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Objectives: To characterize subcortical nuclei by multi-parametric quantitative
magnetic resonance imaging.

Materials and Methods: The following quantitative multiparametric MR data of five
healthy volunteers were acquired on a 7T MRI system: 3D gradient echo (GRE) data
for the calculation of quantitative susceptibility maps (QSM), GRE sequences with
and without off-resonant magnetic transfer pulse for magnetization transfer ratio (MTR)
calculation, a magnetization−prepared 2 rapid acquisition gradient echo sequence for
T1 mapping, and (after a coil change) a density-adapted 3D radial pulse sequence for
23Na imaging. First, all data were co-registered to the GRE data, volumes of interest
(VOIs) for 21 subcortical structures were drawn manually for each volunteer, and a
combined voxel-wise analysis of the four MR contrasts (QSM, MTR, T1, 23Na) in each
structure was conducted to assess the quantitative, MR value-based differentiability of
structures. Second, a machine learning algorithm based on random forests was trained
to automatically classify the groups of multi-parametric voxel values from each VOI
according to their association to one of the 21 subcortical structures.

Results: The analysis of the integrated multimodal visualization of quantitative MR
values in each structure yielded a successful classification among nuclei of the
ascending reticular activation system (ARAS), the limbic system and the extrapyramidal
system, while classification among (epi-)thalamic nuclei was less successful. The
machine learning-based approach facilitated quantitative MR value-based structure
classification especially in the group of extrapyramidal nuclei and reached an overall
accuracy of 85% regarding all selected nuclei.

Conclusion: Multimodal quantitative MR enabled excellent differentiation of a wide
spectrum of subcortical nuclei with reasonable accuracy and may thus enable sensitive
detection of disease and nucleus-specific MR-based contrast alterations in the future.

Keywords: quantitative susceptibility mapping, machine learning, magnetization transfer, basal ganglia, magnetic
resonance imaging, ultra high field, sodium imaging

Frontiers in Neuroscience | www.frontiersin.org 1 June 2021 | Volume 15 | Article 661504

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.661504
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.661504
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.661504&domain=pdf&date_stamp=2021-06-21
https://www.frontiersin.org/articles/10.3389/fnins.2021.661504/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-661504 June 15, 2021 Time: 17:44 # 2

Schneider et al. Multiparametric MRI for Brain-Structure Characterization

INTRODUCTION

Subcortical nuclei of the basal ganglia, midbrain and brainstem
are interconnected structures of gray matter that play an
instrumental role in the integration of motor as well as non-
motor behavioral functions of the brain (Nelson and Kreitzer,
2014; Simonyan, 2019). In recent years, subcortical nuclei
have not only been implicated in the pathophysiology of
a wide range of motor function affecting diseases such as
Parkinson’s disease (Obeso et al., 2008) or atypical Parkinsonian
syndromes (Broski et al., 2014; Saeed et al., 2017), but also
in neurodegenerative diseases such as Alzheimer’s disease
(Arendt et al., 2015; Eser et al., 2018), Huntington’s disease
(Eser et al., 2018) and frontotemporal lobar degeneration
(Looi et al., 2008; Halabi et al., 2013) or in non-degenerative
neuropsychiatric conditions such as obsessive-compulsive
disorders, depression or chronic pain (Lacerda et al., 2003;
Bielau et al., 2005; Kumar et al., 2014; Taylor and Westlund,
2017; Zhang et al., 2019). In search of sensitive biomarkers
for subcortical cerebral diseases, magnetic resonance imaging
(MR)-based studies have long focused on the assessment of
morphological subcortical changes quantified by voxel-based
morphometry (VBM) using structural data only. In recent
years, quantitative MR-based techniques such as diffusion
tensor imaging (DTI), quantitative susceptibility mapping
(QSM), magnetization transfer ratio (MTR) or sodium imaging
have additionally shown great potential for the assessment of
subcortical structures especially at ultra-high field strength
(Reetz et al., 2012; Tambasco et al., 2015; Andica et al., 2019;
Mazzucchi et al., 2019). However, as diseases often affect multiple
subcortical nuclei to a varying extent, e.g., by protein deposition
in several subcortical structures (Dugger and Dickson, 2017),
a lack of specificity still challenges MR-based classification
of diseases on the basis of single MR contrasts or single
subcortical structures (Saeed et al., 2017) and a characteristic,
multiparametric MR-based footprint of healthy subcortical
structures may be a requisite for future MR-based discrimination
of subcortical diseases.

The present study assesses subcortical nuclei of the basal
ganglia and the midbrain using QSM, MTR, sodium imaging
and T1 relaxation time mapping at 7T. QSM not only provides
an excellent image contrast for optimized discrimination of
basal ganglia (Deistung et al., 2013a; Keuken et al., 2014),
but also enables detection of increased iron deposition in
the basal ganglia associated with a range of degenerative and
inflammatory diseases such as multiple sclerosis, Parkinson’s
and Huntington’s disease as well as alcohol use disorder (Wallis
et al., 2008; Dominguez et al., 2016; Langkammer et al., 2016;
Juhas et al., 2017; Zivadinov et al., 2018). Similarly, increased
23Na concentrations in cerebral gray matter have been linked
to Alzheimer’s disease and an increasing severity of multiple
sclerosis (Mellon et al., 2009; Zaaraoui et al., 2012), as 23Na
concentrations are presumably dependent on the volume of
extracellular space and cellular membrane integrity (O’Brien
et al., 1974; Boada et al., 2005). Finally, reduced subcortical
T1 relaxation times have been associated with gray matter
loss following neurodegenerative disease (Baudrexel et al.,

2010), and MTR imaging of subcortical structures has shown
promising results for the discrimination of Parkinson’s disease
and atypical Parkinson syndromes (Eckert et al., 2004) as it uses
radiofrequency off-resonance pulses to saturate macromolecule-
associated protons. The resulting magnetization transfer is
dependent on the exchange rate between pools of coupled
and free protons and correlates with the concentration of
macromolecules (Wolff and Balaban, 1994; Henkelman et al.,
2001; Horsfield et al., 2003; Peper et al., 2013).

The aim of this study is the investigation of a novel,
multiparametric approach to characterize subcortical nuclei
based on the assessment of combined voxel-intrinsic MR values
from four different quantitative MR contrasts (QSM, MTR, T1,
23Na) in healthy volunteers.

MATERIALS AND METHODS

Data Acquisition
The study was conducted in accordance with the Declaration
of Helsinki. Institutional review board approval was obtained
and all subjects provided written informed consent. Five healthy
volunteers (mean age 28.4 ± 6.5 years; three female) underwent
MRI on a 7T whole-body system (MAGNETOM 7T, Siemens
Healthcare GmbH, Germany). At the beginning of each imaging
session and after the coil change, B0 shimming was performed
using the vendors’ default second-order routines. For all 1H
scans, B1-calibration was performed with a pre-saturation-based
2D turbo flash sequence and for sodium imaging by measuring
the total 23Na signal intensity as a function of transmitter
voltage. A monopolar 3D gradient echo (GRE) sequence for
susceptibility mapping, two vendor−provided 2D proton density
(PD)-weighted GRE sequences with and without additional
off-resonant MT-pulse (500◦, 1.5 kHz off-resonance, 7.68 ms
duration) for MTR calculation, and a magnetization−prepared
2 rapid acquisition gradient echo (MP2RAGE) sequence
with inversion times TI1 = 900 ms, TI2 = 2,700 ms and
online vendor-provided T1 map calculation were acquired with a
8Tx/32Rx-channel head coil (Nova Medical Inc., Wakefield, MA,
United States) operated using an in-house-built Butler matrix
with sequence parameters given in Table 1. After a coil change,
23Na data were acquired using a double-resonant 1H/23Na Tx/Rx
quadrature volume head coil integrating a 30-channel 23Na Rx
phased array (Rapid Biomedical GmbH, Rimpar, Germany) and
a density adapted 3D radial pulse sequence with TR = 100 ms,
TE1 = 0.35 ms, flip angle = 90◦, 2.0 mm nominal isotropic
resolution, 7,000 projections, TA = 11:40 min (Nagel et al.,
2009), and a T1-weighted GRE sequence was acquired to facilitate
image registration.

Data Processing
Susceptibility maps were generated from phase data that were
combined on the scanner using ASPIRE (Eckstein et al., 2018).
Brain masks were calculated using FSL-BET (Smith, 2002) from
the first echo of the GRE magnitude data. Laplacian-based
phase unwrapping, V-SHARP (Li et al., 2011, 2014; Wu et al.,
2012) with kernel size up to 12 mm for background field
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TABLE 1 | Sequence parameters including voxel size, matrix size, repetition time (TR), echo time (TE), flip angle (FA), bandwidth (BW), parallel imaging (GRAPPA), and
partial Fourier specifics and acquisition time (TA).

Resolution (mm3), matrix size TR (ms) TE (ms) FA (◦) BW
(Hz/px)

GRAPPA (Griswold et al.,
2002) (factor/ref. lines)

Partial Fourier
(slice, phase)

TA
(min:sec)

ME-GRE 0.5 × 0.5 × 0.5, 448 × 336 × 224 21 6/12/18 10 490 2/36 7/8, 6/8 11:23

GRE+/−MT 0.7 × 0.7 × 2.0, 320 × 240 × 36 197 3.47 8 220 3/36 6/8, 6/8 9:25

MP2RAGE 0.7 × 0.7 × 0.7, 320 × 240 × 208 5,000 3.63 4, 5 290 3/48 −, 6/8 8:02

removal and STAR-QSM (Wei et al., 2015) were used in Matlab
(MathWorks, Natick, United States) to calculate susceptibility
maps. 23Na data were reconstructed using an in−house Matlab
tool with adaptive combination (Benkhedah et al., 2016).
Correction of the receive profile was performed using the
transmit/receive birdcage coil located around the receive array.
Sodium data were referenced such that mean cerebrospinal fluid
(CSF) sodium values equaled the physiological concentration
of 140 mmol/l. Based on the recorded T1-weighted images,
sodium data were registered to QSM in the Medical Imaging
Interaction Toolkit (MITK) (Maleike et al., 2009; Nolden
et al., 2013). Semi-quantitative MTR maps were calculated in
Matlab dividing the difference between the non-MT-saturated

and the MT-saturated data by non-MT-saturated data and
multiplied by 100. To define the volumes of interest (VOIs)
for subcortical nuclei a neuroradiologist (TS) with 8 years of
experience and special expertise in the assessment of deep
gray matter nuclei used susceptibility maps superimposed on
MT-saturated PD images in MITK to manually segment VOIs
for each volunteer.

Functional Group Definition of
Subcortical Nuclei and Fiber Tracts
Subcortical nuclei and fiber tracts were grouped into five groups
and are shown in Figure 1. The group of (epi-)thalamic nuclei

FIGURE 1 | Volumes of interest (VOIs) are indicated on axial QSM/MT overlay images numerated from caudally to cranially in ascending order. VOIs of fiber tracts
(CP and ML) are colored in shades of green in Slice II. VOIs of (epi-)thalamic nuclei (LGB, MGB, HB, and Pul) are colored in shades of yellow in Slices IV and V, VOIs
of limbic nuclei (BNST, NAC, VP, MB, and NBM) are colored in shades of pink in Slices III-VI and, VOIs of nuclei of the ARAS (DTN, PPN, VTA, and LC) in shades of
blue in Slices I and III. VOIs of extrapyramidal nuclei (NC, RN, PAL, Put, SN, and STN) are colored in shades of red in Slices II to VI.
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consists of the medial and lateral geniculate bodies (MGB
and LGB), the pulvinar (Pul) and the habenula (HB). Nuclei
associated with the ascending reticular activating system (ARAS)
are the ventral tegmental area (VTA), the pedunculopontine
nucleus (PPN), the locus coeruleus (LC), and the dorsal raphe
nucleus (DRN). The group of limbic nuclei includes the ventral
pallidum (VP), the nucleus basalis Meynert (NBM), the bed
nucleus of the stria terminalis (BNST), the nucleus accumbens
(NAC), and the mamillary body (MB). The substantia nigra (SN),
the subthalamic nucleus (STN), the red nucleus (RN), the globus
pallidus (Pal), the putamen (Put), and the nucleus caudatus
(NC) correspond to the group of extrapyramidal nuclei. The
group of fiber tracts included the cerebral peduncle (CP) and
the medial lemniscus (ML). Groups of nuclei and fiber tracts are
summarized in Table 2.

Data Analysis
Mean and standard deviations were calculated for susceptibility,
MTR, sodium concentration and T1 relaxation time
measurements in each structure and a ranking of mean
values in ascending order was established for each of the four
contrasts. A voxel-wise correlation analysis between each of the
different MR contrasts indifferent of subcortical structures was
conducted calculating Pearson’s correlation coefficient. P-values
below 0.05 were considered statistically significant.

Four-dimensional (three axes for T1 values, MT ratio,
and susceptibility values; the fourth dimension for sodium
concentration is represented by color) scatter plots were

TABLE 2 | Groups of nuclei and fiber tracts with abbreviations.

(Epi-)thalamic nuclei

Medial and lateral geniculate bodies MGB and LGB

Pulvinar Pul

Habenula HB

Ascending reticular activating system (ARAS)

Ventral tegmental area VTA

Dorsal raphe nucleus DRN

Pedunculopontine nucleus PPN

Locus coeruleus LC

Limbic nuclei

Ventral pallidum VP

Nucleus basalis Meynert NBM

Bed nucleus of the stria terminalis BNST

Nucleus accumbens NAC

Mamillary body MB

Extrapyramidal nuclei

Substantia nigra SN

Subthalamic nucleus STN

Red nucleus RN

Globus pallidus Pal

Putamen Put

Nucleus caudatus NC

Fiber tracts

Cerebral peduncle CP

Medial lemniscus ML

generated for each of the groups of nuclei combining a
visualization of the four contrasts in each voxel. For each
subcortical nucleus tri-axial ellipsoids were centered at the mean
signal intensity in each contrast and axial lengths of the ellipsoids
correspond to the standard deviation regarding QSM, MTR and
T1- measurements.

Furthermore, three prediction tasks were solved based on
random forest analyses (Breiman, 2001) (Python 3.6, scikit-learn
0.23.1) to assess machine learning-based classification of the
different subcortical structures on the basis of multi-parametric
voxel-values from each VOI, represented by matrices containing
voxel-values only. Nuclei from the same subject were considered
as independent samples. Firstly, to predict the subcortical
structure to which the combined quantitative values from a
VOI belong, secondly, to predict the functional group of each
VOI, and thirdly, to classify structures within each functional
group. The significance of each MR contrast for each task was
additionally analyzed using random forests with 100 independent
random trees, equaling 100 classifiers. For the decision trees eight
features for each of the four contrasts were defined: The voxel
data was transformed into a one-dimensional signal. The mean
value, the variance, the minimal value and the maximal value
of each contrast and its gradient, respectively, were computed
based on the flattened signal (32 features for each sample in
total). These features are summarized in Table 3. The model
prediction was evaluated using a leave-one-out cross-validation.
To compensate for statistical variances that occurred due to using
randomness-based methods, all reported results were averaged
across 100 runs. Results were illustrated by normalized confusion
matrices indicating predicted and true classes with the diagonal
elements representing the probability of the predicted class
being equal to the true class. Very small structures, namely,
MB, the LC and the HB, were excluded from the automated
analysis because of high partial volume effects due to the low
resolution of sodium imaging. To evaluate the importance of
multiparametric MRI for the described classification of the
different subcortical structures on the basis of multi-parametric
voxel-values from each VOI, a meta-experiment using only
a single contrast or a subset of contrasts was conducted.
Moreover, the segmentation performance for various machine
learning methods and feasibility of discrimination of subcortical
nuclei against the surrounding cerebral tissue was included in
Supplementary Material.

TABLE 3 | Description of features used for the random forest analysis.

Feature per sequence
QSM, Na, MTR, T1

Description

mean_ Mean value of the given data

var_ Variance of the given data

min_ Minimal value of the given data

max_ Maximal value of the given data

mean_grad_ Mean value of the gradient of the given data

var_grad_ Variance of the gradient of the given data

min_grad_ Minimal value of the gradient of the given data

max_grad_ Maximal value of the gradient of the given data
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RESULTS

Descriptive and Statistical Analysis
Exemplary slices of the multi-parametric data including
an overlay of QSM and MT-saturated PD are shown in
Figure 2. QSM and the QSM/MT-overlay display the anatomical
substructures of the basal ganglia and midbrain with the highest
contrast, followed by T1 and MTR. In sodium imaging, Put and
Pal can be visually differentiated. A slight increase in contrast

can be visually appreciated for the BNST, PPN, DRN, and the ML
on the QSM/MT-overlay compared to QSM contrast alone.

Table 4 shows the mean values and standard deviations
of susceptibility, MTR, MR-based sodium concentration and
T1 relaxation time measurements for each of the subcortical
structures. Mean susceptibility across all studied subcortical
nuclei was 0.031 ± 0.037 ppm, mean sodium concentration was
51.0 ± 14.4 mmol/l, mean MTR was 22.0 ± 2.0 percentage
units (p.u.) and mean T1 time was 1448.5 ± 179 ms. Fiber tracts

FIGURE 2 | Representative axial slices at five indicated levels of the midbrain for a QSM/MT overlay, QSM, sodium images, MTR w, T1 from Row 1–5. In Row 6 the
axial level of each row of images is indicated on sagittal T1-maps. Structures are indicated on the QSM/MT overlay. All data were co-registered to the gradient echo
data which were used to calculate QSM.
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TABLE 4 | Mean susceptibility, sodium concentration, MTR and T1 values are given with standard deviation for each nucleus.

Susceptibiliy χ (ppm) Sodium (mmol/l) MTR (p.u.) T1 (ms)

Nucleus caudatus 0.0289 ± 0.0230 53.1 ± 4.2 19.4 ± 2.6 1,709 ± 44

Red nucleus 0.0651 ± 0.0153 38.9 ± 1.2 26.1 ± 0.6 1,167 ± 25

Globus pallidus 0.0851 ± 0.0095 38.8 ± 2.0 23.0 ± 1.7 1,237 ± 15

Putamen 0.0255 ± 0.0086 47.1 ± 2.9 18.5 ± 0.8 1,614 ± 40

Nucleus accumbens −0.0148 ± 0.0144 48.5 ± 2.7 22.3 ± 1.9 1,602 ± 31

Locus coeruleus 0.0163 ± 0.0056 80.3 ± 7.3 20.2 ± 2.1 1,725 ± 79

Bed nucleus of stria terminalis −0.0319 ± 0.0177 47.5 ± 4.8 21.0 ± 1.9 1,702 ± 54

Substantia nigra 0.0901 ± 0.0174 37.2 ± 2.8 23.3 ± 0.6 1,292 ± 16

Subtalamic nuclus 0.0747 ± 0.0188 35.2 ± 2.5 25.4 ± 1.3 1,141 ± 27

Ventral tegmental area 0.0228 ± 0.0120 43.0 ± 2.8 24.5 ± 0.8 1,308 ± 40

Cerebral peduncle −0.0374 ± 0.0116 40.0 ± 3.7 25.2 ± 1.0 1,153 ± 38

Dorsal raphe nucleus −0.0110 ± 0.0076 53.7 ± 3.6 22.0 ± 1.4 1,589 ± 63

Lateral geniculate body 0.0077 ± 0.0069 45.8 ± 3.7 19.2 ± 1.5 1,397 ± 48

Mammillary body 0.0341 ± 0.0097 64.6 ± 7.3 21.3 ± 2.0 1,477 ± 44

Medial geniculate body 0.0337 ± 0.0190 57.2 ± 5.5 21.3 ± 1.1 1,513 ± 44

Pedunculopontine nucleus 0.0021 ± 0.0097 46.4 ± 4.5 24.1 ± 1.2 1,370 ± 21

Pulvinar 0.0456 ± 0.0094 49.8 ± 4.7 20.6 ± 1.4 1,510 ± 44

Ventral pallidum 0.0943 ± 0.0151 40.9 ± 2.2 24.3 ± 3.0 1,270 ± 34

Habenula 0.0244 ± 0.0210 92.9 ± 6.8 24.0 ± 1.4 1,397 ± 53

Medial leminscus −0.0208 ± 0.0056 46.4 ± 3.4 22.6 ± 1.5 1,312 ± 30

Nucleus basalis Meynert −0.0180 ± 0.0184 46.7 ± 4.5 20.5 ± 3.3 1,487 ± 95

showed a mean susceptibility of −0.028 ± 0.007 ppm, a mean
sodium concentration of 42.4 ± 3.5 mmol/l, a mean MTR of
24± 1 p.u. and a mean T1 time of 1,231± 83 ms.

The results of the voxel-wise correlation analysis for each
pair of MR contrasts showed a moderate positive correlation
between T1 time and sodium concentration (rPearson = 0.58,
p < 0.001) and a moderate negative correlation of T1 time
with MTR (rPearson = −0.46, p < 0.001). Only minor negative
correlations were found between sodium concentration and
MTR (rPearson = −0.25, p < 0.001) and between T1 and QSM
(rPearson = −0.24, p < 0.001). MTR and QSM showed no
correlation at all (rPearson =−0.01, p < 0.001).

Figure 3 shows box plots of susceptibility values, sodium
concentrations, MTR, and T1 times of all subcortical structures
in ascending order. In the group of limbic nuclei, contrast
characteristics of the VP stand out with relatively highest values
for MTR and QSM and lowest values for sodium concentration
and T1-times. With regard to QSM the NAC, NBM and BNST
show similar values compared to the evaluated fiber tracts
and display the lowest susceptibility values of all investigated
subcortical nuclei. The subcortical structures of the ARAS are
mostly distributed in the middle of the range of subcortical
structures in each contrast and the extrapyramidal subcortical
structures show particularly high susceptibility values while
displaying notably low sodium concentration in most structures.
Compared to the rest of the extrapyramidal nuclei, NC and
Put are set apart by values at the opposite end of the range
of mean MTR and T1 values and in the middle to upper
range of subcortical structures regarding sodium concentration.
High sodium levels are especially noted for MB, LC and HB.
In relation to nuclei, the investigated fiber tracts showed low
susceptibility values, intermediate to low T1 times and sodium

concentrations and intermediate to high MTR values. These
tendencies are more pronounced for the CP than for the ML in
all studied contrasts.

Figure 4 demonstrates scatter plots of the different functional
groups enabling a quantitative and integrated multimodal
visualization of the four contrasts in each voxel within the
subcortical structures. In the (epi-)thalamic group of nuclei
(Figure 4A), the ellipsoids of the LGB, the PUL and the HB
have no overlap, while the MGB reveals overlap with each of
the other structures. The nuclei of the limbic system (Figure 4B)
overlap with the ellipsoid of the BNST with the NBM and
the NAC ellipsoids while the ellipsoids of the MB and the VP
remain unaffected. With regard to the nuclei affiliated with the
ARAS (Figure 4C), the ellipsoids of the DRN and the LC are
well distinguishable while a small overlap is visible between
ellipsoids of the PPN and the VTA. In the extrapyramidal
system (Figure 4D), the ellipsoids of the NC and Put show a
large overlap yet display higher sodium values and are distant
to the remaining extrapyramidal nuclei. Further overlap is
noted between the ellipsoids of the SN and PAL as well as
between the RN and the STN while RN and SN ellipsoids
show no overlap.

Automated Signal-Based
Characterization of Subcortical
Structures
Figure 5 shows bar graphs displaying the accuracy (of 100
runs of five-fold cross-validation) for the characterization
of subcortical structures, when only one, a combination of
different contrasts, or all contrasts are used for classification.
The highest accuracy was achieved when all four contrasts
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FIGURE 3 | Boxplots for each of the recorded contrasts displaying the voxel-wise signal in each subcortical structure in ascending order and colored according to
Figure 1. Additionally, mean values are indicated by a red cross for each structure and whiskers represent the 9th and 91st percentiles. (Epi-)thalamic nuclei
including medial and lateral geniculate bodies (MGB and LGB), the pulvinar (Pul), and the habenula (HB) are colored in shades of yellow. Limbic nuclei including the
ventral pallidum (VP), the nucleus basalis Meynert (NBM), the bed nucleus of the stria terminalis (BNST), the nucleus accumbens (NAC) and the mamillary body (MB)
are colored in shades of pink. Nuclei of the ARAS including the ventral tegmental area (VTA), the pedunculopontine nucleus (PPN), the locus coeruleus (LC), and the
dorsal raphe nucleus (DRN) are colored in shades of blue. Extrapyramidal nuclei including the substantia nigra (SN), the subthalamic nucleus (STN), the red nucleus
(RN), the globus pallidus (Pal), the putamen (Put), and the nucleus caudatus (NC) are colored in shades of red. Fiber tracts including the cerebral peduncle (CP) and
the medial lemniscus (ML) are colored in shades of green.

were available, otherwise an accuracy above 80% was only
reached in the combination of QSM, sodium imaging and
T1-times. The downstream performances increase as the
number of different contrasts increases, which is a strong
argument for the characterization of nuclei with multi-
contrast MRI.

Figure 6A displays the average sum of confusion matrices
of all five volunteers across 100 runs and for each investigated
subgroup demonstrating the main confounders for each
subcortical structure. Table 5 displays the importance of each
feature in each contrast for the respective prediction task.
The overall accuracy for correct classification of all subcortical
structures based on the signal of all four contrasts was 85%
(as a mean value of 100 runs) with the highest accuracy

of correctly predicted classification of 100% achieved for Put
and the lowest accuracies for the MGB, NAC, LGB, NC,
and DRN with 54, 55, 61, 78, and 78%, respectively. QSM
showed the highest overall importance among all contrasts
for the correct prediction of the subcortical structures with
“max_qsm” being the single highest factor of importance for the
prediction task.

The overall accuracy of prediction for the functional groups
was 81% (Figure 6B) with the highest accuracy of 96% achieved
for fiber tracts followed by an accuracy of 86% for extrapyramidal
and 83% for (epi-)thalamic nuclei. For the functional group
prediction, the T1 sequence had the highest overall importance
out of the four sequences. The highest single importance was
achieved by the feature “mean_grad_T1.”
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FIGURE 4 | Scatter plots for the group of (epi-)thalamic nuclei (A) with the LGB (black), the MGB (magenta), the PUL (cyan) and the HB (red), the limbic nuclei (B)
with the BNST (black), NAC (magenta), VP (blue), MB (green) and the NBM (red), the ARAS (C) with the DRN (black), PPN (magenta), VTA (cyan), and LC (red) and
the extrapyramidal nuclei (D) with the NC (black), RN (magenta), PAL (cyan), PUT (green), SN (blue), and STN (red) are shown. Tri-axial ellipsoids are centered at the
mean signal intensity of a subcortical nucleus in each imaging contrast and axial lengths of the ellipsoids correspond to the standard deviation in each contrast.
Markers and colors of ellipsoids represent each structure according to the legends of (A–D). Each marker is colored according to the voxel-wise sodium
concentration.

Overall accuracy of prediction within each of the functional
groups varied strongly (Figures 6C–G and Table 5). Within
the (epi-)thalamic group of nuclei the overall accuracy of
prediction was 68% and while LGB and Pul were correctly
predicted with 80 and 82%, respectively, the MGB was
often confounded with the LGB and correct prediction
was only achieved in 46%. In the group of limbic nuclei,
the overall accuracy correct prediction was 90% with an
excellent accuracy for the VP of 100% and an accuracy
of 85, 88, and 86% for the BNST, the NAC and the
NBM, respectively. The nuclei affiliated with the ARAS show
an overall accuracy of prediction of 100% with excellent
differentiation of DRN, PPN and VTA. In the extrapyramidal
system, all structures were classified with an accuracy of
95%. Accuracy of prediction was lowest for the substantia
nigra with 90%.

DISCUSSION

Subcortical structures have initially been defined by anatomy
and histology-based atlases (Lemaire et al., 2019) and were
further characterized in vivo by volumetric imaging approaches
(Summerfield et al., 2005; Dickson, 2012; Shams et al., 2017).
While recent advances in quantitative MRI increasingly enable
the detection of disease-associated MR signal alterations in
subcortical nuclei (Cassidy et al., 2019), the predominant
mono-parametric approaches yield varying disease specificities
(Saeed et al., 2017). To investigate a multimodal approach for
characterization of subcortical nuclei, this study explored a
combined analysis of quantitative MR values of four different
MR contrasts in subcortical structures of healthy volunteers. Only
considering multi-parametric voxel-intrinsic information from
each VOI, the combination of these MR contrasts allowed for
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FIGURE 5 | Bar graphs showing the accuracy of characterization of all nuclei
based on different combinations of contrasts.

good differentiability of nuclei in the ARAS as well as in the limbic
and extrapyramidal system. Even across all subcortical structures,
the MR value-based random forest analysis reached an overall
prediction accuracy of 85%, demonstrating that multi-parametric
quantitative MRI enables a distinction of subtle histoarchitectural
tissue differences within subcortical structures based on voxel-
intrinsic MR values. The differentiability of cortical cerebral
structures and white matter tracts based on multi-parametric
voxel-intrinsic information is a focus of current research and
has been shown feasible to a certain extent (German et al.,
2021). The presented study focuses on subcortical structures
and shows that multi-parametric quantitative MRI is able to
distinguish subtle histoarchitectural tissue differences within
subcortical nuclei in healthy volunteers for the first time.
This histoarchitectural differentiability of subcortical structures
may itself be the requisite for the MR-based discrimination
of subcortical diseases in the future as protein depositions in
characteristic combinations of subcortical cerebral nuclei in
neurodegenerative diseases (Dugger and Dickson, 2017) may
induce a loss of MR-contrast based differentiability between
subcortical structures. A future application of this approach
in clinical studies will strongly benefit from an automated
segmentation of subcortical structures as a manual delineation
is not readily feasible in larger cohorts or multi-center studies.
As recent advances regarding the automated segmentation of
subcortical structures due to quantitative and multi-contrast
MRI techniques (Bazin et al., 2020; Corona et al., 2020)
help to increase the number of visible subcortical nuclei
(Xiao et al., 2016; Keuken et al., 2018; Najdenovska et al.,
2019) and quantitative multi-contrast MRI enables excellent
automated distinguishability between subcortical nuclei and the
surrounding tissue (Supplementary Figures 2, 3), synergies with
segmentation approaches are very likely.

Regarding the characterization of specific subcortical nuclei,
the integrated multimodal visualization of quantitative MR

FIGURE 6 | Normalized sum of confusion matrices of five patients (mean
values of 100 runs) for the classification of all subcortical structures (A), the
classification into functional groups (B) and the discrimination of nuclei of the
epi-thalamic group (C), the limbic group (D), the ARAS (E), the extrapyramidal
nuclei (F), and the fiber tracts (G). The diagonal elements represent the
probability of the predicted class being equal to the true class in values
between zero and one. Off-diagonal elements are those mislabeled by the
classifier.

values in each structure agreed with the machine learning-based
analysis, as both yielded a less successful classification only
within the group of (epi-) thalamic nuclei. However, while the
differentiation between the BNST, NBM, and NAC in the group
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TABLE 5 | Feature importance for each contrast and parameter.

General analysis of subcortical structures Mean AoP Functional group analysis Mean AoP

QSM Na MTR T1 QSM Na MTR T1

mean 0.044 0.044 0.020 0.038 85% 0.068 0.037 0.025 0.064 81%

var 0.026 0.026 0.045 0.034 0.016 0.033 0.024 0.052

min 0.025 0.024 0.033 0.022 0.029 0.026 0.031 0.021

max 0.065 0.042 0.016 0.025 0.037 0.028 0.015 0.013

mean_grad 0.031 0.039 0.026 0.039 0.024 0.063 0.023 0.070

var_grad 0.033 0.025 0.042 0.027 0.038 0.025 0.042 0.034

min_grad 0.021 0.021 0.021 0.022 0.016 0.029 0.018 0.022

max_grad 0.025 0.027 0.033 0.021 0.013 0.017 0.016 0.013

Total 0.273 0.252 0.240 0.232 0.244 0.262 0.198 0.294

(Epi-)Thalamic nuclei Limbic nuclei

mean 0.055 0.057 0.020 0.019 68% 0.035 0.036 0.034 0.020 90%

var 0.038 0.025 0.043 0.025 0.015 0.018 0.084 0.019

min 0.028 0.020 0.070 0.016 0.008 0.010 0.022 0.007

max 0.049 0.021 0.014 0.034 0.082 0.042 0.010 0.058

mean_grad 0.038 0.041 0.012 0.012 0.035 0.032 0.034 0.032

var_grad 0.028 0.035 0.056 0.018 0.036 0.025 0.041 0.025

min_grad 0.012 0.010 0.025 0.028 0.015 0.009 0.020 0.012

max_grad 0.042 0.037 0.040 0.016 0.036 0.056 0.043 0.034

Total 0.294 0.249 0.284 0.171 0.264 0.233 0.291 0.211

ARAS Extrapyramidal nuclei

mean 0.032 0.004 0.004 0.043 100% 0.029 0.018 0.011 0.024 95%

var 0.026 0.046 0.017 0.023 0.040 0.033 0.025 0.034

min 0.026 0.031 0.010 0.023 0.024 0.027 0.042 0.032

max_ 0.049 0.062 0.050 0.021 0.064 0.042 0.020 0.028

mean_grad 0.039 0.061 0.036 0.038 0.025 0.027 0.026 0.039

var_grad 0.028 0.014 0.030 0.020 0.026 0.036 0.042 0.032

min_grad 0.023 0.036 0.037 0.020 0.029 0.016 0.019 0.028

max_grad 0.032 0.050 0.029 0.024 0.045 0.026 0.045 0.029

Total 0.257 0.309 0.217 0.215 0.287 0.229 0.233 0.250

The mean test accuracy of prediction (mean AoP) is given in percent. The bold values indicate the most important feature.

of limbic nuclei seems difficult based on integrated multimodal
visualization (Figure 5B), the machine learning-based analysis
still reached an accuracy of correct prediction between 84 and
89%. Similarly, the machine learning-based discrimination of
extrapyramidal nuclei was excellent in spite of considerable
overlap between NC and Pal, SN and Pal as well as RN
and STN in Figure 5D, illustrating a methodical advantage.
One reason for this advantage may be the larger number of
features in the machine learning-based approach. While visual
or quantitative, integrated multimodal visualization analysis of
minima, maxima, mean and possibly variance may be feasible,
unaided comparison of gradients representing heterogeneity
within the different structures remains challenging, although
varying distribution of iron in structures such as the STN
has been described to cause a characteristic heterogeneity in
susceptibility imaging (Dormont et al., 2004). However, for
automated pattern recognition, gradient analysis is well feasible
and widely accepted in image analysis (Canny, 1986). The

prominence of the “mean_grad_T1” feature as the single highest
factor of importance for the prediction of functional group
affiliation in this study furthermore underlines the importance
of gradient features. The random forest-based machine learning
approach was applied to quantify multiparametric classification
of subcortical nuclei as it is not prone to overfitting and most
importantly allows for the assessment of feature contribution
to the classification performance enabling an understanding
of the specific influence of features and contrasts on the
prediction task (Kleinberg, 1990). Other common machine
learning models were considered, showing that linear models
such as linear discriminant analysis (LDA) and logistic regression
are not powerful enough to reach good performance and neural
networks or support vector machines (SVM) depend strongly on
hyperparameter fine tuning and tend to overfitting, thus leading
to a less accurate performance (Supplementary Figure 1).

Focusing on the importance of each contrast for the
classification analysis, susceptibility values were demonstrated
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to be the single most important factor for the classification
of the subcortical structures in general; however, the other
contrasts seem only minimally less important (Table 5). The
importance of multiple contrasts for structure differentiation
is underlined by the finding that the MGB, NAC, LGB, NC,
and DRN share comparatively high sodium concentrations, low
MTR and long T1 times and were the most often incorrectly
classified structures mainly due to confusion between one
another although susceptibility values differed broadly among
them (Figure 3).

The four specific MR contrasts applied in this study were
chosen to provide a maximally complementary combination
of quantitative MR values and strong tissue contrast for
delineation of subcortical nuclei. While QSM provides both
optimal demarcation of subcortical structures and quantitative
assessment of susceptibility (Deistung et al., 2013b), sodium
imaging enables an estimation of total sodium concentrations
without being markedly influenced by changes in susceptibility
(Nagel et al., 2009; Schneider et al., 2018), and MTR correlates
with tissue concentrations of macromolecules (Henkelman et al.,
2001; Horsfield et al., 2003; Peper et al., 2013). PD-weighted
imaging and T1 maps additionally enhance visualization of
subcortical structures with lower iron content (Straub et al.,
2019), and the overlay of MT-saturated PD and QSM enables
increased delineation of the BNST, PPN, DRN, and ML compared
to QSM alone (Figure 2).

The chosen MR contrasts furthermore complement one
another well, as the performed voxel-wise signal analysis
displayed moderate correlations only between T1 and sodium
signal, and between T1 and MTR. These correlations can be
explained by the known correlations of T1 time and sodium
imaging to extracellular volume (ECV) (Jakobsen et al., 1995;
Madelin and Regatte, 2013; Madelin et al., 2014). An ECV-
associated increase in the mobile proton pool is associated with
a decrease in MTR values and can explain the inverse correlation
of MTR and T1 times (Laule et al., 2003). However, only a
weak correlation is displayed between sodium imaging and MTR,
possibly due to the latter’s additional dependence on the exchange
rate between proton pools. Finally, especially iron rich structures
such as the SN, STN, RN, Pal, and VP show shortened T1 times,
and the demonstrated weakly negative correlation of T1 times and
QSM is in support of a previously described, faster longitudinal
relaxation in the presence of iron (Trujillo et al., 2017). The
weakness of this correlation may be due to the influence of
substances like neuromelanin in the VTA and SN that are known
to further shorten T1 times (Trujillo et al., 2017). The similar
T1 values in VTA and SN may underline a similar quantity and
configuration of neuromelanins in the two nuclei while high
additional iron deposit in the form of ferritin mainly in the SN
(Hare et al., 2014) may result in a good discrimination of these
two structures on QSM.

So far, quantitative values for the MR contrasts applied
here have only been reported for a limited number of
subcortical structures, and a comparison of measured values
is therefore limited. Absolute mean values for susceptibilities
as well as T1 times measured in the Pal, Put, CN, SN,
and RN are comparable to previously reported susceptibilities

and T1 relaxation times at 7T (Deistung et al., 2013b; Lim
et al., 2013; Straub et al., 2019). However, regarding MTR,
only the relation between MTR values within the different
subcortical structures is in agreement with other studies
due to differing sequence parameters (Filippi et al., 2001;
Helms et al., 2008). Absolute mean sodium concentrations
have been reported by Ridley et al. for the Pal, thalamic
structures, Put and CN at 28 ± 9.7% below the concentrations
measured in this study (Ridley et al., 2018). However, in
contrast to the sodium concentrations reported here, sodium
concentrations were referenced with an external agar-filled
cylinder and recorded at a lower nominal isotropic resolution of
3.5 mm. Interestingly, comparison of sodium measurements with
histology-based cellular densities in the basal ganglia published
by Salvesen et al. (2015) revealed a strong positive correlation
of sodium measurements in the STN, PU, CN, Pal, and RN
with total cell densities or neuron densities for the first time
(rPearson = 0.9, p < 0.05). At the same time a weakly negative
and not statistically significant correlation was found between
sodium measurements in these structures and oligodendrocyte
densities (rPearson = −0.2, p = 0.74). Reduced sodium levels
have thus far been thought to be an indicator of high
cellular density and reduced ECV as previous neurooncological
studies on glial tumors have shown sodium concentrations
to correlate with apparent diffusion coefficient (ADC) values
(Schepkin et al., 2005; Madelin et al., 2014). Likewise, sodium
concentrations increased in cerebral gray matter of patients with
neurodegenerative disease (Mellon et al., 2009; Kim et al., 2017).
However, possibly due to a histoarchitectural, cell type associated
relative increase in ECV with increasing neuron density, the
findings in this study suggest that this perspective cannot be
transferred to physiological comparisons of cell densities among
subcortical nuclei.

This study has several limitations: The relatively low number
of studied subjects and the focus on a young age group limits
a generalization of measured quantitative values and limits
the training of machine learning algorithms. A limitation
for the analysis of the integrated multimodal visualization of
quantitative MR values as well as the machine learning-based
analysis are partial volume effects that bias measurements
especially in small subcortical structures. This effect is
particularly pronounced for low image resolutions as used
for sodium imaging; consequently, MB, LC, and HB that lie
immediately adjacent to CSF have been excluded from the
machine learning-based analysis to limit partial volume bias.

Moreover, no dedicated B0 and B1 correction or correction
for gradient delays was performed. Susceptibility mapping
has been shown not to depend on B1inhomogeneties even
in multi-center ultra-high field studies QSM (Rua et al.,
2020; Voelker et al., 2021), but the correction of dynamic
B0 fluctuations improves image quality in susceptibility-based
methods and could thus enable a better characterization for
multi-contrast approaches including QSM segmentation (Jorge
et al., 2020). However, MTR measurements are more sensitive
to B1 inhomogeneites and especially for multi-site studies,
B1 correction would be advisable (Barker et al., 2005). For
sodium imaging there are first studies in which a correction
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of the gradient trajectory was used (Lu et al., 2010), however
twisted projection pulse sequences were used instead of a radial
trajectory. In the future, corrections for gradient delays and
B0/B1-inhomogeneties might be implemented to improve the
quantitative accuracy of sodium MRI (Lommen et al., 2016;
Gerhalter et al., 2020), especially to improve the comparability of
data in multi-center studies.

An even larger number of MR contrasts could further enhance
quantitative MR value-based differentiability of subcortical
structures. As multi-echo gradient echo data were acquired
in this study, it would have been also possible to calculate
T∗2 or R∗2 maps, however, good correlations of QSM and R∗2
relaxation rates have been observed especially in iron rich
subcortical nuclei (Wang et al., 2017) and the additional use
of R∗2 relaxation rates would have undermined the aim to use
relatively independent MR contrasts. Finally, although many
UHF studies that include QSM only use three echos (Deistung
et al., 2013b; Straub et al., 2019), as done here, or even
only a single echo (Mattern et al., 2019), it is recommended
to use a high number of echoes for better signal- and
contrast-to-noise ratios depending on the intended application
(Haacke et al., 2015).

CONCLUSION

The combination of quantitative MR values from quantitative
multiparametric MRI, namely QSM, sodium imaging, MTR
and T1 mapping, enabled excellent characterization and
differentiation of subcortical nuclei of the ARAS as well
as the limbic and extrapyramidal system based on subtle
contrast differences between tissues in these subcortical
nuclei. Multiparametric quantitative MRI may thus be
sensitive enough to enable the detection and specification
of pathologic histoarchitectural tissue changes in subcortical
nuclei in the future.
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