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Emerging brain-inspired neuromorphic computing paradigms require devices that can
emulate the complete functionality of biological synapses upon different neuronal
activities in order to process big data flows in an efficient and cognitive manner
while being robust against any noisy input. The memristive device has been proposed
as a promising candidate for emulating artificial synapses due to their complex
multilevel and dynamical plastic behaviors. In this work, we exploit ultrastable analog
BiFeO3 (BFO)-based memristive devices for experimentally demonstrating that BFO
artificial synapses support various long-term plastic functions, i.e., spike timing-
dependent plasticity (STDP), cycle number-dependent plasticity (CNDP), and spiking
rate-dependent plasticity (SRDP). The study on the impact of electrical stimuli in
terms of pulse width and amplitude on STDP behaviors shows that their learning
windows possess a wide range of timescale configurability, which can be a function
of applied waveform. Moreover, beyond SRDP, the systematical and comparative study
on generalized frequency-dependent plasticity (FDP) is carried out, which reveals for
the first time that the ratio modulation between pulse width and pulse interval time
within one spike cycle can result in both synaptic potentiation and depression effect
within the same firing frequency. The impact of intrinsic neuronal noise on the STDP
function of a single BFO artificial synapse can be neglected because thermal noise is
two orders of magnitude smaller than the writing voltage and because the cycle-to-
cycle variation of the current–voltage characteristics of a single BFO artificial synapses
is small. However, extrinsic voltage fluctuations, e.g., in neural networks, cause a noisy
input into the artificial synapses of the neural network. Here, the impact of extrinsic
neuronal noise on the STDP function of a single BFO artificial synapse is analyzed in
order to understand the robustness of plastic behavior in memristive artificial synapses
against extrinsic noisy input.

Keywords: artificial synapse, resistive switching, synaptic plasticity, neuronal noise, spike-timing dependent
plasticity, cycle-number dependent plasticity, generalized frequency-dependent plasticity, unconventional
neuromorphic computing
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INTRODUCTION

The human brain can be considered as an advanced information
storage and computation platform, capable of processing large
volumes of real-time data in a massively parallel, fault-tolerant,
and adaptive manner with extremely low energy consumption
of ∼10 W (Townsley et al., 2020). Therefore, the biologically
inspired neuromorphic computing paradigms are attracting
significant interest as vehicles toward the implementation of real-
time adaptive system for efficiently handling large amounts of
data (Davies et al., 2018; Lin et al., 2020). The key to low-
cost cognitive neuromorphic computing is the highly parallel
processing offered by the large-scale synaptic connectivity
between neurons (estimated ∼1015 synapses in a mammalian
cortex) (Yang et al., 2018; Huang et al., 2021). The classical
von Neumann architecture, however, has its memory bottleneck
and is intrinsically different from the computational mode of
the human brain from the computation architecture point of
view (Neckar et al., 2018; Yang et al., 2019). Thus, in recent
years, high-performance low-cost neuromorphic systems have
been proposed employing unconventional non-von Neumann
architecture inspired by the neural systems of the human brain
(Pershin and Di Ventra, 2010; Akopyan et al., 2015; Thakur et al.,
2018; Lin et al., 2020).

Neuromorphic computing based on non-Von Neumann
architecture operates on the basis of hardware-neural-network
(HW-NN) platforms consisting of numerous artificial synapses
and neurons (Seo et al., 2020). The optimal candidate for
mimicking synaptic activities is a device that can reproduce the
complete functionality of biological synapses. The emerging
nanoscale memristive devices are one of the most promising
technologies enabling synaptic activities in neuromorphic
systems (Jo et al., 2010; Huang et al., 2021). A memristive device
(Nithya and Paramasivam, 2020) is a two-terminal element,
whose resistance can be modulated between a low resistance
state (LRS) and a high resistance state (HRS) (or among multiple
resistance states) by applying appropriate external stimuli. The
programmed resistance states are typically nonvolatile. The
memristive devices also provide a number of other beneficial
functional properties, including low power consumption,
reconfigurability, fast switching speed, high endurance/retention,
and excellent scalability (e.g., 3D integration manufacturing
techniques) (Anusudha et al., 2020; Lin et al., 2020). For instance,
memristive crossbar array with a 2-nm feature size and a
single layer density up to 4.5 Tbit/in2 (Pi et al., 2019) has been
demonstrated where the information density is comparable to 3D
stacking in state-of-the-art 64-layer and multilevel 3D-NAND
flash memory (Lee et al., 2018). Most recently, eight layers of
monolithically integrated Ta/HafO2 memristive arrays were
reported for a 3D convolutional neural network in applications
of edge detection in video processing (Lin et al., 2020). These
memristive devices attract wide attention and offer promising
opportunities for emerging applications (Du et al., 2021) in
highly efficient reconfigurable logic implementations (Tan et al.,
2017; Xu N. et al., 2018; Luo et al., 2021), low-cost hardware
security primitives (Mazady et al., 2015; Gao et al., 2018; Du et al.,
2019) and chaotic oscillators (Li et al., 2018; Rajagopal et al., 2018;

Singh et al., 2019). Especially, a memristive device intrinsically
provides electrically tunable conductance, i.e., it enables updating
of its conductance (artificial synaptic weight), upon electrical
stimuli (neuronal activity), and demonstrates stable resistive
states within its dynamic range (analog behavior) (Zhang et al.,
2019; Huang et al., 2021). Such memristive artificial synapses
show significant energy savings over traditional computing
which involves separate processing of information and then
storage into separate memory. A number of implementations
of memristive artificial synapses based on different physical
working mechanisms have been suggested which include
inorganic redox switching devices (Abbas et al., 2018; Sokolov
et al., 2020), metal ion migration switching devices (Yan et al.,
2019; Zhang et al., 2019), phase change switching devices (Sarwat,
2017; Ren et al., 2018), ferroelectric switching devices (Kim and
Lee, 2019; Li et al., 2020), and threshold switches (Wang et al.,
2017; Kim and Lee, 2018; Sokolov et al., 2019). In most of these
works, the neuromorphic devices are exploited to emulate one
of the synaptic plastic behaviors, i.e., spike timing-dependent
plasticity (STDP), cycle number-dependent plasticity (CNDP),
spiking rate-dependent plasticity (SRDP), or long-term plasticity
(LTP)/short-term plasticity (STP), and metaplasticity (Pedretti
et al., 2017; Zang et al., 2017; John et al., 2018; Xu W.T. et al.,
2018; Zhong et al., 2018; Guo et al., 2019; Kiani et al., 2019).

In this work, we comprehensively study the emulation
of the long-term synaptic plasticities by using single BiFeO3
(BFO)-based memristive artificial synapses (Du et al., 2021),
due to their unique functional properties, i.e., electroforming-
free analog self-rectifying behavior. In a next step, several
hundred BFO-based memristive artificial synapses and artificial
neurons will be connected to form a NN platform. Typically,
such NNs are prone to noise propagation. Therefore, we also
study the robustness of plastic behavior in memristive artificial
synapses against extrinsic noisy input. In the Materials and
methods section, the ultrastable nonvolatile analog switching
dynamic of BFO memristive artificial synapse is discussed.
The waveforms with and without noisy input for studying the
synaptic activities in this work are demonstrated. In the Results
section, we present the experimentally recorded STDP, CNDP,
and generalized frequency-dependent plasticity (FDP) in BFO
memristive artificial synapse. We discuss their dependences on
the memristive reconfigurability and neuronal activity in the
applications in unconventional computing in the Discussion
section. The demonstrated robustness against input noise as
demonstrated for STDP will ensure high-level performance of the
HW-NN platforms where BFO memristive devices are applied as
artificial synapses.

MATERIALS AND METHODS

Ultrastable Non-volatile Analog Resistive
Switching
The BFO-based memristive devices are nonvolatile
electroforming-free resistive switching devices (Du et al.,
2018), which have drawn significant attention in the past decade
due to their ultrastable multilevel analog switching properties
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(Du et al., 2013; Shuai et al., 2013) with long retention and highly
stable endurance even at elevated temperatures (You et al., 2014).
Previously, we have reported BFO-based memristive devices in
emerging applications, such as reconfigurable logic (You et al.,
2014) and hardware security primitives (Du et al., 2019). In this
work, we utilize the BFO memristive devices for emulating the
artificial synaptic activities upon the application of pre- and
postsynaptic spikes based on various neuronal activities.

As illustrated in Figure 1A of the biological human brain, the
various synaptic plastic activities are governed by the different
neuronal activities in response to changing environments, where
the synaptic weights are defined not only by the neuronal
action functions but also by the historical synaptic activities.
Thus, the nonlinear dynamical network is established. Figure 1B
demonstrates schematics of BFO-based artificial synapses. The
polycrystalline BFO thin films are fabricated by pulsed laser
deposition on Pt/Ti/SiO2/Si substrates (Shuai et al., 2013; Du
et al., 2018). The nominal thickness of BFO thin film is
500 nm. The circular Au top contacts with a thickness of
180 nm are magnetron sputtered on the BFO thin film. The I–V
characteristics of the proposed BFO-based artificial synapse are
recorded by applying the sweeping source voltage from −6.5 V
→ +6.5 V → −6.5 V between the Au top electrode and the
bottom electrode. Moreover, multiple cycles of linear sweeping
with the maximum amplitude Vmax = 2, 2.3, 2.6. . .. 6.2 V are also
plotted in Figure 1B. The I–V characteristics were recorded using
a Keithley SourceMeter 2400. The duration of each bias value
amounts to 100 ms. The physical mechanism underlying analog
resistive switching dynamics observed in BFO memristive devices
is related to the nonvolatile change of flexible barriers in the Ti-
containing BFO/Pt/Ti interface region (bottom electrode region,
BE region), whereas a Schottky diode with a fixed barrier height is
formed at the Au/BFO interface region (top electrode region, TE
region). By applying positive writing bias (SET process) to TE of
the memristive device, the mobile oxygen vacancies are attracted
to the BE region and effectively trapped by Ti donors, which
can lower the barrier height at the interface between the BFO
layer and BE. With the nonrectifying BE region and rectifying
TE region, the memristive device exhibits rectifying behavior
in LRS. By applying negative writing bias (RESET process) to
the TE of the memristive device, the mobile donors can be
homogeneously distributed within the BFO thin film, with both
TE and BE regions demonstrating rectifying behavior, and hence,
the device is in HRS.

The nonlinear switching dynamic in BFO memristive device
shows a number of characteristics that make it well suited
for applications as an artificial synapse in brain-inspired
neuromorphic computing systems (i.e., in HW-NN platform).
For instance, (1) the electrical conductance in nonvolatile BFO
memristive device is defined not only by the electrical stimuli
that are applied to the TE and BE of device but also by its
historical resistive state. (2) The complex ultrastable multilevel
switching behavior as demonstrated in Figure 1B from BFO
memristive device ensures that up to 8-bit analog resolution can
be reliably programmed in the device (Shuai et al., 2013). (3)
The exponential relationship converged between the stepping
DC voltage and electrical conductance (Mayr et al., 2012)

makes it conform closely to the ideal spike timing-dependent
plastic behavior observed from biological synapses (Bi and
Poo, 1998). (4) Most of the memristive devices require one
electroforming step (Yang et al., 2009) upon the manufacturing
process, where a stronger electrical field (much stronger than
in the device’s regular operation) initiates the formation of a
conductive filament, bringing the device into the low-resistance
state. By contrast, the electroforming-free BFO-based memristive
devices require no electroforming process, which are desired in
general due to their potential high yield and long-term reliability
of memristive cells. (5) By leveraging the electroforming-free
and self-rectifying behaviors, the BFO memristive device can be
employed for constructing reliable selector-free crossbar arrays
in the HW-NN system. The high-ohmic region defines a readout
region where only one single cell can be actively addressed in
crossbar array. This effectively eliminates the multiple sneak path
current issues (Jung et al., 2021).

Synaptic and Neuronal Activities
Synaptic plasticity is a process for modifying the connection
strength between the pre- and postsynaptic neurons in response
to generated paired neuronal impulse. STDP and SRDP are
both fundamental Hebbian synaptic activities discovered in
mammalian hippocampus and the neocortex (Hebb, 1949),
which demonstrate most prominent learning and memory
behaviors in the brain cognitive system. In STDP, the well-
defined timing of pre- and postsynaptic spikes determines the
direction and strength of synaptic plasticity, whereas in SRDP,
the presynaptic firing rate defines the sign and magnitude of
synaptic plasticity.

The emerging memristive crossbar array (Figure 2A) can
provide a promising hardware realization of brain-inspired
neuromorphic computing system due to their intrinsic functional
properties, i.e., parallel processing capability, excellent scalability,
and low power consumption. In the memristive crossbar array,
the memristive devices at each cross-point are used to emulate the
artificial synapse. The quasi-static stimulation protocol (Du et al.,
2015) is applied for generating the single paring STDP learning
functions on BFO-based artificial synapse, which consists of
three steps—memory initialization, single pairing spike sequence,
and memory consolidation. By applying well-defined single
pairing spike sequence, including presynaptic waveform Vpre and
postsynaptic waveform Vpost as demonstrated in Figure 2B to the
TE and BE of BFO memristive artificial synapse, the associative
synaptic plasticity learning rule STDP can be emulated and
recorded. Each pre- and postsynaptic waveform consists of one
rectangular pulse (with pulse width of tp and pulse amplitude of
Vp) and one exponentially decaying pulse Vexp:

Vexp = |Vp| · e−t/τ, (1)

with the decay time τ = τpre = τpost = 2.5 · tp, where
τpre and τpost are the exponential decay times of pre- and
postsynaptic waveforms.

As demonstrated in Figure 2B, the positive delay time 1t
between the pre- and postsynaptic neurons leads to long-term
potentiation (LTP), which exhibits the long-term enhancement
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FIGURE 1 | Comparative schematic illustrations of panels (A) biological synapse and (B) BFO-based memristive artificial synapse. The key terms representing the
nonlinear dynamical processes during the information transmission in the biological and artificial synapses are summarized and listed in each corresponding
subfigure. The current–voltage (I–V ) characteristics of BFO memristive devices under multiple linear sweeping biases of −Vmax → +Vmax →−Vmax are
demonstrated in panel (B) with Vmax = 2, 2.3, 2.6. . ..6.2, 6.5 V. The colors of I–V curves are changing from blue color to red color with increasing biases. The
topographic SEM image of the surface of BFO thin film is illustrated beside the schematics of BFO-based memristive device.

FIGURE 2 | Illustrative schemes for memristive artificial synapse and STDP driving voltage waveforms. (A) Circuit demonstration for STDP implementation by
applying pre- and postsynaptic voltages to TEs and BEs to one memristive artificial synapse in crossbar array, respectively. (B) Quasi-static stimulation protocol
applied to TE of BFO memristive artificial synapse for emulating LTP and LTD learning rules without and with neuronal noises.

of synaptic excitatory strengths, whereas the negative delay time
1t between the pre- and postsynaptic neurons results in long-
term depression (LTD), which is reversal of LTP, and reveals
the long-term weakening of them. The memory initialization
and memory consolidation are applied prior to and after single
paring LTP/LTD spike sequences in Figure 2B, respectively.
During memory initialization process, the negative writing pulse
Vw = −6 V is applied prior to LTP spike sequences for resetting

memristive cells into HRS (RESET process), while the positive
writing pulse Vw = +6 V is used prior to LTD spike sequence
for setting memristive cells into LRS (SET process). Such RESET
and SET processes are important for memristive applications in
general for defining the initial states of memristive cells as well
as for further recording the comparable experimental results.
Finally, memory consolidation can be investigated for accessing
the feature property of long-term stabilization in synaptic weight
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by introducing different waiting times before recording the
synaptic weight. In our previous work, the single pairing STDP
learning functions under synaptic spike sequences with varying
pulse widths and varying waiting time are studied (Du et al.,
2015). In this work, the spike sequences with different pulse
widths tp or with different pulse amplitudes Vp are selected for
implementing single pairing STDP learning rules on BFO-based
artificial synapse. In this work, the waiting time of 2 s for memory
consolidation is kept unchanged. Due to the analog switching
behavior of BFO memristive devices, there is no abrupt change
of current during switching of the device between HRS and LRS.
According to the empirical electrical testing of memristive cells,
there is no current change occurring while continuously applying
the bias 2 V on BFO cells. Thus, the rectangular pulse of 2 V is
defined as the reading bias of BFO memristive artificial synapse
for recording resistance values at various memristance states. In
addition, the LTP and LTP spike sequences with pulse amplitudes
3.75, 3, and 2 V are chosen and implemented for recording
the STDP learning functions. As demonstrated in Figure 2B,
Vsum = Vpre − Vpost, we expect more significant changes in LTP
current and LTD current when applying spike sequences with
pulse amplitudes of 3.75 and 3 V than that of 2 V. This is so as the
amplitude of superimposed spike sequence Vsum is much higher
than the normal reading bias of the device. One may note that the
choice of pulse amplitude should also not be too high to break
down the device. In this case, the breakdown bias of used BFO
memristive device is around ± 10 V. Particularly, in this work,
the STDP learning functions under spike sequences without and
with noisy input up to 30% of selected pulse amplitude are
comparably investigated.

Furthermore, the presynaptic spike trains under different
firing rates are applied to the BFO memristive artificial synapses
for emulating SRDP (Rachmuth et al., 2011), which is also
one of the most important synaptic learning mechanisms in
brain cognitive behaviors. In comparison with the traditional
stimulation protocol for emulating SRDP learning rules (where
only the spiking rates of spike trains are varying), we have
analyzed the synaptic weight change and excitatory postsynaptic
current (EPSC) in dependence on the proportional relationship
between tp and tint within the same frequency range, which is
termed as generalized FDP in this work. Here, the tp and tint
represent the pulse width and interval time in one pulse cycle of
presynaptic spike trains, respectively. The FDP study utilizes the
application of well-defined spike trains with tp = tint scheme,
varying tp scheme, and varying tint scheme to BFO memristive
artificial synapse. The generalized FDP study is helpful for in-
depth understanding of the impact of learning and memory
modulations on BFO memristive artificial synapse.

Besides STDP and FDP, the synaptic plasticity induced by
the accumulation of cycle number of prespikes, i.e., CNDP, is
also emulated in BFO memristive artificial synapse. CNDP is
recorded by applying the consecutive presynaptic spikes with
different spike numbers to the TEs of BFO memristive artificial
synapses, which is considered as the most basic test for enabling
both the training and testing processes in the HW-NN system.
The aforementioned synaptic plastic behaviors, i.e., STDP, FDP,
and CNDP, differ in their learning capabilities. However, all

of the introduced electrical stimulation protocols activate the
permanent long-term learning behaviors in BFO memristive
artificial synapse in this work. The temporary short-term synaptic
plasticity is not considered here. Note that the initialization
step is required upon each synaptic plastic test, which refers
to the application of a writing pulse Vw = |6 V| to set the
BFO device into predefined determinative high or low resistive
states. Each synaptic weight demonstrated in FDP and CNDP
learning diagrams is an average value of five conductive values
during each spike.

RESULTS

Spike Timing-Dependent Plasticity in
Dependence of Vp and tp
In a previous work, we have demonstrated that STDP can
be emulated on BFO artificial synapses by applying 60–80
pairings (Mayr et al., 2012; Cederström et al., 2013) or single
pairing of pre- and post-synaptic spikes with a significant wide
range of timescale configurability (Du et al., 2015). Figure 3
shows the STDP diagrams in BFO artificial synapse exclusively
in dependence on two input parameters: pulse amplitude
(Figure 3A) and pulse width (Figure 3B). During the single
pairing STDP measurement shown in Figure 3A, we kept the
pulse width tp as 10 ms with a learning window of τ = 25 ms.
We varied the pulse amplitude by 3.75, 3, and 2 V. After applying
potentiating and depressing spike sequence, both LTP current
ILTP and LTD current ILTD are recorded under reading bias at
2 V. The initialization bias with writing amplitude Vw = |6 V| has
been chosen to RESET and SET the BFO memristive artificial
synapse prior to the potentiating and depressing spike sequences.
The normalized LTP current 1ILTP and LTD current 1ILTD
are then plotted against the spike timing differences from |1t|
= tp up to |1t| = 10∗tp. The decreased insufficient spike
amplitudes (i.e., Vp = 3 V, 2 V) result in the reduction of
normalized current in both potentiation and depression regions
in comparison with spike amplitude of Vp = 3.75 V. At |1t|
= tp, the 1ILTP/1ILTD is dramatically depressed at decreased
spike amplitudes of Vp = 3 and 2 V. The saturated 1ILTP/1ILTD
is evaluated by comparing the mean value of 1ILTP/1ILTD
in the saturation region, which is defined from |1ts| up to
100 ms/−100 ms. Under spike amplitudes of Vp = 3.75 V, the
saturated 1ILTP/1ILTD amounts to 19.8% (1ts = 70 ms)/−36.2%
(1ts =−100 ms). In comparison to that, under decreased spike
amplitudes of Vp = 3 and 2 V, STDP learning functions saturate
faster at slightly decreased saturated 1ILTP/1ILTD as illustrated
on the left side of Table 1. Herein, the saturated 1ILTP/1ILTD
amounts to 18.4% (1ts = 60 ms)/−35.5% (1ts = −70 ms) and
14.3% (1ts = 50 ms)/−33.2% (1ts =−30 ms), respectively.

Contrary to Figure 3A, we kept pulse amplitude unchanged
in Figure 3B and have chosen different pulse widths tp as 10, 5,
and 2 ms. Due to the shortened pulse widths with 5 and 2 ms,
the learning time constant of STDP function τ (τ = 2.5 ∗ tp) is
adjusted as 12.5 and 5 ms, and the overall spike timing range for
both LTP and LTD branches is confined within 50 and 20 ms,
respectively. At |1t| = tp, the normalized LTP current 1ILTP
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FIGURE 3 | Comparison of STDP diagrams (A) with different pulse amplitudes Vp = 3.75 V (square), 3 V (triangle), and 2 V (circle) and same pulse width tp = 10 ms
(i.e., learning window of τ = 25 ms) and (B) with different pulse width tp = 10 ms (square), 5 ms (triangle), 2 ms (circle) and the same pulse amplitude Vp = 3.75 V.
The measurement waiting time is defined as tw = 2 s. The inset of panel (A) shows the length of learning windows in dependence of the pulse amplitude Vp, and the
inset of panel (B) shows the length of learning windows in dependence of pulse width tp.

TABLE 1 | The saturated 1ILTP/1ILTD in the saturation region (from | 1ts | up to 10 * tp) recorded upon the application of potentiation/depression spike sequence with
different pulse amplitudes of Vp = 3.75, 3.00, and 2.00 V (tp is kept constant as 10 ms) or with tp = 10, 5, and 2 ms (Vp is kept constant as V p = 3.75 V).

Vp (V) 1ILTP (%) at 1ts 1ILTD (%) at 1ts tp (ms) 1ILTP (%) at 1ts 1ILTD (%) at 1ts

3.75 19.8 at 70 ms −36.2 at −100 ms 10 21.3 at 70 ms −41.1 at −70 ms

3.0 18.4 at 60 ms −35.5 at −70 ms 5 21.1 at 70 ms −45.5 at −70 ms

2.0 14.3 at 50 ms −33.2 at −30 ms 2 24.5 at 70 ms −43.8 at −70 ms

and LTD current 1ILTP are significantly decreased due to the
decreased tp. However, the saturation of 1ILTP/1ILTD is starting
from |1ts| = 7 ∗ tp up to 10 ∗ tp, and the saturated value is
comparable among the chosen spike width tp = 10, 5, and 2 ms
as illustrated on the right side of Table 1, i.e., 1ILTP = 21.3, 21.1,
and 24.5% in the potentiation region, and 1ILTD =−41.1,−45.5,
and−43.76% in the depression region, respectively.

The learning windows at 1ILTP/|1ILTD| = 50% are shown
in the insets of Figures 3A,B in dependence of pulse amplitude
Vp and pulse width tp, respectively. In both cases, the increase of
learning windows at 1ILTP/|1ILTD| = 50% with respect to Vp and
tp can be observed, where the increase velocity in the LTP region
is larger than that in the LTD region.

Cycle Number Dependent Plasticity in
Dependence of Vp
Cycle number dependent plasticity suggests that the consecutive
stimuli enable the incremental modification of synaptic weight
(electrical conductance) in BFO-based artificial synapse. Figure 4
demonstrates the examination of CNDP functionality upon
application of an initialization step: the potentiation spike train
shown in Figure 4A requires an initialization pulse for the RESET
process with amplitude of −6 V, while the depression spike
train of Figure 4B requires one for the SET process with an
amplitude of 6 V. After the initialization step, the corresponding
potentiation and depression spike trains have been applied to

the BFO memristive artificial synapse in analogy to the process
wherein the presynaptic spikes stimulate the synapse. During the
CNDP test, the spike amplitude is set as Vp ≥ 3 V to ensure
the synaptic weights in BFO memristive artificial synapse can be
permanently changed (long-term learning rules) under the spike
sequence with spike width of 100 ms (with time interval 20 ms).

Figures 4C,D demonstrate the CNDP synaptic weights (i.e.,
the memristive conductance) after applying a potentiation and
depression spike sequence consisting of 250 spikes to the top
electrode of BFO memristive artificial synapse, respectively.
During the application of one spike stimulus, five conductance
values are recorded over the memristance device. One CNDP
synaptic weight is computed as an average value of five
conductance values recorded during each spike. By applying
potentiation spike sequence, Figure 4C indicates that the synaptic
weights of BFO artificial synapse increase gradually with the
applied spike number, i.e., long-term potentiation. On the other
hand, Figure 4D reveals gradually decreased synaptic weights
under depression spike sequence, i.e., long-term depression. The
insets in Figures 4C,D demonstrate the normalized synaptic
weight change, where the overall synaptic weight is divided by
the first conductance value G1 recorded at first spike. Under
potentiation spike sequence, the higher spike amplitude with
Vp = 5 V leads to a more significant increase in synapse weight
in comparison with Vp = 3 V and Vp = 4 V. It is so because more
oxygen vacancies are driven into the BE direction and lower the
barrier height at the BFO/Pt interface during the application of
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FIGURE 4 | Cycle number-dependent plasticity in BFO artificial synapse: (A) potentiation and (B) depression spike sequence as electrical stimuli applied to BFO
artificial synapse with pulse width tp = 100 ms and various pulse amplitudes of Vp. The time interval between two pulses is defined as tint = 20 ms. Synaptic weights
of panels (C) potentiation and (D) depression dynamics under 250 identical potentiation and depression spikes with pulse amplitudes of Vp = 3, 4, and 5 V. Insets in
panels (C,D) demonstrate the synaptic change of potentiation and depression dynamics: Synaptic weight G normalized with the synaptic weight G1 recorded at first
spike.

spike train with Vp =+5 V. Under the depression spike sequence,
the no obvious change can be found under the spike train with
spike amplitude Vp = −5 V, as the amplitude of −5 V causes
the simultaneous switching of memristive device into HRS (no
switching of intermediate state possible). The significant change
of synapse weight can only be induced by the spike sequence with
a lower amplitude, i.e., Vp =−3 V or Vp =−4 V. Such observation
indicates that the dynamical range of BFO memristive device
under negative bias range is smaller than that under positive
bias range. The negative pulses with the same pulse amplitude
lead to a faster switching into HRS than positive pulses into
LRS, and it means that the HRS is a preferable state in BFO
memristive state. Therefore, one can conclude from Figure 4 that
synaptic weight of BFO artificial synapse can be continuously
adjusted by presynaptic spikes and is highly dependent on the
spike amplitude and cycle number of spikes, which is suitable for
application in HW-NN.

Frequency-Dependent Plasticity in
Dependence of tp and tint
The generalized FDP studied here describes a feature
of memristive artificial synapse that the synaptic weight
(conductivity) not only changes with the applied presynaptic

firing rate but is also strongly related to the variation of pulse
width tp and time interval tint within each spike cycle of
presynaptic spike trains, i.e., tp = tint scheme, varying tp
scheme and varying tint scheme. An initialization pulse for the
RESET process with an amplitude of −6 V is applied to BFO
memristive artificial synapse prior to each spike train.

Figure 5 demonstrates the FDP with tp = tint scheme, where
the frequency dependence in presynaptic spike train is caused
by a synchronous variation of time interval tint and pulse width
tp (tint = tp = 10, 40, 60, 80, and 100 ms, as illustrated in
Figure 5A). Thus, the studied frequency range is 5.0, 6.3, 8.3, 12.5,
and 50.0 Hz, respectively. Each spike train contains 100 pulses
with spike amplitude of 4 V and applied to the top electrode of
memristive artificial synapse. A distinct feature can be recognized
in Figure 5B as the gradual increment of the average synaptic
weights along the increasing spike number. The same feature
is observed in the CNDP learning rules in Figure 4C, i.e., the
synaptic weight is gradually increased under potentiation spike
trains. Besides that, a clear dependence between tp = tint and
synaptic weight is visible, namely, the larger tp = tint leads to a
more significant conductance enhancement. Figure 5C shows the
frequency-dependent EPSC response where a strong decrement
of EPSC values with increased frequency is visualized. Under
spike trains with higher frequency (with the same spike number),
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FIGURE 5 | Frequency-dependent plasticity learning rules executed by spike trains with synchronous variation of pulse width tp and time interval tint (tp = tint

scheme). (A) Schematic diagram of spike trains with amplitude of Vp = 4V and synchronous variation of tp = tint = 10, 40, 60, 80, and 100 ms. (B) Recorded
synaptic weights as a function of spike number upon 100 consecutive spikes. (C) EPSC response triggered by spike trains (Vp = 4V) and different frequencies. (D)
Frequency-dependent EPSC gains at Vp = 4V.

less oxygen vacancies can be activated and driven to the BE region
which results in less EPSC response. Figure 5D demonstrates
frequency-dependent EPSC gain. The EPSC gain is computed as
(SW10 − SW5)/SW5, where SW5 and SW10 represent the 5th
(SW5) and 10th (SW10) EPSC values as illustrated in Figure 5B,
respectively. The EPSC gain decreases from 0.29 to 0.18, while
the frequency increases from 5.0 to 50.0 Hz. This indicates
that the BFO memristive artificial synapse exhibits decremental
frequency-dependent synaptic response characteristics in FDP
implementation with tp = t int scheme.

In Figure 6, a single variation of pulse width tp or time interval
tint is induced in the presynaptic spike trains, i.e., varying tp
scheme or varying tint scheme. These are applied to the top
electrode of memristive artificial synapse. In order to study the
individual impact of tp and tint on synaptic weight change, we set
one of the two variables in the spike train (tint or tp) varying from
10 to 100 ms and fixed the other one unchanged. In both cases,
the examined frequencies of the presynaptic spike trains are the
same at 5.0, 5.6, 6.3, 7.2, and 9.1 Hz. Each spike train contains 100
pulses with spike amplitude of 4 V. In the varying tp scheme or in
the varying tint scheme, the synaptic weight increases along with
the increasing spike numbers as demonstrated in Figures 6C,D.
More significant increments in synaptic weight can be recorded at
larger pulse width tp in the varying tp scheme or at smaller time
interval tint in the varying tint scheme, respectively. Highlighted

in Figure 6C, the initial synaptic weights under spike trains with
varying tp are distributed in a discrete state. On the other hand,
the recorded synaptic weights in Figure 6D are gathered together
at the initial points. It is noteworthy that in both cases, the average
synaptic weights under spike trains with varying variables (tp or
tint) are sequentially recorded from 10 up to 100 ms upon one
single initialization step with amplitude of −6 V. It is revealed
that the varying tp scheme leads to a higher current level at
tp = 100 ms and tint = 100 ms in comparison with the varying tint
scheme. Such observation can be attributed to the accumulated
impact of historical current flow on the actual conductance level
of BFO memristive device. Figures 6E,F demonstrate the gradual
decrement and increment of EPSC response within the same
frequency range, which indicates that the synaptic weights of
BFO memristive artificial synapse can be weakened or enhanced
within the same frequency range, while the frequency variation
is only caused by changing the proportional relationship between
tp and tint in one spike cycle.

Figure 6G demonstrates the frequency-dependent EPSC gain.
The EPSC gain is computed as (SW10− SW5)/SW5, where SW5
and SW10 represent the 5th (SW5) and 10th (SW10) average
EPSC values as illustrated in Figures 6C,D, respectively. The
EPSC gains in Figure 6G indicate that the BFO memristive
artificial synapse can exhibit both incremental and decremental
frequency-dependent synaptic response characteristics in FDP
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FIGURE 6 | Frequency-dependent plasticity learning rule executed by spike trains with variation of pulse width tp or time interval tint = 10, 40, 60, 80, and 100 ms
(varying tp scheme and varying tint scheme). Schematic diagrams of spike trains with amplitude of Vp = 4V and variation of panels (A) tp or (B) tint. Recorded
synaptic weights as a function of spike number upon 100 consecutive spikes with (C) tp or (D) tint variation. EPSC response triggered by spike trains (Vp = 4V) and
different frequencies with (E) tp or (F) tint variation. (G) Frequency-dependent EPSC gains at Vp = 4V with tp or tint variation.

implementation with tint varying and tp varying schemes,
respectively. It is noteworthy that the stimulation protocol for
FDP with varying tint scheme corresponds to SRDP in biological
synapses. It suggests that the synaptic weight in biological
synapse is highly dependent on the presynaptic spiking rate,

and hence, more frequent stimulation leads to a large change
of synaptic weight (Mori et al., 2004; Froemke et al., 2006). In
biological systems, the duration of a single spike is considered
invariable. Only the time interval between spikes influences the
spiking rate, thus leading to the modification of synaptic weight.
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However, in the experimental study of BFO memristive artificial
synapse, the modification of artificial synaptic weight can be
modified not only by time interval tint between spikes but also
by the spike pulse width tp, which is essential for understanding
the competition between the synaptic excitation and memory
consolidation processes in the long-term learning rules.

Impact of Noisy Input on STDP
We now demonstrate the robustness of STDP against extrinsic
noisy input. Chen et al. (2014b) studied the noise of micropipette
amplifiers for extracellular neural recordings from dead and
live animals. Data from neural recordings may be fed into the
HW-NN being part of neuroimplants. The artificial synapses
of the HW-NN should be robust against noise. Chen et al.
found that the two dominant noise sources degrading the neural
voltage signal in the recordings is the intrinsic noise of the
amplifier and the thermal noise of the glass pipette. The measured
overall noise level in dead and live animals was 6 and 35%,
respectively. Figure 7A shows LTP and LTD learning functions
in BFO artificial synapse and demonstrates the robustness of
STDP of BFO memristive artificial synapses up to a noise level
of 30%. In order to provide the first rough estimation for the
impact of noisy input on STDP learning behavior in memristive
artificial synapses, the additive neuronal noise in this work
has been estimated by the triangular pulse under frequency
fnn = 593 Hz. Such triangular neuronal noise with noise level
up to 30% is attached on the potentiating and depressing spike
sequences and applied to BFO memristive artificial synapse.
As the spike sequences, we have chosen pulse width tp as
10 ms (learning window of τ = 25 ms) and decreased pulse
amplitude as Vp = 3.5 V. This ensures that the exponential-
like decay of the normalized current is dominated for both LTP
and LTD learning functions, while the superimposed neuronal
noise of pre- and postspikes with noise levels from 10 up to
30% would not cause breakdown of the memristive device.
The initialization bias Vw = |6 V| has been chosen to RESET
and SET the BFO memristive artificial synapse, and both
LTP current ILTP and LTD current ILTD are recorded under
reading bias 2 V.

Upon the pre- and post-synaptic spikes associated with
neuronal noise, we retain a graded weight as demonstrated
in Figure 7A. Due to the insufficient spike bias Vp = 3.5 V
without neuronal noise, the normalized LTP/LTD current at |1t|
= tp = 10 ms amounts to 92.3%/−91.6%, whereas the normalized
LTP/LTD current amounts to 97.7%/−97.4%, 100%/−100%,
and 100%/−100% under LTP/LTD spike sequences with noise
levels of 10, 20, and 30%, respectively (as listed in the table
in Figure 7B). Thus, the normalized STDP current saturates at
spike timing of |1t| = tp = 10 ms, which indicates that the
memristive device has been fully switched to LRS/HRS under
enhanced LTP/LTD spike sequences due to the additive noise
amplitudes of 0.7 V (noise level of 20%) and 1.05 V (noise level of
30%) despite the insufficient original pulse amplitude of 3.5 V.
In the spike timing range of 0 < tp < |1t| ≤ 10 ∗ tp, an
exponential decrease dominates against the STDP learning curves
with increasing delay time |1t| and finally stabilizes at 1I values,
where no noise is applied.

DISCUSSION

Biological intelligence is based on learning and memorization.
Learning and memory are emergent synaptic plastic behaviors
governed by modifications in neuronal activities in response to
changing environments. The STDP, CNDP, and FDP (including
SRDP) belong to the classic synaptic learning mechanisms in
brain cognitive behaviors.

Synaptic Plasticity Induced by
Memristive Reconfigurability
In this work, the waveform-defined single pairing STDP in
BFO-based artificial synapses has been demonstrated, where the
direction and strength of synaptic plasticity are determined by
the well-defined timing of pre- and postsynaptic spikes. Prior
literature has demonstrated that STDP learning functions as
device-inherent behavior (Ohno et al., 2011) with fairly small
learning window or considerable high statistical variations (Jo
et al., 2010; Alibart et al., 2012). In comparison to that, with the
help of ultrastable analog switching behavior of BFO memristive
devices, this work enables the deterministic weight change under
signal pairing pre- and postspikes and fulfills highly configurable,
finely grained learning curves. As demonstrated in Figure 3, by
exploiting memristive massive dynamical tunability, not only the
timescale configurability but also the amplitude configurability
of STDP learning window is fulfilled due to their multilevel
programming capability.

In biological synaptic study, the definitions of short-
term plasticity and long-term plasticity are made based on
observations that the modification of synaptic weight in synapse
can be either temporary or permanent (Saïghi et al., 2015). In
CNDP implementation in Figure 4, the pulse amplitudes of 3,
4, and 5 V are applied, to ensure that only long-term plasticity
is activated in BFO memristive artificial synapses. Thus, the
memristive reconfigurability revealed in CNDP suggests that
the synaptic weights in BFO memristive artificial synapse can
be gradually incremented or decremented using consecutive
positive or reverse biased spikes and stored according to the
long-term learning rules. Further beyond SRDP, the systematical
and comparative study on generalized FDP is carried out, which
reveals that synaptic activity not only depends on firing rate
but also depends on the proportional relationship between tp
and tint. In FDP implementation, the pulse amplitude of 4 V
is chosen for emulating the long-term synaptic plasticity under
the tp = tint scheme, varying tp scheme, and varying tint
scheme as demonstrated in Figures 5, 6. According to the CNDP
learning features emulated in Figure 4, the comparable FDP
learning tendency under the pulse amplitudes of 3 and 5 V can
also be expected.

Synaptic Plasticity in Dependence of
Neuronal Activity
Synaptic plasticity is a form of biological learning process (e.g.,
Hebbian learning), and the excitability of individual synaptic cell
is affected by the interplay of both synaptic intrinsic and neuronal
network modulations.
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FIGURE 7 | (A) Impact of triangle neuronal noise with different noise amplitudes Vnn, i.e., Vnn = 0 V (blue line), 0.35 V (dark yellow line), 0.70 V (orange line), and
1.05 V (red line) at fnn = 593 Hz on STDP learning functions in BFO artificial synapse. The STDP diagram has been recorded with pulse width tp = 10 ms (i.e.,
learning window of τ = 25 ms) and pulse amplitude Vp = 3.50 V. The measurement waiting time is defined as tw = 2 s. (B) Illustration of the experimental recorded
normalized LTP/LTD current 1ILTP/1ILTD at | 1t| = tp = 10 ms (gray marked) at neuronal noise level of 0, 10, 20, and 30%.

The generalized FDP implementation in Figure 6 reveals
that within the same presynaptic firing rate, the pulse width
modulation (i.e., firing modulation) of neuronal cells has a
significant impact on synaptic weight change. The observed FDP
with different EPSC gains can be explained by the competition
between the synaptic excitation and memory consolidation
processes, which are related to the long-term learning rules. In
this work, the long-term synaptic excitation learning process
(Abraham et al., 1987) results in the nonvolatile synaptic weight
change by an application of well-defined spike train with an
amplitude of 4 V in BFO-based artificial synapse. Memory
consolidation (Squire et al., 2015) describes the retention of
synaptic weight change across time. Synaptic consolidation is
a sophisticated process in biological memory trace, where the
synaptic weight change overtime could be increased (Bi and Poo,
1998), decreased (Markram et al., 1997), or even unchanged
after the initial weight induction (Froemke and Dan, 2002). In
BFO-based artificial synapse, it has been demonstrated that the
STDP learning functions can be preserved across time up to
at least 5 h without collapse, and the slight weight degradation
can be observed especially shortly after the application of
the initial weight (Du et al., 2015). In Figure 6A, the main
spike trains are inducing the variation of synaptic excitation
process by sharing the same pulse interval tint = 100 ms
with different potentiating pulse widths tp = 10, 40, 60, 80,
and 100 ms. Each positive spike in the spike train will push
oxygen vacancies in BFO thin film toward the BE interface
and form the un-rectifying region. This will induce the high
synaptic weight. The positive spike with larger pulse width
tp = 100 ms causes significantly higher EPSC gain as more
oxygen vacancies are forced close to the BE area. Thus, the
depression effect can be observed along the increasing frequency
range (blue curve in Figure 6G). In comparison to that, in
Figure 6B, the main spike trains are keeping the same pulse
width tp = 100 ms with various pulse intervals tint = 10, 40,

60, 80, and 100 ms. The various pulse intervals tint highlight
the current degradation effect in the retention test and induce
variation of the consolidation process in BFO-based artificial
synaptic device. The reduction of conductivity is observed due
to the relaxation process, i.e., diffusion of oxygen vacancies
away from the BE interface, which increases the barrier height
at the bottom interface. Such relaxation process of the oxygen
vacancies in the BFO thin film starts along the interval time
tint and ends until the next stimuli arrive. The longer pulse
interval tint = 100 ms causes the lowest EPSC gain in Figure 6G
(red curve), i.e., depressed synaptic weight, and the potentiation
effect can be recorded along the examined increasing frequency
range. As a conclusion, for FDP, both depression and potentiation
effect for the first time can be obtained within the same
frequency range by modulating the ratio between tp and tint in
artificial synapse.

Application in Unconventional
Computing
Inspired by the biological understanding of synaptic and
neuronal behaviors in the human brain, the memristive device
offers a promising basis for the development of efficient
artificial building blocks for brain-inspired unconventional
computational paradigms due to their intrinsic properties,
such as nonvolatility (no standby power requirement),
reconfigurability (simplification of analog circuitry), and strong
nonlinear dynamical behavior (full emulation of biological
synaptic behavior), which are helpful for solving the latency and
power limitations that we face with standard approaches in the
modern computer system.

The synaptic and neuronal activities in the biological
brain are incredibly slow. The neurons can only fire a
few hundred spikes per second, and such electrical stimuli
propagate on axons with a velocity of 1–2 m/s. The analog
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BFO memristive spike-driven circuitry is several orders
of magnitude faster (Du et al., 2015) and, thus, could
emulate the bio-inspired system much faster than biological
realizations. The digital memristive devices (Siemon et al.,
2015; Xu et al., 2015), which are normally based on the
filamentary switching mechanism, are in general switching
faster than analog memristive devices. As experimentally
observed in niobium oxide-based memristive devices (Pickett
and Williams, 2012), the SET process can be fulfilled at
subnanosecond times with 30 nm radius of filamental
conduction path. Such switching velocity is expected to be
depressed down to 10s of picosecond switching time with
10 nm radius. However, it is also notable that most of the
digital memristive devices suffer from various variabilities
and defects, which deteriorate the accuracy of the computing
system. The demonstrated analog BFO artificial synapses
possess ultrastable switching behavior (Figure 1). During
the learning process in biological systems, they can change
their synaptic strength upon proper electrical stimuli and
demonstrate multiple stable resistive states within their dynamic
range, which enhances the overall reliability of the brain-
inspired computing system. Therefore, by exploiting the
memristor-oriented brain-inspired learning approach, it will
yield revolutionary results in comparison with conventional
CMOS electronics or even outperform the latency performance
of the biological human brain.

Besides that, the energy cost of synaptic activities is
also critical for evaluating the performance of a brain-
inspired computing system. The reported standard CMOS-
based artificial synapse usually operates at ∼ nanojoule level
per synaptic event (Painkras et al., 2013). The memristive
artificial synapses can easily reach several picojoules per
synaptic event (Yu et al., 2011; Jackson et al., 2013), or even
several hundreds of femtojoules (Xiong et al., 2011; Pickett
and Williams, 2012), which is close to the biological brain.
To construct the brain-inspired computing system with 1015

synapses, the power consumption of synaptic operations by
exploiting memristive devices can be significantly decreased
by orders of magnitudes in comparison with standard CMOS
technology. Furthermore, the single pairing STDP in Figure 3
reveals highly configurable weight change under only signal
pairing pre- and postspikes with a wide range of time tp
and amplitude Vp according to long-term learning rules
(realization of more efficient learning rules). It will be helpful
to accomplish the online classification in an accelerated manner
and further interact with real-time learning system with reduced
energy consumption.

Finally, the implementation of noisy input on BFO memristive
device reveals the response of artificial synapse to neuronal
noise. The influence of neuronal noise could be beneficial
or hinder the functionality of HW-NN. Thus, such study
would be also important for applying the memristive artificial
synapse as connector in brain-inspired computing systems.
The demonstrated robustness of STDP (Figure 7A) from BFO
memristive artificial synapses up to a noise level of 30% highlights
the use of BFO memristive artificial synapses in NN being part of
neuroimplants. This motivates the development of NN in analog

hardware with large energy efficiency and speed and robustness
against noise propagating through the NN.

CONCLUSION

The demand for low-cost brain-inspired unconventional
computing has dramatically increased with the rise of big
data and the Internet of things. In this work, the BFO-based
memristive device is proposed for emulating the functionalities of
biological synapse, which is the key component for information
transmission in biological human brain. So far, the noisy input
data, e.g., from neuroimplants, have not been processed in
brain-inspired computing. By the application of the quasi-static
stimulation protocol, the STDP learning functions under single
pairing spike sequences without and with extrinsic neuronal
noisy input are comparatively and experimentally investigated.
The highly configurable weight change with a considerable
wide range of learning windows in STDP is revealed toward the
realization of efficient learning rules. The perfect functioning
STDP demonstrated up to a noise level of 30% indicates
that analog BFO memristive artificial synapses in NN can be
quite resilient toward extrinsic neuronal noise. Moreover, the
generalized FDP is analyzed in dependence of the pulse interval
time within the same frequency range, and it demonstrated for
the first time that synaptic potentiation and depression can be
realized within the same firing frequency range. As a conclusion,
we have experimentally proven that various synaptic plastic
behaviors of synaptic connectivity required in brain-inspired
computing can be realized from a single BFO-based memristive
device and we also showed their potential to provide superior
outcomes in comparison with conventional CMOS electronics.
Furthermore, the presented comprehensive experimental study
allows a straightforward design of unconventional computing
systems by exploiting the dynamical synaptic behaviors in BFO
memristive devices and paves the way to a low-cost scalable
brain-inspired cognitive computing paradigm.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

ND and HS conceived the original idea and developed the
methodology. ND analyzed and interpreted the results, and
drafted and revised the manuscript. XZ measured and analyzed
the experimental results. ZC setup the experimental system and
testing programs. MD contributed to guidance and developing
different concepts of unconventional computing. BC contributed
to fruitful discussions on building memristor models with
memristor variability for hardware neural networks. IS and DB
prepared the testing memristive chips. All authors contributed to
the article and approved the submitted version.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2021 | Volume 15 | Article 660894

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-660894 July 8, 2021 Time: 20:1 # 13

Du et al. Synaptic Plasticity in Memristive Devices

FUNDING

ND, ZC, and XZ acknowledge the funding support from
the DFG (German Research Foundation) Priority Program
Nano Security, Project MemCrypto (DFG funding ID
439827659). ND, DB, and HS acknowledge the funding

by the Fraunhofer Internal Programs under Grant No.
Attract 600768. BC acknowledges the support from the
Fraunhofer Society. We acknowledge support by the German
Research Foundation and the Open Access Publication Fund of
the Thueringer Universitaets- und Landesbibliothek Jena project
no. 433052568.

REFERENCES
Abbas, Y., Jeon, Y. R., Sokolov, A. S., Kim, S., Ku, B., and Choi, C. (2018).

Compliance-free, digital SET and analog RESET synaptic characteristics of
sub-tantalum oxide based neuromorphic device. Sci. Rep. 8:1228.

Abraham, W. C., Gustafsson, B., and Wigström, H. (1987). Long−term
potentiation involves enhanced synaptic excitation relative to synaptic
inhibition in guinea−pig hippocampus. J. Physiol. 394, 367–380.

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 34, 1537–1557.

Alibart, F., Pleutin, S., Bichler, O., Gamrat, C., Serrano−Gotarredona, T.,
Linares−Barranco, B., et al. (2012). A memristive nanoparticle/organic hybrid
synapstor for neuroinspired computing. Adv. Funct. Mater. 22, 609–616.

Anusudha, T. A., Reka, S. S., and Prabaharan, S. R. S. (2020). Memristor and its
applications: a comprehensive review. Nanosci. Nanotechnol. Asia 10, 558–576.

Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. J. Neurosci. 18, 10464–10472.

Cederström, L., Stärke, P., Mayr, C., Shuai, Y., Schmid, H., and Schüffny, R. (2013).
“A model based comparison of BiFeO3 device applicability in neuromorphic
hardware,” in Proceedings of the 2013 IEEE International Symposium on Circuits
and Systems (ISCAS), (Beijing: IEEE), 2323–2326.

Chen, C. H., Pun, S. H., Mak, P. U., Vai, M. I., Klug, A., and Lei, T. C.
(2014b). Circuit models and experimental noise measurements of micropipette
amplifiers for extracellular neural recordings from live animals. BioMed. Res.
Int. 2014:135026.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99.

Du, N., Kiani, M., Mayr, C. G., You, T., Bürger, D., Skorupa, I., et al. (2015). Single
pairing spike-timing dependent plasticity in BiFeO3 memristors with a time
window of 25 ms to 125 µs. Front. Neurosci. 9:227. doi: 10.3389/fnins.2015.
00227

Du, N., Kiani, M., Zhao, X., Bürger, D., Schmidt, O. G., Ecke, R., et al. (2019).
“Memristive devices for hardware security primitives,” in Proceedings of the
2019 IEEE International Verification and Security Workshop (IVSW), (Rhodes:
IEEE).

Du, N., Manjunath, N., Li, Y., Menzel, S., Linn, E., Waser, R., et al. (2018). Field-
driven hopping transport of oxygen vacancies in memristive oxide switches
with interface-mediated resistive switching. Phys. Rev. Appl. 10:054025.

Du, N., Schmidt, H., and Polian, I. (2021). Low-power emerging memristive
designs towards secure hardware systems for applications in internet of things.
Nano Mater. Sci.

Du, N., Shuai, Y., Luo, W., Mayr, C., Schüffny, R., Schmidt, O. G., et al. (2013).
Practical guide for validated memristance measurements. Rev. Sci. Instrum.
84:023903.

Froemke, R. C., and Dan, Y. (2002). Spike-timing-dependent synaptic modification
induced by natural spike trains. Nature 416, 433–438.

Froemke, R. C., Tsay, I. A., Raad, M., Long, J. D., and Dan, Y. (2006). Contribution
of individual spikes in burst-induced long-term synaptic modification.
J. Neurophysiol. 95, 1620–1629.

Gao, Y., Jin, C., Kim, J., Nili, H., Xu, X., Burleson, W. P., et al. (2018). Efficient
erasable PUFs from programmable logic and memristors. IACR Cryptol. ePrint
Arch. 2018:358.

Guo, Y., Wu, H., Gao, B., and Qian, H. (2019). Unsupervised learning on resistive
memory array based spiking neural networks. Front. Neurosci. 13:812. doi:
10.3389/fnins.2019.00812

Hebb, D. (1949). The Organization of Behavior. New York, NY: EMPH.
Huang, W., Xia, X., Zhu, C., Steichen, P., Quan, W., Mao, W., et al. (2021).

Memristive artificial synapses for neuromorphic computing. Nano Micro Lett.
13:85.

Jackson, B. L., Rajendran, B., Corrado, G. S., Breitwisch, M., Burr, G. W., Cheek, R.,
et al. (2013). Nanoscale electronic synapses using phase change devices. ACM J.
Emerg. Technol. Comput. Syst. (JETC) 9:12.

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).
Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.
10, 1297–1301.

John, R. A., Liu, F., Chien, N. A., Kulkarni, M. R., Zhu, C., Fu, Q., et al. (2018).
Synergistic gating of electro−iono−photoactive 2D chalcogenide neuristors:
coexistence of Hebbian and homeostatic synaptic metaplasticity. Adv. Mater.
30:1800220.

Jung, J., Bae, D., Kim, S., and Kim, H. D. (2021). Self-rectifying resistive switching
phenomena observed in Ti/ZrN/Pt/p-Si structures for crossbar array memory
applications. Appl. Phys. Lett. 118:112106.

Kiani, M., Du, N., Bürger, D., Skorupa, I., Ecke, R., Schulz, S. E., et al. (2019).
“Electroforming-free BiFeO3 switches for neuromorphic computing: spike-
timing dependent plasticity (STDP) and cycle-number dependent plasticity
(CNDP),” in Proceedings of the 26th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), Genoa, 682–686.

Kim, M. K., and Lee, J. S. (2018). Short-term plasticity and long-term potentiation
in artificial biosynapses with diffusive dynamics. ACS Nano 12, 1680–1687.

Kim, M. K., and Lee, J. S. (2019). Ferroelectric analog synaptic transistors. Nano
Lett. 19, 2044–2050.

Lee, S., Kim, C., Kim, M., Joe, S.-m, Jang, J., Kim, S., et al. (2018). “A 1 Tb 4b/cell
64-stacked-WL 3D NAND flash memory with 12 MB/s program throughput,”
in Proceedings of the IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), (San Francisco, CA: IEEE), 340–342.

Li, C., Thio, W. J. C., Iu, H. H. C., and Lu, T. (2018). A memristive chaotic oscillator
with increasing amplitude and frequency. IEEE Access 6, 12945–12950.

Li, J., Ge, C., Du, J., Wang, C., Yang, G., and Jin, K. (2020). reproducible
ultrathin ferroelectric domain switching for high−performance neuromorphic
computing. Adv. Mater. 32:1905764.

Lin, P., Li, C., Wang, Z., Li, Y., Jiang, H., Song, W., et al. (2020). Three-dimensional
memristor circuits as complex neural networks. Nat. Electron. 3, 225–232.

Luo, L., Dong, Z., Hu, X., Wang, L., and Duan, S. (2021). Nonvolatile Boolean logic
in the one-transistor-one-memristor crossbar array for reconfigurable logic
computing. AEU Int. J. Electron. Commun. 129:153542.

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,
213–215.

Mayr, C., Staerke, P., Partzsch, J., Cederstroem, L., Schüffny, R., Shuai,
Y., et al. (2012). Waveform driven plasticity in BiFeO3 memristive
devices: model and implementation. Adv. Neural Inform. Process. Syst. 25,
1700–1708.

Mazady, A., Rahman, M. T., Forte, D., and Anwar, M. (2015). Memristor PUF—a
security primitive: theory and experiment. IEEE J. Emerg. Select. Top. Circuits
Syst. 5, 222–229.

Mori, M., Abegg, M. H., Gähwiler, B. H., and Gerber, U. (2004). A frequency-
dependent switch from inhibition to excitation in a hippocampal unitary circuit.
Nature 431, 453–456.

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker,
A. R., et al. (2018). Braindrop: a mixed-signal neuromorphic architecture
with a dynamical systems-based programming model. Proc. IEEE 107,
144–164.

Nithya, N., and Paramasivam, K. (2020). “A comprehensive study on the
characteristics, complex materials and applications of memristor,” in 2020 6th

Frontiers in Neuroscience | www.frontiersin.org 13 July 2021 | Volume 15 | Article 660894

https://doi.org/10.3389/fnins.2015.00227
https://doi.org/10.3389/fnins.2015.00227
https://doi.org/10.3389/fnins.2019.00812
https://doi.org/10.3389/fnins.2019.00812
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-660894 July 8, 2021 Time: 20:1 # 14

Du et al. Synaptic Plasticity in Memristive Devices

International Conference on Advanced Computing and Communication Systems
(ICACCS), (Coimbatore: IEEE), 171–176. .

Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J. K., and Aono,
M. (2011). Short-term plasticity and long-term potentiation mimicked in single
inorganic synapses. Nat. Mater. 10, 591–595.

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson, C., et al.
(2013). SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural
network simulation. IEEE J. Solid State Circuits 48, 1943–1953.

Pedretti, G., Milo, V., Ambrogio, S., Carboni, R., Bianchi, S., Calderoni, A., et al.
(2017). Memristive neural network for on-line learning and tracking with
brain-inspired spike timing dependent plasticity. Sci. Rep. 7:5288.

Pershin, Y. V., and Di Ventra, M. (2010). Experimental demonstration of
associative memory with memristive neural networks. Neural Netw. 23, 881–
886.

Pi, S., Li, C., Jiang, H., Xia, W., Xin, H., Yang, J. J., et al. (2019). Memristor crossbar
arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14,
35–39.

Pickett, M. D., and Williams, R. S. (2012). Sub-100 fJ and sub-nanosecond
thermally driven threshold switching in niobium oxide crosspoint nanodevices.
Nanotechnology 23:215202.

Rachmuth, G., Shouval, H. Z., Bear, M. F., and Poon, C. S. (2011). A biophysically-
based neuromorphic model of spike rate-and timing-dependent plasticity. Proc.
Natl. Acad. Sci. U.S.A. 108, E1266–E1274.

Rajagopal, K., Karthikeyan, A., and Srinivasan, A. (2018). Dynamical analysis and
FPGA implementation of a chaotic oscillator with fractional-order memristor
components. Nonlinear Dyn. 91, 1491–1512.

Ren, K., Li, R., Chen, X., Wang, Y., Shen, J., Xia, M., et al. (2018). Controllable SET
process in O-Ti-Sb-Te based phase change memory for synaptic application.
Appl. Phys. Lett. 112:073106.

Saïghi, S., Mayr, C. G., Serrano-Gotarredona, T., Schmidt, H., Lecerf, G., Tomas, J.,
et al. (2015). Plasticity in memristive devices for spiking neural networks. Front.
Neurosci. 9:51. doi: 10.3389/fnins.2015.00051

Sarwat, S. G. (2017). Materials science and engineering of phase change random
access memory. Mater. Sci. Technol. 33, 1890–1906.

Seo, S., Lee, J.-J., Lee, H.-J., Lee, H. W., Oh, S., Lee, J. J., et al. (2020). Recent progress
in artificial synapses based on two-dimensional van der Waals materials for
brain-inspired computing. ACS Appl. Electron. Mater. 2, 371–388.

Shuai, Y., Ou, X., Luo, W., Du, N., Wu, C., Zhang, W., et al. (2013). Nonvolatile
multilevel resistive switching in Ar+ irradiated BiFeO3 thin films. IEEE Electron
Device Lett. 34, 54–56.

Siemon, A., Breuer, T., Aslam, N., Ferch, S., Kim, W., van den Hurk, J., et al. (2015).
Realization of Boolean logic functionality using redox−based memristive
devices. Adv. Funct. Mater. 25, 6414–6423.

Singh, J. P., Koley, J., Akgul, A., Gurevin, B., and Roy, B. K. (2019). A new chaotic
oscillator containing generalised memristor, single op-amp and RLC with chaos
suppression and an application for the random number generation. Eur. Phys.
J. Special Top. 228, 2233–2245.

Sokolov, A. S., Ali, M., Riaz, R., Abbas, Y., Ko, M. J., and Choi, C. (2019).
Silver−adapted diffusive memristor based on organic nitrogen−doped
graphene oxide quantum dots (N−GOQDs) for artificial biosynapse
applications. Adv. Funct. Mater. 29:1807504.

Sokolov, A. S., Jeon, Y. R., Ku, B., and Choi, C. (2020). Ar ion plasma surface
modification on the heterostructured TaOx/InGaZnO thin films for flexible
memristor synapse. J. Alloys Comp. 822:153625.

Squire, L. R., Genzel, L., Wixted, J. T., and Morris, R. G. (2015). “Memory
consolidation,” in Learning and Memory, eds E. R. Kandel, Y. Dudai, and M. R.
Mayford (New York, NY: Cold Spring Harbor Laboratory Press), 205–225.

Tan, H., Liu, G., Yang, H., Yi, X., Pan, L., Shang, J., et al. (2017). Light-gated
memristor with integrated logic and memory functions. ACS Nano 11, 11298–
11305.

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,
et al. (2018). Large-scale neuromorphic spiking array processors: a quest to
mimic the brain. Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.00891

Townsley, K. G., Brennand, K. J., and Huckins, L. M. (2020). Massively parallel
techniques for cataloguing the regulome of the human brain. Nat. Neurosci. 23,
1509–1521. doi: 10.1038/s41593-020-00740-1

Wang, Z., Joshi, S., Savel’ev, S. E., Jiang, H., Midya, R., Lin, P., et al. (2017).
Memristors with diffusive dynamics as synaptic emulators for neuromorphic
computing. Nat. Mater. 16, 101–108.

Xiong, F., Liao, A. D., Estrada, D., and Pop, E. (2011). Low-power switching of
phase-change materials with carbon nanotube electrodes. Science 332, 568–570.

Xu, N., Yoon, K. J., Kim, K. M., Fang, L., and Hwang, C. S. (2018). Fully functional
logic−in−memory operations based on a reconfigurable finite−state machine
using a single memristor. Adv. Electron. Mater. 4:1800189.

Xu, W. T., Nguyen, T. L., Kim, Y., Wolf, C., Pfattner, R., Lopez, J., et al. (2018).
Ultrasensitive artificial synapse based on conjugated phlyelectrolyte. Nano
Energy 48, 575–581.

Xu, X., Lv, H., Liu, H., Gong, T., Wang, G., Zhang, M., et al. (2015).
Superior retention of low-resistance state in conductive bridge random access
memory with single filament formation. IEEE Electron Device Lett. 36,
129–131.

Yan, X., Pei, Y., Chen, H., Zhao, J., Zhou, Z., Wang, H., et al. (2019). Self−assembled
networked PbS distribution quantum dots for resistive switching and artificial
synapse performance boost of memristors. Adv. Mater. 31:1805284.

Yang, J. J., Miao, F., Pickett, M. D., Ohlberg, D. A., Stewart, D. R., Lau, C. N., et al.
(2009). The mechanism of electroforming of metal oxide memristive switches.
Nanotechnology 20:215201.

Yang, S., Deng, B., Wang, J., Li, H., Lu, M., Che, Y., et al. (2019). Scalable digital
neuromorphic architecture for large-scale biophysically meaningful neural
network with multi-compartment neurons. IEEE Trans. Neural Netw. Learn.
Syst. 31, 148–162.

Yang, S., Wang, J., Deng, B., Liu, C., Li, H., Fietkiewicz, C., et al. (2018). Real-
time neuromorphic system for large-scale conductance-based spiking neural
networks. IEEE Trans. Cybern. 49, 2490–2503.

You, T., Shuai, Y., Luo, W., Du, N., Bürger, D., Skorupa, I., et al. (2014). Exploiting
memristive BiFeO3 bilayer structures for compact sequential logics. Adv. Funct.
Mater. 24, 3357–3365.

Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D., and Wong, H. S. P. (2011). An
electronic synapse device based on metal oxide resistive switching memory for
neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737.

Zang, Y., Shen, H., Huang, D., Di, C. A., and Zhu, D. (2017). A
dual−organic−transistor−based tactile−perception system with
signal−processing functionality. Adv. Mater. 29:1606088.

Zhang, T., Yang, K., Xu, X., Cai, Y., Yang, Y., and Huang, R. (2019). Memristive
devices and networks for brain−inspired computing. Phys. Status Solidi (RRL)
Rapid Res. Lett. 13:1900029.

Zhong, Y. N., Wang, T., Gao, X., Xu, J. L., and Wang, S. D. (2018). Synapse−like
organic thin film memristors. Adv. Funct. Mater. 28:1800854.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Du, Zhao, Chen, Choubey, Di Ventra, Skorupa, Bürger and
Schmidt. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 July 2021 | Volume 15 | Article 660894

https://doi.org/10.3389/fnins.2015.00051
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1038/s41593-020-00740-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs
	Introduction
	Materials and Methods
	Ultrastable Non-volatile Analog Resistive Switching
	Synaptic and Neuronal Activities

	Results
	Spike Timing-Dependent Plasticity in Dependence of Vp and tp
	Cycle Number Dependent Plasticity in Dependence of Vp
	Frequency-Dependent Plasticity in Dependence of tp and tint
	Impact of Noisy Input on STDP

	Discussion
	Synaptic Plasticity Induced by Memristive Reconfigurability
	Synaptic Plasticity in Dependence of Neuronal Activity
	Application in Unconventional Computing

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


