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Background: Since the replication crisis, standardization has become even more
important in psychological science and neuroscience. As a result, many methods are
being reconsidered, and researchers’ degrees of freedom in these methods are being
discussed as a potential source of inconsistencies across studies.

New Method: With the aim of addressing these subjectivity issues, we have been
working on a tutorial-like EEG (pre-)processing pipeline to achieve an automated method
based on the semi-automated analysis proposed by Delorme and Makeig.

Results: Two scripts are presented and explained step-by-step to perform basic,
informed ERP and frequency-domain analyses, including data export to statistical
programs and visual representations of the data. The open-source software EEGlab
in MATLAB is used as the data handling platform, but scripts based on code provided
by Mike Cohen (2014) are also included.

Comparison with existing methods: This accompanying tutorial-like article explains
and shows how the processing of our automated pipeline affects the data and
addresses, especially beginners in EEG-analysis, as other (pre)-processing chains
are mostly targeting rather informed users in specialized areas or only parts of a
complete procedure. In this context, we compared our pipeline with a selection of
existing approaches.

Conclusion: The need for standardization and replication is evident, yet it is equally
important to control the plausibility of the suggested solution by data exploration. Here,
we provide the community with a tool to enhance the understanding and capability of
EEG-analysis. We aim to contribute to comprehensive and reliable analyses for neuro-
scientific research.

Keywords: EEG, electroencephalography, event-related potentials-ERP, EEG processing, EEG preprocessing,
EEG frequency band analysis

INTRODUCTION

The electroencephalogram (EEG) is one of the most important tools in both applied and clinical
neurophysiology as it offers a high temporal resolution and a high safety due to its non-
invasive application (Cohen, 2017). The central properties of this measurement instrument for
electrical activity, first described by Berger (1929), are frequency (oscillations per time period) and
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amplitude (maximum value of an oscillation during one period).
Years later and despite many technical developments of the
systems and the existing software for subsequent processing,
there are still major problems in the replicability of findings
in EEG research due to methodological variations across
laboratories (Bishop, 2007). However, the problem is not
limited to EEG research. Recently an article was published
which shows how much flexibility in preprocessing affects
the results of research using Magnetic Resonance Imaging
(Botvinik-Nezer et al., 2020), which has major implications for
scientific conclusions.

The EEG signal is strongly affected by sources of interference,
which are caused by the application of the electrodes (e.g.,
electrode displacement), the experiment itself (e.g., flickering
frequencies) or by the activity of the participants, partly in
interaction with the previous factors (e.g., eye-movements or
muscle activity). These unwanted signals can be much larger
than the actual signal of interest and therefore massively interfere
with the measurement of electrophysiological correlates of neural
activation if the artifacts are not corrected (e.g., Cuevas et al.,
2014). The resulting corrections and the further processing
of this data raises obstacles to replicability. The replication
crisis in psychophysiology was addressed by Larson and Moser
(2017) in a special issue entitled “Rigor and Replication: Toward
Improved Best Practices in Psychophysiological Research” in
the International Journal of Psychophysiology. Included are,
among other things, contributions on general improvement of
rigor (Baldwin, 2017) reliability analysis of ERPs (Clayson and
Miller, 2017) replication of time-frequency data or sample size
calculation for electrophysiology (Larson and Carbine, 2017).

In current EEG research, there are high degrees of freedom
for the researchers in terms of analysis but also in terms of
reporting in publications, which leads to an increase in the false
positive rate of research findings (Simmons et al., 2011). Several
sets of guidelines for data consistency and replicability have been
published (Pivik et al., 1993; Picton et al., 2000; Keil et al., 2014),
but tools for ensuring consistent processing are still needed (for
the most recent approach, see Debnath et al., 2020). For EEG
data, this means a flexible choice of time-window, frequency
band, filtering specifications, electrodes, reference, measurement,
artifact rejection, and outlier exclusion. Most researchers use
different filters, references, and criteria for artifact removal prior
to the actual analysis for a variety of (good) reasons. Nevertheless,
this process is by no means standardized, making it almost
impossible to combine data sets from different data sources for
analysis without preprocessing them jointly. Consequently, Keil
et al. (2014) pointed out that standardization and automation in
the processing of electrophysiological data will be indispensable.

To preprocess EEG data, various pipelines have been
developed in the recent past to address the growing need for
standardization. The PREP pipeline (Bigdely-Shamlo et al., 2015)
provides a standardized method to remove line-noise (Mullen,
2012) and an average referencing to detect and interpolate
noisy channels. However, PREP focuses only on experiment-
related artifacts and not on individual artifacts like eye-
blinks. The Harvard automated preprocessing pipeline (HAPPE;
Gabard-Durnam et al., 2018) adds an independent component

analysis (ICA) and uses a Multiple Artifact Rejection Algorithm
(Winkler et al., 2011) to correct artifacts. But, according to the
authors, this pipeline is not suitable for the analysis of event-
related potentials. The Computational Testing for Automated
Preprocessing (CTAP; Cowley et al., 2017) toolbox has a similar
approach to HAPPE, but allows the user to compare the
outcomes of different preprocessing pipelines. Moreover, the
Batch Electroencephalography Automated Processing Platform
(Levin et al., 2018) was created, which aims to simplify
and standardize the replication of existing studies through a
collection of preprocessing pipelines applied to new data sets.
In addition, Automagic (Pedroni et al., 2019) was introduced, a
wrapper toolbox that combines common preprocessing methods.
Automagic uses the PREP pipeline per default and adds
further processing steps afterward. The automatic pre-processing
pipeline (Ramos da Cruz et al., 2018) for large datasets proved
to be an efficient and reliable method for both resting state and
evoked EEG, which was tested for both clinical and healthy
participants. Finally, the Maryland analysis of developmental
EEG (MADE) pipeline was recently published (Debnath et al.,
2020). This pipeline focuses on the standardized and automatic
preprocessing of data from pediatric populations using EEGLAB.

The reason why we came up with our own approach was
that most of the previous mentioned pipelines focus on some
specific concepts and parts of the pre-processing, while our
approach tries to orient on and extend the principles provided
by Delorme and Makeig as they advised to preprocess the data
up to 20191. However, where Makeig and Delorme suggested
semi-automatic detections or visual detections of the data,
we suggest standardized selection criteria based on statistical
outlier detection or algorithm and machine-learning based
artifact selection (Winkler et al., 2011) and therefore come
to replicable and standardized (pre-)processing results. Our
work is particularly aimed at researchers in the introductory
phase by presenting one possible approach that the authors can
recommend based on the current consensus of the community.
The aim of this paper is therefore to present standardized
and automated EEG processing open-source scripts (EPOS). In
particular, we want to offer newcomers to EEG research a step-
by-step tutorial that may help to produce openly communicated
analyses that can be replicated by other researchers, since all
relevant information is given and can be reproduced. In this
context, we aim to facilitate and improve the decisions where
the user has to define criteria (e.g., electrode sites for ERPs or
frequencies) by integrating a set of visualizations. We do not
want to focus on individual processing steps, but rather provide
a comprehensible tutorial script of the entire process after data
collection up to the extraction of the final data for analysis. Except
for the screening of complete data sets, no intervention based
on subjective non-documented or non-replicable decisions of
individuals in the artifact cleaning will be performed, as only
replicable and standardized criteria may be chosen. There are
very early findings suggesting that algorithmic approaches exceed
individual valuation standards, so that actuarial approaches, once
validated, should be preferred over subjective judgments (e.g.,

1https://sccn.ucsd.edu/wiki/Chapter_01:_Rejecting_Artifacts
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Dawes et al., 1989). In a meta-analysis, Grove et al. (2000)
were even able to show that the mechanical prediction or more
accurately statistically defined prediction criteria performed
significantly better than the clinical prediction in 33–47% of the
studies examined, while the clinical prediction was more accurate
in only 6–16% of the studies examined. Additionally, subjective
standards vary inter-individually as well as intra-individually,
while an algorithm has a replicable performance. Hence, we
provide a (pre)-processing pipeline that is based on mechanical
and reproducible criteria to avoid subjective variability.

MATERIALS AND EQUIPMENT

We provide scripts for data export for statistical analysis in other
software as well as for the visualization (ERPs, time-frequency
plots, topographical maps) of electrophysiological data, to control
for plausibility of the standardized solutions in EEG-analyzes2.

The preprocessing pipeline proposed here will need the
following software toolboxes: EEGLAB (Delorme and Makeig,
2004) with the plugins IClabel (Pion-Tonachini et al., 2019),
ADJUST (Mognon et al., 2011), MARA (Winkler et al.,
2011), SASICA (Chaumon et al., 2015), and the CSD Toolbox
(Kayser, 2009; Jürgen Kayser and Tenke, 2006a,b) or the CSD
transformation provided by Cohen (2014). All these packages
run on MATLAB (Matlab, 2011), but some attempts are done to
convert these packages to Octave (Eaton, 2002), an open source
version of MATLAB.

METHODS

In the following, we will first present the proposed standard
preprocessing pipeline for EEGLab (Delorme and Makeig, 2004)
that was provided up to 2019 on https://sccn.ucsd.edu/wiki/
Chapter_01:_Rejecting_Artifacts and then present and justify our
changes and extensions. This pipeline is not to be seen as the new
method for all applications that can simply be thrown at any type
of data, but it is a proposal for a reproduceable analysis, that may
help beginners in several cases of data-(pre)-processing. Some
suggestions seem to be debatable at first glance (e.g., filtering
after an initial “segmentation” and not before, which may cause
edge artifacts, or filtering with 1 Hz if interested in low frequency
bands). However, when reading through the suggestions in detail
and also consulting the explanation in the respective scripts,
users might note that some assumed problems are not given
when following the suggestions in principle (e.g., taking long first
data segments to avoid filtering the entire dataset or extracting
unfiltered data ICs if users are interest in low frequency bands).

Preprocessing According to EEGLab
A summary of the previously proposed preprocessing steps is:

Rejection based on independent data components:

Step 1. Visually reject unsuitable (e.g., paroxysmal) portions of
the continuous data.

2https://osf.io/cw5qv/

Step 2. Separate the data into suitable short data epochs.
Step 3. Perform ICA on these epochs to derive their
independent components.
Step 4. Perform semi-automated and visual-inspection based
rejection of data epochs on the derived components.
Step 5. Visually inspect and select data epochs for rejection.
Step 6. Reject the selected data epochs.
Step 7. Perform ICA a second time on the pruned collection of
short data epochs.
Step 8. Inspect and reject the components. Note that
components should NOT be rejected before the second ICA,
but after.

Preprocessing According to EPOS
As mentioned above, we tried to replace subjective un-replicable
influences with standardized approaches.

First, we would like to point out that a good and standardized
preprocessing can be worth a lot, but clean EEG data recording is
essential (“garbage in→ garbage out”). Therefore, the first step
that is never mentioned but which is essential is to take your
time with the data acquisition and apply the EEG caps/electrodes
responsibly and with care.

The new (pre-)processing “chain” that is proposed based on
the previous mentioned chain, as illustrated in Table 1 and
Figure 1:

Step 1. Statistically detect and interpolate channels of low
quality.
Step 2. Separate the data into suitable data epochs.
Step 3. High-pass filtering.
Step 4. First independent component analysis.
Step 5. Detection and deletion of bad segments based on
z-value detection on ICs
Step 6. Second independent component analysis.
Step 7. Automatic inspection and rejection of the components
using either ADJUST and MARA with SASICA or ICLabel.
Step 8. Re-reference (to current source density CSD).

Processing According to EPOS
After the pre-processing of the EEG data has been completed
at this point in a standardized and automated procedure, we
will describe the further processing of the data in the following
steps (see Figure 2). For this purpose, nine steps are performed,
some of which are optional, depending on the experiment, data
set and personal preferences. The MATLAB addons boundedline
(Kearney, 2020) and export_fig (Altman, 2020) are required for
creating graphics and exporting data. Also, the wavelet function
based on the code provided by Cohen (2014) and edited by
John J.B. Allen and Johannes Rodrigues is required to analyze
time frequency results. To perform single trial analyses for
frequencies later, an adjustment was made to the frequency
extraction functions of Cohen (2014). Otherwise these functions
were implemented as described by Cohen (2014).

Step 9. Segment the data for analysis.
Step 10. Drop the cases that are not present (for example in free
choice paradigms).
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TABLE 1 | Comparison of the individual steps in the preprocessing pipelines according to EEGLab and EPOS.

EEGLab EPOS

Visually reject unsuitable portions of the continuous data. Statistically detect and interpolate channels of low quality.

Separate the data into suitable short data epochs. Separate the data into suitable data epochs.

Perform ICA on these epochs High-pass filtering

Semi-automated and visual inspection-based rejection of data epochs on the
derived components.

Perform first ICA

Visually inspect and select data epochs for rejection. Detection and deletion of bad segments based on z-value detection on
ICs

Reject the selected data epochs. Second ICA

Second ICA Automatic inspection and rejection of the components using ICLabel or
ADJUST and MARA with SASICA

Inspect and reject the components. Re-reference (to CSD)

Step 11. Automatic peak detection in a given time-
window in EEG signal.
Step 12. Compute and visualize event-related potentials.
Step 13. Topographical maps (Topoplots) in the time-domain.
Step 14. Automatic peak detection in a given time window in
frequency responses.
Step 15. Topographical maps for frequency responses.
Step 16. Time-frequency plot for a specific electrode in a broad
frequency window.
Step 17. Export the data to statistical software.

RESULTS

Preprocessing According to EPOS
Step 1: Statistically Detect and Interpolate Channels
of Low Quality
This step is based on the raw data (see example in Figure 3)
and detects and excludes channels with a very low signal to
noise ratio. These channels will be interpolated and therefore
will not contribute with their signal to the signal that will be
processed further.

Before a detection of the “bad” channels can be done, only
the relevant channels have to be selected, Channels that are to
be ignored for the following processing steps are for example,
heart electrodes or skin conductance measurements, that may be
(in-)directly related to brain waves but not of the same structure
as the EEG signal. After selecting the EEG electrodes, the online
reference should be added back to the data so that this electrode
can also be used for further analyses or interpolated in the case
of too much noise in this channel. As a reference system is
required while also retaining the online reference as a channel,
we use average reference to further process the data, although
it is not a preferable “final” reference scheme and can still be
changed in later steps. The average reverence is very useful at
this processing stage, if one has a sufficient amount of electrodes
that cover the scalp fields sufficiently (Junghöfer et al., 1999).
If this is not given, one might introduce a bias based on the
electrode distribution to the data. If other electrodes are being
used as offline reference, one loses the electrode for interpretation
in the data. Therefore, we would not recommend this approach,

but if not possible otherwise, also other reference electrodes (for
example linked mastoids) can be used right away here, losing
the respective electrodes in the following processing steps. As
mentioned above, we may later change the reference, even to a
CSD reference, but we may not use this reference for automatic IC
detections based on MARA and ADJUST or IClabel, as they are
not trained with these spatially filtered parameters and therefore
come to very wrong conclusions. After the first re-referencing to
regain the online reference channel, as the first preprocessing step
the “bad” channels are detected and interpolated using statistical
criteria. We use a detection based on z-values. The probability,
kurtosis and spectrum are detected according to the outlier
criterion z > 3.29 (Tabachnick and Fidell, 2007) for univariate
statistical outliers. For the spectrum we use as frequency range
1–125 as suggested by Makeig and Delorme (see text footnote 1).
The interpolation of the bad channels is done instead of a mere
exclusion because of the irregularities of the matrices that would
be introduced into the data structure and that would interact
with later pre-processing and processing steps. Of course, the
information of the interpolated channel is lost and therefore the
rank of the matrix is reduced from information perspective, but
for practical reasons, the structure of the data can be retained (see
example in Figure 4).

To get into the function details of this step, the EPOS uses
the EEGLAB pop_select function to select the channels, which are
to be ignored for the preprocessing. The function pop_chanedit
makes space for the online reference, which will be added
back to the data. Using pop_reref the data is re-referenced to
the average of all electrodes. The included channels for re-
referencing depend on the montage and must be adjusted in
our script. Finally, the EEGLAB function pop_rejchan performs
the detection of distorted channels according to the statistical
criteria and pop_interp interpolates the resulting channels of
poor data quality.

Step 2: Separate the Data Into Suitable Data Epochs
The next step is to slice the data into suitable “first” data epochs
which will later be segmented into the “real” segments but should
be rather long as their purpose is to be the database for the
ICA. However, the length of a segment should also be chosen
depending on the homogeneity of a trial. It is important to
choose the data epochs as long as possible, since the following
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FIGURE 1 | Schematic representation of the preprocessing steps as recommended by the EPOS pipeline.

ICA provides a better solution for longer data periods. At the
same time, the segments should be as short as possible, since
the ICA solution leads to noisier and more unspecific ICs for

different tasks and therefore to a less sensitive z-value based
artifact detection concerning the exclusion of the segment.
In summary, the signal needs to be long enough to obtain a
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FIGURE 2 | Schematic representation of the processing steps as recommended by the EPOS pipeline.

reliable measure and short enough to account for the rather
non-stationary nature of EEG signals (Korats et al., 2012).
Therefore, we recommend either to segment the whole trial (if
the trial is long enough and not too many different phases are
present, or the trials are short and homogeneous) or to segment
parts of an experiment. The segments in this phase may have a
length of 8–20 s (e.g., Möcks and Gasser, 1984), depending on

the data quality and the task. If you expect rather noisy data with
huge artifacts that are rather short, also a short segment length
of down to 2 seconds can be advisable. However, in the later step
of processing the data (step 9) the rejection of smaller segments
can be implemented. Hence, we recommend longer segments
at this stage. Please keep in mind that a time window for the
baseline correction is also necessary and should be included
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FIGURE 3 | Raw data example (not too good data).

FIGURE 4 | Interpolated data channels.
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(x seconds before the marker/event of interest). For frequency
analysis, more space is needed on both sides of a segment, since
“edge effects” (i.e., distortions or transient effects resulting from
a time-window larger than the time window for which data are
available) can occur (Debener et al., 2005; Herrmann et al., 2005;
Roach and Mathalon, 2008). The same applies to filters, which
can also lead to edge effects. To avoid these artifacts later, we
would recommend 1 s of “buffer time” on the segments on each
side, as we will apply a 1 Hz filter in the next step and the 1 Hz
filter may produce “filter rippling” up to 1 s. In homogeneous
data, overlapping segments can easily be used, although one
has to take into account that this might also alter the data. An
example for the segmented data can be seen in Figure 5.

Getting more into function detail, we use the EEGLAB
function pop_epoch to slice the data into segments of a suitable
length, depending on the experiment and its trial duration.

Step 3: High-Pass Filtering
As a third step we apply a 1 Hz high pass filter to the data. This
is done to get a more stable ICA solution as no low frequency
shift is present (Winkler et al., 2015). Furthermore, after extensive
testing of the influence of different filters on the performance
of MARA (Winkler et al., 2011), we found that MARA works
best with only the 1 Hz filter. A 2 Hz filter, for example, will
not correct side eye movements as good as if it was filtered
with 1 Hz and data filtered to the power spectrum between 2
and 39 Hz (as recommended in the MARA manual) will not
correct muscular activation as well as it is done without the

39 Hz filter. At this point we would also like to remind that
every filter changes the data, although the filtering at this point
is only used to get a better basis for the ICA and artifact rejection
based on the automatic artifact IC detection of MARA (Winkler
et al., 2011) and ADJUST (Mognon et al., 2011). As previously
stated, there might occur edge artifacts (filter rippling). These
artifacts are very prone to occur in short data epochs, as they are
on the edges of the filtered data. Because of this problem, one
normally recommends filtering unsegmented continuous data,
instead of “segmented” data. However, as the “segmentation” we
performed in step 2 is basically a selection of a large continuous
data part with sufficient edges for the occurring filtering artifacts,
instead of only the shortest data part of interest, one may start
the filtering at this step, getting a quicker and more efficient
filtering process, because only parts of the data need to be
filtered and not the entire dataset. Also as mentioned above we
recommended 1 s data “buffers” on the large data “segments”
to avoid filter rippling in the relevant parts of the data with
a 1 Hz high-pass filter. As a general comment on filters, one
has to keep in mind, that filters only attenuate the frequency
bands they are designed to work on and are not built for a
complete dampening of the respective frequency responses. This
may result in residual artifacts of very large frequency artifacts,
if the dampening curve is applied with an inappropriate filter
order (i.e., a very large muscular artifact will have effects even
after the filtering). To close this general comment about filters
follows a quick reiteration of the different filter types that may
be applied: Notch [deletes the target frequency, e.g., 50 Hz (AC

FIGURE 5 | First segmentation. The marked segments are visual aids to evaluate later steps.
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in Europe)], low-pass/high-cut (all frequencies below the target
frequency will be attenuated), high-pass/low-cut (all frequencies
above the target frequency will be attenuated) and bandpass
(combines low-pass plus high-pass). It is important to note,
that some research interests are in the frequency band below
1 Hz and therefore usually apply much lower high-pass filters
(for example 0.001 Hz if interested in slow waves). However, as
there is the opportunity to write the IC solutions back to the
unfiltered data, users may apply the 1 Hz filtering at this point
to get a good performance of ICA and the MARA algorithm
or similar algorithms like ICLabel. Of course, one may also use
different automatic and standardized algorithms to detect artifact
components, that perform better with other filter solutions or
apply for specific data that may have unique features (e.g.,
Rodrigues et al., 2020c).

Again, providing the function details of this step, we apply
the EEGLAB function pop_eegfiltnew, for which the toolbox
firfilt (Andreas Widmann) is required. Depending on the data
segments, the filter order for the 1 Hz low-pass filter must be
adjusted in the script. An example for filtered data can be seen
in Figure 6.

Step 4: First Independent Component Analysis
In the next step we apply an independent component analysis
to the data. The ICA is a statistical linear decomposition of the
signal into independent components, each of which contributes
as much specific information as possible to the data (Makeig
et al., 2004). Thus, each electrode provides data that is assigned

to a source/sensor. The ICA decomposes the linearly mixed
sources at the sensor level into independent components (Bell
and Sejnowski, 1995) and we get as many components as there
are sources (i.e., 64 independent components with 64 electrodes).
As a result, ICA separates the actual electronic brain signal from
non-brain artifacts such as eye movements or muscle activity. The
ICA is a so-called “blind” separation technique and therefore does
not guarantee meaningful results (Jung et al., 2000). Not every
extracted component is equally plausible and depends strongly on
the data quality and the specific ICA algorithm used. Depending
on the interpolation, however, less information is obtained for
each interpolated channel. In order to avoid “ghost-ICs” that
do not carry meaningful information, we can limit our ICs to a
specific number that equals the “rank of the matrix,” in our case
the channels that are not extrapolated and therefore still carry
information (see e.g., Miyakoshi, 2021). The resulting ICs also
have a time course and a frequency distribution as channels have.
But as the topographical order of the channels is dissolved a new
topographical projection is provided for each IC. Based on these
features, artifact detection can be performed, either only using
parts of this information (time course, topography, frequency
response) or all together. In step 5, we will only use parts of the
information neglecting the topography of the ICs to select artifact
segments, while in step 7, the automatized machine learning, and
criteria-based algorithms are using all information in order to
select artifact ICs.

To perform the ICA, we use the command pop_runica in
EEGLAB (Delorme and Makeig, 2004; Makeig et al., 2004).

FIGURE 6 | Filtered data.
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Step 5: Detection and Deletion of Bad Segments
Based on z-Value Detection on ICs
Now the bad segments are selected and deleted based on a z-value
detection on the ICs. As in the first step, the criterion of z > 3.29
(Tabachnick and Fidell, 2007) for the probability and kurtosis is
applied on the channel basis. The reason for this step is to increase
the data quality to be able to clean up artifacts even better with the
following second ICA. On global level we used a very high z-value
threshold of z = 20 to only correct for very huge artifacts and to
prevent the overcorrection of different signal components. This
approach was recommended by Delorme and Makeig (2004),
that was provided up to 2019 on https://sccn.ucsd.edu/wiki/
Chapter_01:_Rejecting_Artifacts because of the higher sensitivity
to “extraordinary” not regularly appearing artifacts (e.g., singular
hiccup) than a merely channel z-value based artifact detection.
However, if the data is rather noisy in general and artifacts with
long durations are expected, we would also recommend to use a
global threshold of z = 3.29 to detect the segments that need to
be rejected.

Concerning the underlying functions, the EEGLAB command
pop_jointprob was used to reject the probability and pop_rejkurt
for the kurtosis. The selected segments were removed using
pop_rejepoch. An example for a rejection of segments can be seen
in Figure 7.

Step 6: Second Independent Component Analysis
This second ICA is now performed on the data cleaned for
poor segments. This step is only performed if at least one bad
segment was detected and rejected. The goal is to achieve a better

signal-to-noise-ratio by identifying artifact driven components
containing no relevant signal. These artifact components will be
deleted to compute signal that only consist of non-artifact data
or that is at least less artifact polluted. Therefore, once again
a signal decomposition is performed leading to the previously
mentioned information in the ICs. After the ICA we select the
ICs that represent signal and those that represent noise. Again,
we use the EEGLAB function pop_runica.

Step 7: Automatic Inspection and Rejection of the
Components Using ICLabel or ADJUST and MARA
With SASICA
In the seventh step, the resulting components are automatically
inspected and rejected. In a first more traditional approach, we
were using ADJUST (Mognon et al., 2011) and MARA (Winkler
et al., 2011) with SASICA (Chaumon et al., 2015). SASICA serves
as EEGLAB plugin, which contains various artifact correction
algorithms from different researchers (e.g., Fully Automated
Statistical Thresholding for EEG artifact Rejection (FASTER),
Nolan et al., 2010, ADJUST, and MARA).

ADJUST uses algorithms based on temporal and spatial filters
to identify mainly (but not exclusively) artifacts caused by eye
movements. These include blinks, horizontal and vertical eye
movements, but also generic discontinuities. The algorithm uses
an expectation-maximization-based approach to automatically
detect the threshold of spatio-temporal properties of different
artifact types and classify them accordingly (Wu et al., 2018).
MARA combines different measures to automatically classify ICs
as artifacts via a linear machine learning algorithm. In summary,

FIGURE 7 | Bad segments excluded.
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two spatial, one temporal, and three spectral features provide
the measures for the best classification results. These different
classification components are described in detail in the original
paper. MARA is not designed to detect a specific artifact type,
but rather is variable to detect eye artifacts, muscle artifacts, the
heartbeat, or loose electrodes. Regarding MARA, we have already
set the reference to average and filtered the data with 1 Hz.
MARA has shown to perform well in the automatic classification
of artifacts (Winkler et al., 2011, 2014). Although trained and
experienced EEG researchers may have an even better ability to
distinguish signal from artifact components, automatic artifact
correction algorithms have an increased reliability of artifact
removal exceeding the human raters.

After we have configured the specific options (i.e., ADJUST
or MARA marked it bad) in the script, we perform the
automatic removal of the ICs with the EEGLAB command
eeg_SASISCA. Using the marking of an artifact by ADJUST
or MARA is a very conservative approach because it rejects
as many ICs as possible. However, as ADJUST and MARA
are selectively strong for certain artifacts (e.g., ADJUST is
rather strong in detecting heart-beat related shifting artifacts
that MARA tends to miss while MARA is more sensitive in
detecting very noisy components) the selected method leads
to less artifact prone data, yet being a very strict approach
concerning mixed components. We also provide code that writes
the ICA solution back to the unfiltered EEG data. Therefore,
we project the ICA solution that is based on the automatic
selection by MARA onto the original data without including
the necessary preprocessing steps to achieve them. This leads
to dropping the preprocessing artifacts that were introduced to
gain an optimal performance of the standardized preprocessing.
Hence, we gain a projected solution of the ICA, which might
not be the identical solution that we would have gotten with an
ICA on the raw data, but that is a projection of the optimally
prepared data matrix for automatic IC selection on the raw data
matrix. Please keep in mind, that we only recommend these
packages because they are openly available and provide replicable
results. The respective setting of these software packages might
not fit for every need in detail and we highly encourage to still
use other replicable solutions that may select ICs (Rodrigues
et al., 2020c), as long as you provide these solutions and the
important needed information to understand the procedure
to other researchers and therefore guarantee the replicability
of your analyses. Examples for the IC cleaned data can be
seen in Figure 8, for the projected unfiltered data and the
filtered data solution.

As an alternative to using MARA and ADJUST, we have
implemented a more recent toolbox as a means of automated
IC selection, called ICLabel. This classifier outperforms previous
publicly available automatic IC component classification method
for all measured IC categories, while calculating these labels
ten times faster, as demonstrated by a comparison with other
publicly available EEG IC classifiers (Pion-Tonachini et al., 2019).
ICLabel is used to classify ICs into the seven categories of
“brain,” “eye,” “muscle,” “heart,” “chan_noise,” “line_noise,” and
“other.” To classify these components, ICLabel examines the
spatio-temporal measure in the ICLabel dataset, which contains

over 200,000 ICs from more than 6,000 EEG recordings. The
scope of this labeled classification set used in the ICLabel
learning implementation is accessed through the ICLabel website,
which applies crowd-sourcing strategies to collect IC labeling
data from experts. The ICLabel dataset used to train and
evaluate the ICLabel classifier includes EEG datasets from a
broad range of paradigms to achieve accuracy across all EEG
recording conditions. After storing a ICA-decomposed dataset
in a variable (e.g., “EEG”), ICLabel can be used by entering
EEG = iclabel(EEG), and IC classification results can be obtained
by EEG.etc.ic_classification.ICLabel.classifications. Our “default”
selection criterion linked to IClabel is rather inclusive, as
we compare the probability of the signal with the artifact
probabilities. If the signal is more likely to constitute the
component, it is accepted as signal. Note, however, that the
“other” category is not considered an artifact category, as mixed
signal or mixed signal and artifact components may constitute
this category (see Pion-Tonachini et al., 2019).

In some (pre-)processing routines (mostly ERP routines), at
this point or at the processing step 9, there is an additional
segmentation in very small data segments and an additional
artifact selection is performed after the IC cleaning procedure.
We have mentioned it in this script during step 9 as a “revisited
step 5” with code from the previous step 5 and not as an
extra step, but if needed in your data, please inform the reader
what segmentation steps have been taken and which statistical
selection criteria has been used. Please avoid selection “by hand,”
as in the previous step 5.

Step 8: Transform via Re-reference or Current Source
Density (CSD)
Finally, we re-reference our data in the last step of the
preprocessing. The selection of reference or montage is
paramount to being able to visualize effects of interest, and the
choice may be determined, in part, based on the standard of
practice in your research domain and the specific question of
interest. To the extent that spatially specific effects are important,
the current source density (CSD) transformation is preferred
and suggested by us (Hagemann, 2004; Rodrigues et al., 2021).
Nevertheless, one may also choose another reference like linked
mastoids or other reference schemes that are suitable and
common in the respective field of EEG research. CSD provides
an estimation of relative current at a point on the scalp surface
as a function of the surrounding points. The distances are
weighted with the relative activity on the electrode: The surface
is estimated as a sphere, the signal differences to the adjacent are
measured and the weighting of each difference is performed for
each distance. Thus, a reference without reference is obtained
and any electrode can be used. This results in a spatial filter
that sharpens the topography of the (in)activation. There are
two readily available possibilities for doing this, either the CSD
toolbox from Kayser and Tenke (2006a,b) and Kayser (2009) or
the laplacian_perrinX function provided by Cohen (2014), based
on the approach of Perrin et al. (1990, 1989). These two tools
provide comparable results, although the latter is substantially
faster in execution. Nonetheless, we highly recommend visiting
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FIGURE 8 | Data after second ICA and IC cleaning, reprojected on the original, unfiltered data and filtered data solution.

the website provided by Kayser3 in order to get more information
about how CSD transformation is implemented and what it
does. Alternatively, any other reference can be used with the
command pop_reref (e.g., linked mastoids). As mentioned above,
we perform this re-referencing at this rather late point, because
of the automatic IC- detection. Examples of the unfiltered and
filtered solutions for CSD and linked mastoid reference can be
seen in Figure 9.

3http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/tutorial.html

Processing According to EPOS
Step 9: Segment the Data for Analysis
The goal of this step is to create a 4-dimensional matrix for
the signal and each frequency for data analysis and to generate
a 5-dimensional matrix for single trial analysis (of course,
other dimensions in addition to the following dimensions can
be generated). Depending on the size of the matrix, however,
generating this matrix can lead to memory problems. A solution
for this is to create only one matrix at a time or to resample
the data during pre-processing as a very first step. To avoid
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FIGURE 9 | Unfiltered and filtered CSD transformed and mastoid referenced data solution.

estimated values based on interpolation, we advise resampling
only to a new sampling rate that is a divisor of the previous
one. Also, it is necessary to use anti-aliasing filters prior to
resampling to avoid the introduction of aliased frequencies.
To perform the resampling, there is for example the functions
pop_resample. Generally, we would recommend recording the
data only with the required sampling rate for all the planned
frequency analysis and filtering (normally 250 Hz is sufficient)
instead of the highest available recording frequency, to avoid
resampling. Higher sampling rates, in unique cases, may help to
overcome very specific data corruption problems, but normally
they just take recording resources as well as lead to down-
sampling of the data later, which could be avoided if sampled in a
lower frequency right away.

At this point the data can be segmented again according to
the relevant markers for the respective task to allow smaller
segments to be extracted from the existing epochs if desired.
As the first “segmentation” in the preprocessing was made with
the intend to capture segments that are very fitting for IC
decomposition and artifact detection and therefore might be
overly long for a frequency response of interest or an event
related potential, a second segmentation can be performed, now
with the goal of getting a fitting epoch for data analysis. These
markers must be selected, for which a separate segmentation
script is recommended. An example of such a segmentation
script is also provided along with the (pre-)processing chain.
In this script, the variable “casearray” contains all relevant
condition triggers for this experiment, grouped by condition.
As mentioned above, in some processing pipelines (mostly ERP

related) there is a second bad segment detection step at this
point (see Step 5 pre-processing). Feel free to execute this
step if needed and mention the necessary details. As a next
step, the baseline correction is calculated automatically, however
not with the pop_rmbase function from EEGLAB as we have
encountered problems with the round function in different
MATLAB versions, leading to wrong baseline applications in
some MATLAB versions. Therefore, we avoid such compatibility
issues by automatic calculation via script. Note, that the baseline
taken here is used for either single trial analysis or mean analysis.
Next, the frequencies of interest are defined. We assume that only
specific time-frequency windows and ERP components will be
analyzed in a hypothesis-driven fashion for the research question
(of course, other frequency bands and ERP components can be
considered for exploratory purposes). If desired, a filter with
specific characteristics can be applied to the data depending on
the ERP of interest. Finally, the user decides whether to look
at single-trial data. We recommend using multilevel models for
such a single-trial analysis. We also recommend using frequency
bands instead of pure ERP-related data, since they have a higher
reliability in single trial EEG analyses compared to similar single
trial ERPs (Rodrigues et al., 2020a).

Step 10: Drop Conditions That Are Not Present
This step is short and simple. We recommend excluding those
conditions (to reduce the amount of data) that are not contained
in the data set but were present in the segmentation file.
This is especially relevant for free choice paradigms, as some
participants may have chosen not to act in a specific manner.
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Therefore, these cases can be dropped from the segmentation file
for this person.

Step 11: Automatic Peak Detection in a Time-Window
in EEG Signal
In this step, a peak is searched for in a time window of interest
at an electrode position of interest via the averaged signal or the
average over distinct conditions, leading to averages over trials in
the respective condition instead of a total average. Please note,
that the peak is not taken as a single value, but a time window
is defined around the peak in order to avoid biases due to peak
latency or artifacts and therefore capitalization on noise (Luck,
2005). In later steps we visualize and export the average of the
trials in a condition or even the single trial values of the data
in case of the intend to perform single-trial analysis. In case of
single trial analysis, however, the single trial matrices need to be
preprocessed first (Rodrigues et al., 2020a). The corresponding
parameters (search window, electrode) depend on the ERP of
interest. As a comment of literature recommendations, they
are very important, as the ERP of frequency response of
interest has normally investigated before and specific paradigms
may provide specific physiological responses. However, the
recommendations, guidelines and research propositions should
be critically evaluated (e.g., it should be questioned whether
the FRN is considered only at Fz, as is often the case in the
literature due to earlier electrode montages, although FCz is
also available and the respective topography also indicates that
the component is rather mid-fronto-central than only limited to
frontal regions). Hence a “standard” might be questioned by an
informed decision in this step, partly aided by confirmation of
the signal distribution.

Step 12: Compute and Visualize Event-Related
Potentials
In this part of the script we offer the possibility to generate
different forms of ERP graphs. First of all, an ERP can be
plotted as it is traditionally seen in older manuscripts, only
consisting of one waveform per condition (see Figure 10
upper panel). Next, we offer ERPs with shaded error lines
(Kearney, 2020), which in addition to the course of the ERP
also provide information about the precision of the estimate of
the mean value (ERP). In this step, between errorlines (between
standard error) are added to the figure (see Figure 10 middle
panel). Alternatively, we provide code to add the mean within
error lines (mean within standard error, being mean within
standard errors of the differences of relevant conditions) to
the figure (see Figure 10 middle panel). For the latter, it is
important that the researcher is aware that meaningful conditions
should be taken, or meaningful clusters of conditions should be
calculated (only a short example in the script, but simply use the
“nanmean” command).

Step 13: Topographical Maps (Topoplots) in the
Time-Domain
In the next step we provide code to create topographic maps.
We include the option to generate a topoplot for a time window
of interest (peak-window) for ERP (see Figure 11), but also to

create an animated graphics interchange format (GIF). This GIF
depicts different time intervals to show the dynamic changes in
the topography and to verify the selected time-window of interest
as correct for the corresponding electrodes.

Step 14: Automatic Peak Detection in a Time Window
in Frequency Band
We use morlet wavelets to perform time frequency
decomposition. Our processing approach assumes the user
has an a priori frequency band of interest and that the analysis
focusses on said frequency band to avoid capitalization on
chance findings.

Like the peak-detection in ERPs, the peak is searched for
in the time-window of interest at the electrode of interest for
the frequency band of interest. The corresponding parameters
can be set in the same way as those used for the ERPs. The
respective parameters should be taken from literature with critical
view as mentioned above. Depending on the task, it might be
useful to look at the average of all conditions (Cohen, 2014)
or at the peak in certain conditions that differ from others,
which, however, biases the chance to find significance. The
attached script contains examples, but they must be adapted for
different experiments.

Step 15: Topographical Maps for Frequency
Responses
This step is identical to step 5, both the topographic maps for the
peak-window of the frequency response and a GIF for the time
course are implemented in the script. This is done to validate the
choice of electrode of interest and the time window of interest
(see Figure 11).

Step 16: Time-Frequency Plot for a Specific
Electrode in a Broad Frequency Window
In the last step of the graphical illustration of electrophysiological
data, we implemented code for the creation of time-frequency
plots. For this time-frequency plot we use the plot function
based on the code provided by Cohen (2014) and edited by
John J.B. Allen and Johannes Rodrigues (see Figure 12). It
provides either a log transformed power output, a raw data
output or the recommended dB change to baseline output that
corrects for the power law that affects the display of different
frequency bands together. The result is this time-frequency
plot shows the frequency response not limited to the desired
functional frequency but in a larger frequency windows in order
to not only validate the selection of the electrode of interest
and time window, but also the frequency of interest. As a
recommendation, we suggest the spectral range of 1–30 Hz if
you are not particularly interested in gamma frequencies. We
also recommend using the dB to baseline change setting as
mentioned above.

Concerning the gamma frequency band, we are rather
cautious in interpretation and try to avoid it as there is evidence
that microsaccades (Dimigen et al., 2009; Hipp and Siegel, 2013)
and electrical muscular activity (Whitham et al., 2007) may drive
these frequency spectrum responses.
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FIGURE 10 | Comparison of the three different ERP plot options.

Step 17: Export the Data to Statistical Software
In the last step of the processing “chain,” we offer code
for exporting the EEG data into different statistical programs

using the Excel (.xlsx) or the MATLAB (.mat) data formats.
We support the export into the long format (i.e., each row
represents a data-point in a specific condition combination
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FIGURE 11 | Topographical plot of ERP and topographical plot of frequency of interest, here example theta frequency and display of raw power.

FIGURE 12 | Time-frequency plot on the electrode of interest in the frequency spectrum 1-30 Hz.

per participant, with columns indicating the data as well as
the conditions and the participants, resulting in multiple rows
per participant) for the mean signals/frequencies. This format
is for example required by many R (R Core Team, 2020)
packages to calculate analysis of variance or multilevel analysis.

SPSS (IBM, Armonk, NY) also requires long formatted data
if a multilevel analysis should be performed. Furthermore,
we offer the export into the wide format (i.e., all responses
of a participant are in one row and each column represents
the condition combination of the relevant data variable)
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for the mean signals/frequencies, which is used for example
by Jamovi (The jamovi project, 2020) or in SPSS (IBM,
Armonk, NY) to calculate analysis of variance. Finally, we
also offer the export of single-trial signal/frequency data in
long format, which is required by R or SPSS to calculate
multilevel mixed models.

Note Concerning Single-Trial Analysis
In this (pre-) processing chain, the opportunity of processing
single trial data is provided although it is not the default option,
but rather commented out to be used if activated. This was
done to have some decent management over the necessary
resources when using the processing pipeline the first time.
Nevertheless, we want to encourage further exploration of the
data and encourage the analysis of single-trial EEG responses
(see e.g., Rodrigues et al., 2018, 2021) because of the interesting
time dynamics that may happen in data that are mostly hidden
if only mean responses over all trials are considered. These
trial-level responses may provide information about learning,
boredom as well as surprise and fatigue. They are very helpful
in understanding the data and its implications in a better
and maybe more precise way than just looking at the means.
Also, inter-individual differences may hide in the variance of
the responses, showing persons that are rather prone to be
bored or similar reactions concerning the mentioned variables.
Exploratory data analysis has an important role, but it is of course
important to let it be guided by hypotheses and preregistration
and open admission what findings are hypothesized and which
are exploratory.

Note Concerning Missing Interesting
Analyses in This Chain
In this (pre-) processing chain, only a few analyses are provided
and many interesting analyses like evoked and induced frequency
responses (Galambos, 1992; David et al., 2006), cross-frequency
coupling (e.g., with phase-amplitude coupling, Canolty and
Knight, 2010), frequency phase distributions (e.g., Busch et al.,
2009) and deeper source analysis with LORETA (Pascual-Marqui
et al., 1994; Pascual-Marqui, 1999) or similar algorithms are
not included. Also, PCA based ERP peak detection (e.g., Kayser
and Tenke, 2003; Dien, 2010) is not included. One reason
to not include them was our goal to establish a very basic
pre-processing chain, i.e., a standardized beginning on which
anyone may build on. This chain can hopefully also be used
by novices who try to get in touch with EEG and get inspired
by the analyses to understand and get to know their data
based on hypotheses, but also based on exploratory validation
of established criteria. Of course, we also like to encourage to
explore data in other and newer ways, but a standardized basic
result for hypothesis testing should be the first step, after which
the data exploration follows. Another reason for not including
some of the techniques mentioned above was the concern
of introducing methods that are not that easy to understand
and that may just be used as a “black box” without trying
to think about them and to validate the results. After having
seen many “odd” topographies, frequency response patterns and

ERPs with questionable time-windows, we wanted to provide a
standardized script that everyone is able to understand and is
able to validate their results quickly. Nevertheless, all suggestions
that have been made in these scripts should also be seen with
caution, as they may not be the appropriate decisions for
every data. The intention of this standardized approach is to
provide researchers with a decent starting point of analysis,
that can be modified and adjusted to their needs, to get to
replicable and transparent analyses, if the respective changes are
reported additionally.

Measuring the Performance of the EPOS
Pipeline
In order to measure the performance of EPOS pipeline
on a sample dataset, we followed the idea of computing
several metrics that were used to evaluate the HAPPE
(Gabard-Durnam et al., 2018) on a long trial dataset of a
virtual T-maze (see Rodrigues, 2016; Rodrigues et al., 2018,
2020b,c, 2021). Similar to their approach, we provide our
sample dataset (Rodrigues and Hewig, 2021), so that users may
evaluate the pipeline and possibly compare it to their own
pipeline. In addition, we also provide a comparison to other
processing pipelines using the Infant Sibling Project: Sample Files
(Levin et al., 2017).

The metrics used to evaluate the processing pipelines were:

1) Channels that are not rejected (contributing “good”
channels)

2) Rejected ICs (EPOS: After second ICA)
3) Variance kept after the rejection of the ICs (EPOS: After

second ICA)
4) Number of rejected segment (EPOS: “Step 5” and “Step 5

revisited” combined)
5) Artifact probability of retained components (EPOS: After

second ICA from IClabel)

The results for our own sample dataset can be seen in Table 2.
While the channel rejection and the number of rejected epochs
are rather inclusive, the variance of the dataset is rather restricted
(see Table 2). However, the probability of retaining artifact
components is rather small. Hence, we conclude that the EPOS
is an inclusive approach concerning the general data rejection,
with still a relatively low probability concerning artifacts. As
mentioned in the scripts, EPOS was developed with having good
recording quality as a necessary component for EEG research
in mind. However, it may not only perform reasonably in
exceptionally well recorded data, as can be seen below in the
comparison to other pipelines for the Infant Sibling Project:
Sample Files (Levin et al., 2017).

Comparing EPOS and Existing Pipelines
To compare the EPOS with other pipeline approaches, we
compared the metrics that were evaluated and published with
HAPPE (Gabard-Durnam et al., 2018) to their given dataset
(Levin et al., 2017) for a more objective comparison than a single
performance on a more specialized dataset. We used the same 39
Channels of interest with average referenced data as the HAPPE
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TABLE 2 | Parameters of the performance on the sample dataset.

Filename Percentage
channels

kept

Number of
epochs rejected

in step 5

Number of
epochs rejected

in step 5
revisited

Percent
independent
components

rejected

Percent
variance kept
after rejection

Median artifact
probability in

retained
components

Mean artifact
probability in retained

components

VP_02 89.23 0 0 0.53 17.70 0.005 0.017

VP_03 89.23 2 0 0.52 25.68 0.001 0.016

VP_04 86.15 0 0 0.46 20.66 0.003 0.011

VP_05 86.15 2 0 0.50 31.19 0.001 0.015

VP_06 95.38 1 3 0.55 28.74 0.001 0.015

VP_07 90.77 2 1 0.37 59.76 0.001 0.018

VP_08 89.23 3 0 0.40 28.67 0.002 0.016

VP_09 80.00 3 0 0.56 26.09 0.002 0.012

VP_10 83.08 0 0 0.54 21.72 0.001 0.013

VP_11 89.23 0 0 0.62 32.29 0.002 0.015

VP_12 87.69 2 0 0.54 31.42 0.003 0.021

VP_13 87.69 0 0 0.56 22.08 0.004 0.018

VP_14 87.69 0 0 0.46 15.90 0.001 0.009

VP_15 87.69 2 0 0.58 7.22 0.003 0.022

VP_16 87.69 0 0 0.49 20.47 0.003 0.023

VP_17 87.69 2 0 0.74 14.95 0.004 0.027

VP_18 87.69 0 0 0.72 19.99 0.005 0.023

VP_19 87.69 2 0 0.75 9.11 0.004 0.015

VP_20 87.69 4 0 0.51 11.46 0.002 0.016

VP_21 83.08 1 0 0.52 31.24 0.001 0.012

VP_22 92.31 1 0 0.62 18.76 0.002 0.013

VP_23 86.15 0 1 0.77 8.08 0.004 0.023

VP_25 87.69 1 0 0.63 24.14 0.002 0.027

VP_26 89.23 2 0 0.53 37.32 0.002 0.013

VP_27 84.62 1 0 0.60 17.73 0.002 0.018

VP_28 93.85 0 0 0.69 12.38 0.001 0.011

VP_29 89.23 1 0 0.71 13.41 0.003 0.020

VP_30 86.15 0 0 0.46 35.09 0.001 0.016

VP_31 87.69 3 0 0.58 7.64 0.002 0.017

VP_32 83.08 1 4 0.59 22.82 0.001 0.017

VP_33 89.23 0 0 0.55 16.01 0.002 0.015

VP_34 86.15 1 0 0.73 6.53 0.002 0.021

VP_35 87.69 1 0 0.56 29.29 0.005 0.025

VP_37 89.23 0 0 0.59 20.91 0.005 0.031

Dataset average 87.74 1.12 0.26 0.57 21.95 0.00 0.02

Dataset standard
deviation

2.97 1.12 0.86 0.10 10.81 0.00 0.01

(Gabard-Durnam et al., 2018) and chose to use the smallest
suggested epoch length of 9 s (8 s with −1 s for baseline or filter
data buffer) in the “first segmentation” (see step 2), including
all data as we set a marker every 8 s in the data. Based on
the results provided in the HAPPE manuscript (Gabard-Durnam
et al., 2018), we were able to assess the Rejected ICs, the variance
kept after the rejection of the ICs and the artifact probability of
retained components.

The results are displayed in Table 3.
In the context of the Infant Sibling Project (Sample files

of Levin et al., 2017), the EPOS processing is a rather strict
processing chain concerning the limitation of the variance,
as the remaining variance is very limited compared to other
approaches (see Table 3). However, the percentage of rejected
components is neither rather high nor low and the probability

of the artifact components is lower in almost every case
(see Table 3), although it must be admitted that in the
case of EPOS the calculation was based on the IClabel
instead of MARA used in the other pipelines. Thus, we
conclude that the EPOS may perform in a similar but more
variance restricting and even less residual artifact prone fashion
than the other example pipelines in this specific dataset
(Levin et al., 2017).

DISCUSSION

We presented a standardized, automated open-source
processing pipeline for EEG data. In times where replicability
and standardization are becoming more and more
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TABLE 3 | Percentage of rejected independent components, percentage of variance kept, mean and median artifact probability of retained components of different
preprocessing chains according to Gabard-Durnam et al. (2018) including the EPOS preprocessing chain on the Infant Sibling Project: Sample Files (Levin et al., 2017).

Percent independent components rejected HAPPE ICA Manual ASR ADJUST SASICA FASTER FASTER-MARA EPOS

BaselineEEG01 50 97.37 92.11 82.86 26.32 44.74 5.26 94.44 85.29

BaselineEEG04 38.89 80.56 72.22 64.1 38.89 38.89 2.7 63.89 54.29

BaselineEEG05 37.14 45.71 37.14 53.85 8.57 20 5.26 38.89 35.29

BaselineEEG06 2.94 82.35 82.35 81.58 17.65 26.47 2.63 70.27 76.47

BaselineEEG07 2.78 97.22 100 86.49 11.11 11.11 5.41 85.71 72.22

BaselineEEG08 75.76 96.97 87.88 83.78 15.15 18.18 2.7 83.33 45.45

BaselineEEG09 71.43 97.14 74.29 79.49 62.86 22.86 2.7 86.11 48.48

BaselineEEG10 43.75 78.13 53.13 61.54 53.13 56.25 2.7 83.33 34.29

BaselineEEG11 35.48 90.32 48.39 74.36 16.13 19.35 2.7 75 62.86

BaselineEEG12 62.86 97.14 88.57 94.44 54.29 37.14 2.63 94.59 50.00

Dataset average 42.10 86.29 73.61 76.25 30.41 29.50 3.47 77.56 56.46

Dataset standard deviation 25.05 16.23 20.90 12.67 20.21 14.17 1.27 16.74 17.30

p-value of t-statistic to EPOS 0.145 0.001 0.053 0.006 0.005 0.001 0.000 0.009 1.

Percent variance kept after rejection HAPPE ICA Manual ASR ADJUST SASICA FASTER FASTER-MARA EPOS

BaselineEEG01 48.28 1.9 4.21 50.59 85.9 63.13 96.1 4.17 8.44

BaselineEEG04 80.39 37.85 52.92 80.3 95.08 80.1 97.55 21.87 41.01

BaselineEEG05 79.08 74.28 77.48 69.27 78.61 87.49 93.89 80.12 50.10

BaselineEEG06 98.07 52.89 26.15 37.97 96.44 89.65 96.53 55.86 28.88

BaselineEEG07 99.13 2.5 0 18.88 95.42 91.87 89 24.91 29.86

BaselineEEG08 43.67 8.86 22.28 43.02 74.07 86.66 93.28 16.89 7.23

BaselineEEG09 24.25 7.56 30.38 33.58 78.77 77.17 93.28 16.26 6.28

BaselineEEG10 83.82 23.12 70.68 49.18 84.13 62.04 93.4 17.93 4.40

BaselineEEG11 85.15 37.73 59.9 42.41 79.79 89.89 95.75 41.54 2.31

BaselineEEG12 35.67 1.33 11.89 13.53 96.86 75.96 94.46 2.39 21.02

Dataset average 67.75 24.80 35.59 43.87 86.51 80.40 94.32 28.19 19.95

Dataset standard deviation 27.15 25.17 27.86 20.37 8.74 10.86 2.40 24.29 16.88

p-value of t-statistic to EPOS 0.000 0.620 0.150 0.011 0.000 0.000 0.000 0.391 1

Mean artifact probability of retained components HAPPE ICA Manual ASR ADJUST SASICA FASTER FASTER-MARA EPOS

BaselineEEG01 0.14 0.25 0.41 0.18 0.41 0.28 0.87 0.35 0.04

BaselineEEG04 0.16 0.2 0.15 0.2 0.27 0.3 0.63 0.22 0.03

BaselineEEG05 0.08 0.28 0.21 0.25 0.35 0.35 0.46 0.25 0.02

BaselineEEG06 0.05 0.21 0.36 0.3 0.03 0.03 0.67 0.31 0.05

BaselineEEG07 0.05 0.45 0.26 0.04 0.04 0.79 0.36 0.03

BaselineEEG08 0.21 0.13 0.23 0.32 0.66 0.69 0.82 0.3 0.03

BaselineEEG09 0.15 0.26 0.21 0.25 0.52 0.63 0.82 0.3 0.02

BaselineEEG10 0.16 0.1 0.24 0.14 0.13 0.14 0.82 0.31 0.02

BaselineEEG11 0.07 0.35 0.25 0.33 0.23 0.23 0.71 0.23 0.04

BaselineEEG12 0.23 0.12 0.33 0.15 0.47 0.57 0.89 0.27 0.02

Dataset average 0.13 0.24 0.27 0.24 0.31 0.33 0.75 0.29 0.03

Dataset standard deviation 0.06 0.11 0.08 0.07 0.21 0.24 0.13 0.05 0.01

p-value of t-statistic to EPOS 0.11 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00

Median artifact probability of retained components HAPPE ICA Manual ASR ADJUST SASICA FASTER FASTER-MARA EPOS

BaselineEEG01 0.1 0.25 0.43 0.19 0.26 0.11 0.93 0.35 0.02

BaselineEEG04 0.16 0.2 0.12 0.18 0.2 0.19 0.78 0.29 0.01

BaselineEEG05 0.01 0.34 0.18 0.26 0.1 0.1 0.41 0.28 0.00

BaselineEEG06 0.03 0.22 0.43 0.27 0.03 0.02 0.76 0.38 0.01

BaselineEEG07 0.05 0.45 0.24 0.04 0.05 0.89 0.34 0.02

BaselineEEG08 0.25 0.13 0.2 0.28 0.76 0.77 0.94 0.32 0.01

BaselineEEG09 0.08 0.26 0.2 0.23 0.46 0.83 0.94 0.36 0.01

BaselineEEG10 0.12 0.1 0.31 0.03 0.08 0.08 0.95 0.36 0.01

BaselineEEG11 0.03 0.41 0.23 0.45 0.04 0.03 0.86 0.22 0.02

BaselineEEG12 0.18 0.12 0.33 0.15 0.37 0.56 0.96 0.27 0.01

Dataset average 0.10 0.25 0.27 0.23 0.23 0.27 0.84 0.32 0.01

Dataset standard deviation 0.08 0.12 0.11 0.11 0.24 0.32 0.17 0.05 0.01

p-value of t-statistic to EPOS 0.01 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.09

The artifact probability for the EPOS chain has been computed using the IClabel classifications with the mean and median of the probability of all artifact components.
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important to increase the robustness of research results, we have
presented a suggestion of a pipeline for (pre-)processing of EEG
data as well as for detecting and graphically illustrating measured
values, as a way to check the integrity of the processing results.
We hope that the scripts included here will provide a basis to
easily understand and replicate EEG analysis of future studies,
as well as encourage people to explore their data and validate
their results. In addition, an open and replicable pipeline may
ensure that data sets from different sources could be transferred
more easily into a joint analysis. The presented pipeline is not
limited to ERP or frequency analysis but offers necessary code
for both analyses and even single trial analysis. Nevertheless, it
should still be mentioned, that this pipeline is merely a suggestion
and may be adjusted to the respective needs of the data and
paradigm. With this tool to get started with EEG data processing,
users might hopefully develop a standardized and inspired way
into analyzing the data and present valuable results to the
scientific community.

Future developments and additional validations of this
pipeline should compare clinical with healthy subjects and also
cover different age ranges. In general, it might be worthwhile for
future work to contrast the growing number of preprocessing
pipelines in a review paper and evaluate the applicability and
quality for specific subgroups.
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