
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TABLE 1 | Results of MST dissimilarity test.

Stimulus Theta Alpha

T2 T3 T T2 T3
Face/ref —0.0699 + 0.0299 —0.0656 + 0.0307 —0.0728 + 0.0296 —0.0832 + 0.0269 —0.0774 4+ 0.0290
Ketch/ref —0.0643 + 0.0307 —0.0636 + 0.0310 —0.0762 + 0.0283 —0.0795 + 0.0276 —0.0741 £+ 0.0289
p-value 2.8199e-21 5.0350e-04 3.6358e-09 9.8099%-14 3.9975e-11

Only results with significant differences are shown. The measure values are in the form of mean + std.

Theta

Face

Ketch

T2 (101 - 200 ms)

T3 (201 - 300 ms)

corresponds to left part of brain.

T1 (0 - 100 ms)

T2 (101 - 200 ms) T3 (201 - 300 ms)

FIGURE 3 | Sketch maps of MSTs of face and ketch processing in axial view (dorsal side). The top part corresponds to anterior part of brain, and left part

degree were similar to the results of BC. Several nodes presented
significant larger degree during face processing than that during
ketch processing. Over theta band, in T2, the nodes were Fpl,
PO3, P07, P7,01, Pz, Oz, 02, PO4, POS, P6, P8, and TP10. Over
alpha band, in T2, the nodes were Fp1, AF3, POz, 02, PO4, POS,
P8, and TP10; in T3, the nodes were Fpl, AF3, P8, and TP10.
Figure 5 shows the topographic mapping of the p-values of node
BC and degree, respectively.

3.3. Classification

In this study, the SVM classifier was used to perform the
classification. The related measures, including the classification
accuracy, sensitivity, specificity and AUC of the ROC curve,
were calculated to quantify the results. The MST measures
which were significantly different between face and ketch
processing were chosen as features to train and test the SVM
classifier. Based on the results of above sections, the number
of MST features was 82. Figure 6 shows the ROC curves for
the SVM classifiers using MST and TS features, respectively.
Table 3 presents the classification performance of the MST and

TS features. It is obvious that the MST features have better
classification performance.

4. DISCUSSION

In this study, the MST topologies of dynamic brain networks
of face and ketch processing were compared to explore the
mechanism of face processing. The MSTs were constructed
based on single-trial EEG data in sequential time windows after
stimulus onset over different frequency bands. We found that the
MSTs of face processing were more star-like compared with that
of ketch processing over theta band in T2 and T3; over alpha
band, the MSTs of face processing were more line-like in T1
while more star-like in T2 and T3. The nodes with significant
differences in BC value and degree were located mainly in the left
frontal area, and bilateral ventral visual pathway of the brain in
T2 over theta band. Over alpha band, these nodes were located
mainly in the left frontal, and right occipito-temporal regions
in T2 and T3. In addition, the classification results showed that
the special MST topologies in specific time windows over specific
frequency bands might reflect the potential mechanism of face
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TABLE 2 | Results of MST measure test.

MST measure i Theta Alpha
Stimulus
T2 T3 T T2 T3
Face 0.1053 + 0.0308 0.1095 + 0.0326 0.1028 + 0.0322 0.0928 + 0.0284 0.0998 + 0.0323
D Ketch 0.1104 + 0.0324 0.1115 £ 0.0331 0.0995 + 0.0303 0.0964 + 0.0294 0.1026 + 0.0321
p-value 2.2327e-16* 0.0012* 2.2082e-09* 2.3559e-11* 5.8504e-08*
Ly Face 0.8566 + 0.0730 0.8450 + 0.0760 0.8657 + 0.0711 0.8907 + 0.0638 0.8757 + 0.0697
Ketch 0.8421 + 0.0758 0.8397 + 0.0769 0.8736 + 0.0676 0.8812 + 0.0660 0.86831 + 0.0700
p-value 1.0381e-24* 0.0002* 1.7478e-08* 7.2764e-16* 3.0733e-10*
Face 0.8847 + 0.0853 0.8788 + 0.0865 0.8887 + 0.0847 0.9043 + 0.0809 0.8942 + 0.0844
MaxBC Ketch 0.8757 + 0.0851 0.8768 + 0.0870 0.8925 + 0.0842 0.8984 + 0.0817 0.8886 + 0.0838
p-value 2.5066e-10* 0.2077 0.0060* 5.2097e-06* 7.0164e-06*
Face 0.5506 + 0.1780 0.5313 £ 0.1778 0.5610 + 0.1784 0.6151 £ 0.1747 0.5843 + 0.1790
MaxK Ketch 0.5222 + 0.1743 0.52366 + 0.1767 0.5765 + 0.1765 0.5946 + 0.1738 0.5650 + 0.1740
p-value 5.4360e-16* 0.0285 7.5457e-06* 6.9950e-10* 8.8900e-09*
Face 0.4870 + 0.0489 0.4836 + 0.0494 0.4898 + 0.0462 0.4951 + 0.0440 0.4925 + 0.0469
Th Ketch 0.4837 + 0.0495 0.4817 + 0.0496 0.4923 + 0.0457 0.4931 + 0.0450 0.4914 + 0.0472
p-value 0.0001* 0.0335 0.0306 0.0046* 0.2048
Face 0.7268 + 0.1117 0.7033 + 0.1168 0.7915 + 0.0981 0.8231 + 0.0849 0.7961 + 0.0909
MST PL/ Ketch 0.7024 + 0.1158 0.6942 + 0.1193 0.8035 + 0.0908 0.8057 + 0.0862 0.7875 + 0.0921
p-value 2.3108e-32* 2.7399e-06* 1.0424¢-06* 3.2710e-23* 0.0004*

The asterisks indicate results with significant differences after FDR correction. The measure values are in the form of mean + std.

processing in human brain. The results were discussed in detail
in the following sections.

4.1. Topological Organization of Brain

Networks

4.1.1. Global Topological Differences of MSTs

In this study, we found that the MSTs were more star-like during
face processing than that during non-face processing in T2 and
T3 over theta and alpha bands. The MST includes the most
important connections of the original network and represents
the “high-way” in the network (Wu et al., 2006; Braunstein
et al., 2007; Stam et al., 2014; van Dellen et al., 2018). In star-
like MST, the topological organization follows a hierarchical
pattern (large Th) composed of a few layers and some densely
connected nodes with most of the nodes serving as periphery
within the network (large Lf) (Stam et al., 2014; Tewarie et al.,
2015). In addition, the star-like MST has smaller diameter that
corresponds to shorter path length in original network, which
facilitates the communication between regions with long spatial
distance and promotes the processing speed. This topological
structure of MST contributes to fast and efficient information
transfer in the network (Boersma et al., 2013; Cao et al., 2020).
Our findings indicated that information transfer and processing
were faster and more efficient among brain regions during face
processing compared with non-face processing in T2 and T3
over theta and alpha bands. The efficient MST structure might
be correspond to the results of previous studies. It is known
that the top-down control mechanism plays an important role
in face processing (Duchaine and Yovel, 2015; Fan et al., 2020).
The top-down processing is associated with neuronal coupling

between the frontal and posterior brain regions over theta/alpha
bands (Anderson, 2011; Maurer et al., 2015; Bossi et al., 2020; Yin
et al., 2020). The top-down processing during face processing is
also associated with the alpha band neuronal coupling between
parietal and temporal regions (Klimesch et al., 2011; Heyselaar
et al., 2018). The top-down mechanism shortens the functional
distance between regions with long spatial distance and makes
large-scale integration in the brain network. We put forward that
the top-down control mechanism might be one of the reasons for
the formation of the more star-like topology of brain networks
during face processing. Moreover, the duration in which the top-
down processing worked during face processing was not clear in
previous studies. Based on the above analysis, the findings that
the more star-like topology occurred in T2 and T3 suggested that
the top-down processing might occur during 100-300 ms after
the face onset.

Larger MaxBC and MaxK were found during face processing
compared with that during ketch processing in T2 over theta
band, and in T2 and T3 over alpha band. If a network has larger
MaxBC and MaxK, then most of the nodes are connected by
several hub nodes, making the network more star-like (Stam
et al., 2014; Toth et al., 2017; Cao et al., 2020). The hub nodes
carry the most amount of information transfer and make the
processing of information in the network more efficient. Our
results indicated that there might exist some hub nodes in
the brain network which played an important role during face
processing, which was consistent with the results of pervious face
studies. In previous studies, brain areas that were very special
to face processing were found (Haxby et al., 2000; Ishai et al.,
2005; Duchaine and Yovel, 2015; Uono et al,, 2017; Fan et al.,
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FIGURE 4 | Diameter, leaf fraction, MaxBC, MaxK, Th, and MST PL/ of MSTs of face and ketch processing in different time windows over theta and alpha frequency
bands. The asterisks indicate results with significant differences after FDR correction, and bars represent standard error.
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TABLE 3 | Classification performance of MST and TS features.

ROC
! 3 Feature Accuracy Sensitivity Specificity AUC

MST 0.9339 0.9437 0.9244 0.9868
TS 0.7566 0.7352 0.7780 0.8375

that has been considered to be a biomarker of face processing
occurs in the duration of 150-200 ms after stimuli onset over
03 % i . the occipito-temporal regions (part of facial areas) (Bentin and
02 o ¥ - ,I}ASST | Deouell, 2000; Yang et al., 2015). The similar occurrence interval
: "." ST — indicated that our result might be related to N170 occurrence
0.1 - i during face processing. Moreover, the results that larger MaxBC
: . . . . . : : : and MaxK for face processing in T2 and T3 over alpha band

0 01 02 03 04 05 06 07 08 09 1 might be consistent with the inter-trail phase coherence (ITPC)
False Positive Rate study of face processing (Gu et al., 2010). The ITPC study showed
that higher alpha band phase synchronization appeared in the
duration of 100-270 ms over occipito-temporal regions after
stimuli onset during face stimuli compared with non-face stimuli.
The hub nodes facilitate the information integrating in the
network, but if they are overloaded, the network will be broken
2020). In these facial areas, neural activities were distinctive  and its efficiency will be seriously reduced (Stam et al., 2014;
between face and non-face processing. Unlike previous studies, ~ Yu et al.,, 2017). Tree hierarchy (Th) characterizes the balance
our results based on MaxBC and MaxK did not provide detailed =~ between integration and node load in the network. The larger the
information about the nodes, nor do they provide information  Th value, the more efficient the information integrating of the
about which nodes were more important during face processing.  network, however, the higher the risk of the hub nodes being in
In this study, the result that larger MaxBC and MaxK appeared  an overloaded state. We found that Th was larger only in T2 over
in T2 not T3 over theta band reminded us of N170. N170  theta and alpha bands, which indicated that the T2 was important

Ture Positive Rate

FIGURE 6 | ROC curves of SVM classifiers using MST and TS features.
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for face processing. In T2, the brain network of face processing
organized into a structure with several hub nodes that bore more
information processing. According to previous studies (Bentin
and Deouell, 2000; Schiltz and Rossion, 2006; Uono et al., 2017),
we inferred that this structure of brain network might facilitate
the unique processing of face including holistic encoding and
configural processing which occurs in 160-210 ms after faces
onset. Moreover, it is supposed that overloaded nodes in the brain
network may process the most urgent information, but they must
not work in an overloaded state for long time to avoid making
themselves damaged (Olde Dubbelink et al., 2014; Stam et al.,
2014; Fraga Gonzalez et al., 2016). The result that Th was not
larger in T3 during face processing over theta and alpha bands
indicated that the high loaded nodes restored to normal state after
processing of main facial features, although the topology of MST
was still more efficient (more star-like MST) for face processing.

We found that MST PLI was larger during face processing
compared with that during ketch processing in T2 and T3
over theta and alpha bands. MST PLI measures the strength
of functional connection of the brain on average. Our findings
indicated that face processing resulted in enhanced functional
connection in the brain network, which were consistent with
pervious face processing studies. Specifically, previous EEG
studies presented that the functional connection increased
between the occipito-temporal regions and other brain regions
over theta band, and between frontal/parietal regions and
posterior region over alpha band during face processing
compared with non-face processing (Yang et al., 2015); moreover,
the average functional connection of the brain network increased
over theta band during face processing (Yin et al., 2020). Different
from these studies in which the temporal information was
lost, our results provided the duration in which the functional
connection became stronger during face processing.

Besides showing more star-like topology in T2 and T3,
we found that the MST of brain network was more line-like
during face processing in T1 over alpha band. More line-like
MST indicated that the structure of the brain networks tended
to be regular (Boersma et al, 2013; Stam et al., 2014; Toth
et al., 2017), which had more clustered regions that contributed
to local processing. In this type of network, most of the
information processing took place in the clustered regions, with
little information transfer between them. Our finding suggested
that more clustered regions were formed in the initial stage
of face processing and contributed to the processing of basic
face features. In previous study, the role of functional brain
network’s topology in cognition has been postulated by the global
workspace theory (GWT) (Baars et al., 2013). GWT proposes
that in human cognition, local processing within specific modules
occurs in the beginning, after which the local information
needs to be integrated within a global workspace that can
be identified by a network comprising hub-nodes and inter-
modular connections. In our study, dynamical changes of the
MST topology from more line-like to more star-like supported
the GWT, and indicated that the information separation and
integration might be more significant during face processing.

In addition, although the topological organization of MST was
more star-like during face processing in T2 and T3 over theta and

alpha bands, it could be observed that the difference between face
and ketch processing became not significant in terms of several
measures in T3. Specifically, the MaxBC, MaxK, and Th over
theta band, and Th over alpha band became not significantly
different in T3. The results indicated that the brain networks
of face and ketch processing were organized dynamically, and
their structures trended to be similar after the completion of face
feature processing. In previous studies (Bentin and Deouell, 2000;
Yang et al., 2015; Uono et al., 2017), they presented that the basic
visual features were extracted in the early stage of visual object
processing and the unique processing of face occurred during
80-280 ms after stimuli onset, which demonstrated the dynamic
nature of face processing. Our results validated this unique
property of face processing from the perspective of dynamic
brain networks.

4.1.2. Node Feature Differences of MSTs

The node BC and degree provide information about the single
nodes, reflecting the local processing in the brain network
(Sporns et al., 2007; van den Heuvel and Sporns, 2011). The nodes
with larger BC and degree regulate the information transfer and
processing efficiently in the network. In our study, we found
several nodes had significantly larger BC, and most of them
also had significantly larger degree during face processing. Over
theta band, these nodes were mainly located in the left frontal
area, and bilateral ventral visual pathway of the brain in T2.
This result suggested that neural activity in these nodes might
regulate the transfer of face-related information more efficiently
and play more important role in face processing. The locations
of these nodes were consistent with the previous studies on the
“core” and “extent” system of face processing (Ishai et al., 2005;
Duchaine and Yovel, 2015), which involved the inferior occipital
gyrus, fusiform gyrus, superior temporal sulcus, hippocampus,
amygdala, inferior frontal gyrus, and orbitofrontal cortex.

Over alpha band, the nodes with larger BC and degree during
face processing were mainly located in the left frontal and right
occipito-temporal regions in T2, while in the left frontal, and
right posterior temporal regions in T3. The results indicated
that the mechanism of face processing might be related to the
alpha band neuronal synchronization among the left frontal, and
right occipito-temporal regions. It has been reported that the
alpha band neural activities in left frontal and posterior regions
are associated with the top-down processing in face processing
(Klimesch et al., 2011; Heyselaar et al., 2018; Yin et al., 2020).
However, the time window in which these special neural activities
occurs is not clear. Our findings suggested that the T2 and
T3 time windows might be the duration in which these neural
activities occurred during face processing. Moreover, the special
alpha neural activities were found in the right but not in the left
occipito-temporal regions. This result might be related to the
right hemisphere effect of face processing (Bentin and Deouell,
2000; Duchaine and Yovel, 2015).

In summary, in the previous research on face processing,
the functional connectivity and roles of brain regions were
investigated. They presented “core” and “extent” systems of face
processing. The functional connectivity between the regions in
these systems were enhanced, and the regions played specific
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roles. However, none of them investigated the topology of the
brain network during face processing by using graphic theory.
Our findings about nodes and MST PLI were consistent with
the previous studies. Furthermore, as the above analysis, other
MST measures provided new perspective on understanding the
mechanism of face processing in the brain.

4.2. Classification Performance

As discussed above, the dynamical changes of the brain network
structures reflected the mechanism of face processing. Our
results indicated that the structure of brain network might
contain common patterns that could distinguish between face
and non-face (ketch) processing based on single-trial EEG data.
The results of the machine learning method demonstrated that
SVM classifier based on MST measures had better performance
compared with that based on conventional temporal features. In
this study, we chose MST measures that presented significant
difference between face and ketch processing as the features.
These features included not only the temporal but also the spatial
information of neuronal activities, which characterized the face
processing more comprehensively.

Compared with previous related studies, the data analysis
method of this study. First, the brain networks were constructed
based on single-trial EEG data. In most of previous studies,
the EEG segments were firstly averaged over single subject, and
then the brain networks were constructed using the averaged
EEG data for each subject (Yu et al, 2016; Mehraram et al,
2019; Cao et al, 2020). However, not all the EEG segments
were time-locked to human cognitive stages, so the averaging
operation might make the intrinsic information broken. The
brain networks based on single-trial data could supply many
more samples, thus enabling the statistical analysis to find the
intrinsic patterns in the data. Second, the SVM classifier was
trained using samples from all the subjects. Whereas in previous
studies, individual classifiers were constructed for each subject
(Wang and Jung, 2011; Barngrover et al., 2016), thus each subject
had his own classification performance. But the subject-specific
classifiers were hard to apply to other subjects because of the
individual differences. In our study, we obtained the common
patterns of all the subjects. It can be easily applied to distinguish
the brain states regardless of the individual differences.

Finally, we should clarify the data reference issue. When
preprocessing the EEG data, data reference should be considered.
There are several reference types in EEG study, including the
nose, electrode Cz, REST (Dong et al, 2017), and common
average reference. In this study, we referenced our EEG data
by using common average reference for two reasons. First, in
the most of previous studies on face processing, the common
average reference was used. In order to compare our result with
the results in previous studies (Bentin et al., 1996; Kang et al,,
2015; Yang et al., 2015; Foley et al., 2018; Ambrus et al., 2019;
Mehraram et al., 2019), we chose the common average reference.
Second, Yao’s study (Yao, 2001) mentioned that the use of scalp
potentials to determine the neural electrical activities or their
equivalent sources does not depend on the reference, so we used
the common average reference in this study.

4.3. Limitations and Future Work

There were several limitations should be paid attention to when
interpreting the findings in this study. First, the MST discards
the weak connections and only includes the strong connections
of the original brain network. It should be noted that, no matter
strong or weak it is, each connection may play a certain role
in the network. So discarding weak connections may loss some
information of the brain network. However, in this study, the
advantages of using MST outweighed the disadvantages. For one
thing, previous studies have presented that larger neural activities
and functional connections occurred during face processing
(Yang et al.,, 2015; Yin et al,, 2020). These findings suggested that
the selection of strong connections might be rational to study
the mechanism of face processing. For another, in contrast to the
original brain network-based analysis, the MST-based analysis is
not biased by the network size, average degree, or density effects
and allows for unbiased comparison between networks of equal
size (Stam et al., 2014; Tewarie et al., 2015; van Dellen et al., 2018).

Second, the MST does not supply directional information in
the brain network. However, in the brain, the information flow
is directional during visual objects processing. Specifically, the
basic features of visual objects are extracted firstly on the primary
visual cortex, and then the combination and other processings are
done along the ventral and dorsal visual pathway or modulated by
other functional cortices. In the future study, the methods which
can characterize the direction of information flow in the brain
network should be explored.

Third, unlike previous studies in EEG segment division, in
our study, five EEG segments were selected after the onset of
stimulus presentation, each with a duration of 100 ms without
overlap. Our data segment was longer than that in previous
studies (Bola and Sabel, 2015; Yang et al., 2015; Rizkallah et al.,
2018). Longer data segment may lead to severely average effect
that reduces the temporal resolution. However, data segments
that are too short will lead to excessive computational load.
The P1-N170-P2 effect of face processing indicates that the
unique processing of face may occur in 0-100, 100-200, and
200-300 ms sequentially (Gu et al., 2010; Yang et al.,, 2015).
Therefore, in order to balance the temporal resolution and
computational load, we chose 100 ms as the unit of analysis.
Whether 100 ms is the optimal duration should be explored in
the future work.

Fourth, recently, the spatial pattern of the brain networks has
been investigated to explore the neural mechanism of decision-
making and schizophrenia (Li et al., 2019; Si et al., 2020), which
is a new perspective to characterize the brain. In our study,
we focused on the topological difference of the brain networks
during face and non-face processing in different time window,
so the spatial pattern of the brain network was not considered.
In our future work, we will investigate the spatial pattern of the
brain networks during face and non-face processing.

5. CONCLUSIONS

In this study, we investigated the mechanism of face processing
from the spatiotemporal perceptive by using the dynamic
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brain network method. The MSTs were extracted from the
original brain networks and their structures were compared
between face and non-face (ketch) processing. The results
demonstrated that the MST topology was more line-like in
T1 over alpha band, while was more star-like in T2 and
T3 over theta and alpha bands. From the graph theory
perspective, the special dynamic organization of the brain
network facilitated the information transfer and processing
during face processing. The locations of the nodes with larger
BC values and degrees were consistent with the previous studies.
The classification performance based on MST measures was
superior to that using the EEG time segment. Our study indicated
that the special dynamic organization of the brain network
might reflect the potential mechanism of face processing in
human brain.
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