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Structural (also known as anatomical) and diffusion MRI provide complimentary

anatomical and microstructural characterization of early brain maturation. However, the

existing models of the developing brain in time include only either structural or diffusion

MRI channels. Furthermore, there is a lack of tools for combined analysis of structural and

diffusion MRI in the same reference space. In this work, we propose a methodology to

generate amulti-channel (MC) continuous spatio-temporal parametrized atlas of the brain

development that combines multiple MRI-derived parameters in the same anatomical

space during 37–44 weeks of postmenstrual age range. We co-align structural and

diffusion MRI of 170 normal term subjects from the developing Human Connectomme

Project using MC registration driven by both T2-weighted and orientation distribution

functions channels and fit the Gompertz model to the signals and spatial transformations

in time. The resulting atlas consists of 14 spatio-temporal microstructural indices and

two parcellation maps delineating white matter tracts and neonatal transient structures.

In order to demonstrate applicability of the atlas for quantitative region-specific studies, a

comparison analysis of 140 term and 40 preterm subjects scanned at the term-equivalent

age is performed using different MRI-derived microstructural indices in the atlas reference

space for multiple white matter regions, including the transient compartments. The atlas

and software will be available after publication of the article1.

Keywords: multi-modal MRI, neonatal brain, spatio-temporal atlas, atlas-based analysis, multi-channel

registration, white matter maturation, white matter parcellation

1. INTRODUCTION

In addition to being a routine diagnostic tool in neonatal brain imaging (Rutherford et al., 2010),
MRI has been widely used for quantification and interpretation of neonatal brain development
in term- and preterm-born infants. Premature birth before 37 weeks postmenstrual age (PMA)
is associated with an increased risk of atypical brain maturation leading to neurocognitive
and neurobehavioural disorders. Multiple studies demonstrated correlation of MRI metrics with
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prematurity, clinical and environmental factors and
neurodevelopmental outcomes (Ball et al., 2017; Barnett
et al., 2018; Dimitrova et al., 2020). In this context, models
of normal brain development such as spatio-temporal atlases
(Schuh et al., 2018) can also potentially facilitate detection
of altered maturation patterns. The advanced acquisition
and reconstruction protocols (Cordero-Grande et al., 2018)
produce high-resolution structural T1-weighted (T1w) and
T2-weighted (T2w) MRI volumes that allow segmentation of
fine brain anatomical structures (Makropoulos et al., 2014).
But these MRI modalities have low contrast for white matter
(WM) structures that also vary during the neonatal stage due
to ongoing myelination. On the other hand, lower resolution
diffusion MRI reflects the properties of tissue microstructural
complexity in terms of diffusivity, anisotropy, neuronal density
and fiber orientation (Pannek et al., 2012; Bastiani et al., 2019;
Batalle et al., 2019; Feng et al., 2019; Pietsch et al., 2019; Zollei
et al., 2019). Combined diffusion and structural MRI analysis has
already shown a potential to increase interpretability of brain
maturation patterns (Ball et al., 2017).

1.1. Structural MRI Metrics
The structural MRI-derived metrics most commonly used in
neonatal brain studies include tissue- and structure-specific
volumetry (Kuklisova-Murgasova et al., 2011; Makropoulos et al.,
2016; Thompson et al., 2019) and surface measurements such
as cortical thickness and curvature (Bozek et al., 2018; Fenchel
et al., 2020) that can be extracted from automated segmentations
(Makropoulos et al., 2014). Recently, automated segmentation
of T2w images has also been applied for quantification of the
volume of myelinated regions (Wang et al., 2019). Intensity
changes in T1w and T2w images characterize white matter injury
(O’Muircheartaigh et al., 2020) and diffuse excessive high signal
intensity (DESHI) regions (Morel et al., 2021). Quantitative and
semi-quantitative metrics applied to developing neonatal brains
include the T1w/T2w signal ratio associated with myelin content
(Bozek et al., 2018) and T2 relaxometry (Pannek et al., 2013;
Kulikova et al., 2015; Wu et al., 2017; Knight et al., 2018).

1.2. Diffusion MRI Metrics
Brain microstructure can be probed using a variety of
quantitative metrics derived from diffusion MRI. Even though
diffusion tensor imaging (DTI) is limited by inconsistencies
in fiber-crossing regions (Jeurissen et al., 2013), DTI-derived
metrics, including the fractional anisotropy (FA) and the mean,
radial and axial diffusitivity (MD, RD and AD) are still most
widely used in neonatal brain studies (Barnett et al., 2018;
Feng et al., 2019; Thompson et al., 2019; Dimitrova et al.,
2020). Recently, higher order metrics, that alleviate some of the
limitations of DTI in the fiber crossing regions, have also been
applied to investigate neonatal brain development, including
the mean kurtosis (MK) index derived from diffusion kurtosis
imaging (DKI) (Bastiani et al., 2019) and intracellular volume
fraction (ICVF), fiber orientation dispersion index (ODI) and
volume fraction of the isotropic compartment (FISO) derived
from Neurite Orientation Dispersion and Density Imaging
(NODDI) model (Zhang et al., 2012). The NODDI-derived

indices have been used to characterize development of both
white and gray matter microstructural features (Kunz et al., 2014;
Batalle et al., 2019; Fenchel et al., 2020; Kimpton et al., 2020).
The microscopic fractional anisotropy (µFA) index (Kaden et al.,
2016) designed to disentangle microscopic diffusion anisotropy
from the orientation dispersion has not yet been applied to
neonatal brains. Constrained spherical deconvolution (CSD)
(Tournier et al., 2007; Jeurissen et al., 2014) allows extraction of
orientation-resolved microstructural information as orientation
distribution functions (ODF) from multi-shell high angular
resolution diffusion imaging (HARDI) data. Based on fiber ODF,
fixel-based analysis (Raffelt et al., 2017) provides the means for
assessment of specific fiber populations in terms of fiber density
(FD) and fiber-bundle cross-section (FC) (Pannek et al., 2018;
Pecheva et al., 2019).

1.3. Atlases and Models of Neonatal Brain
Development
Spatio-temporal normalization and construction of age-specific
group-average templates have been routinely employed in
processing pipelines in the recent large neonatal brain MRI
studies to detect inter-group differences and anomalies in
individual brains (Oishi et al., 2019). Themajority of the reported
spatio-temporal population-averaged atlases of the neonatal
brain include either structural (T2w and T1w) (Kuklisova-
Murgasova et al., 2011; Serag et al., 2012; Schuh et al., 2014,
2018; Wright et al., 2014; Makropoulos et al., 2016; Schwartz
et al., 2016; Wang et al., 2019; O’Muircheartaigh et al., 2020)
or diffusion (Feng et al., 2019; Pietsch et al., 2019; Dimitrova
et al., 2020) channels. In this context, the term channel means
an image of a single MRI contrast that is a part of a group of
images belonging to the same subject. To our knowledge, the only
existing multi-channel population-averaged 3D T1w+T2w+DTI
atlas (Oishi et al., 2011) was constructed from a set of normal
term subjects from 38 to 41 weeks PMA. However, the averaged
template was reported to have significantly lower sharpness
than the original T2w and DTI images. Apart from Feng et al.
(2019) and Pietsch et al. (2019) who used FA+MD or multi-
component ODF channels for registration, these atlases were
constructed based on registration driven by a single channel
and the output transformations were propagated to the rest.
The reported multi-channel (MC) registration methods for brain
studies are based on either combination of FA+structural (Park
et al., 2003; Forsberg et al., 2011; Geng et al., 2012; Roura
et al., 2015) or DTI+structural channels (Avants et al., 2007;
Gupta et al., 2015; Irfanoglu et al., 2016). However, DTI-extracted
metrics are characterized by inconsistencies in fiber-crossing
regions (Tournier et al., 2012). In general, one of the challenges
of multi-channel registration is considered to be the alignment
between the structural and diffusion MRI volumes. Following
spatial normalization, the templates are generally created using
either weighted or direct averaging of the signal in the reference
space. As an alternative, (Zhang et al., 2016) proposed to
perform averaging in the frequency domain and reported higher
sharpness of the atlas features.
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Due to rapid changes of structure, volume and
cytoarchitecture during the fetal and neonatal period, the
majority of the atlases have also been resolved in time in the
form of weekly templates. Smooth transitions between the
atlas time points have been provided through kernel regression
(Kuklisova-Murgasova et al., 2011; Serag et al., 2012; Schuh et al.,
2014, 2018), logistic regression (Wang et al., 2019) or Gaussian
process regression (Marquand et al., 2016; Dimitrova et al., 2020;
O’Muircheartaigh et al., 2020). Recently, a Gompertz function
(GF) was successfully used to parametrize fetal and neonatal
brain volumetry and surface measurements (Wright et al.,
2014; Makropoulos et al., 2016; Schwartz et al., 2016), showing
better approximation than the linear model (Makropoulos
et al., 2016), even though the changes in averaged structural
(O’Muircheartaigh et al., 2020) and DTI (Bastiani et al., 2019;
Feng et al., 2019; Dimitrova et al., 2020) metrics in white and
gray matter can be approximated by linear trends. However, so
far, there has been no reported works combining structural and
diffusion MRI into a spatio-temporal atlas of the normal term
born neonatal brain development.

1.4. Region Specific Analysis
The majority of neonatal brain studies have employed region-
specific quantitative analyses based on correlation between the
MRI-derived metrics measured within specific regions and
parameters such as gestational age (GA) at birth, clinical
factors or neurodevelopmental outcomes. In structural-only
MRI datasets, segmentation is normally performed by atlas-
based methods (Makropoulos et al., 2014). In the WM atlas-
based analysis, the parcellation maps for the single-subject
or population-average WM DTI atlases (Oishi et al., 2011;
Feng et al., 2019; Alexander et al., 2020) were created by 2D
manual delineation based on DTI directionally-encoded color
maps for single subject or population-averaged templates. Label
propagation based on DTI channel-guided registration has been
widely used in neonatal brain studies (Kersbergen et al., 2014;
Rose et al., 2014; Wu et al., 2017; Claessens et al., 2019; Feng
et al., 2019). The tract-based spatial statistics (TBSS) (Smith
et al., 2006) approach uses skeletonized FA maps for definition
of the regions (Krishnan et al., 2016; Barnett et al., 2018; Young
et al., 2018; Thompson et al., 2019). As an alternative, tract-
specific analysis employs tractography to identify and segment
the major WM pathways (Kulikova et al., 2015; Akazawa et al.,
2016; Pecheva et al., 2017; Bastiani et al., 2019; Zollei et al., 2019;
Dubner et al., 2020; Kimpton et al., 2020). In this case, the seed
regions for tractography are defined in the template space and
the segmentation of WM tracts is achieved by thresholding of
the resulting probabilistic tractography maps. In Akazawa et al.
(2016), this approach was also used to create population-specific
average probabilistic maps of the major WM tracts.

1.5. Contributions
In this work, we propose to merge multiple metrics extracted
from both diffusion and structural MRI in a single multi-channel
spatio-temporal atlas of normal neonatal brain development
parametrized using Gompertz function.

The generated 4D multi-channel atlas covers 37 to 44
weeks PMA range and includes structural (T1w, T2w and
T1w/T2w myelin contrast) and diffusion channels with ODF,
DTI, DKI, µFA and NODDI derived metrics. Furthermore,
the atlas includes two parcellation maps: (i) the major WM
tract regions (Alexander et al., 2020) refined using probabilistic
tractography in the template space and (ii) a map of the transient
WM regions associated with high maturation rates during the
neonatal period. To ensure accuracy of spatial alignment, we
propose MC registration method (Uus et al., 2020) guided
by spatially-weighted structural MRI, diffusion (ODF) MRI
and cortical segmentation (Makropoulos et al., 2018) channels.
Parametrization in time is performed by the Gompertz function
widely used for fitting of growth data. We implemented the atlas
construction and fitting functionalities based on the MRtrix3
software package (Tournier et al., 2019). To demonstrate the
application of the proposed atlas we perform a multi-modality
study to compare term and preterm brain development and
identify regions where WM maturation has been altered by
preterm birth.

2. MATERIALS AND METHODS

2.1. Cohort, Datasets and Preprocessing
The atlas was constructed using 170 multi-modal MRI datasets of
term-born neonates (born and scanned between 37 and 44 weeks
PMA) that included T1w, T2w and HARDI scans. An additional
40 datasets of preterm neonates (born between 23 and 32 weeks
GA: 28.94∓2.54 and scanned between 37 and 44 weeks PMA)
were used for comparison analysis. Inclusion criteria were high
image quality for scans of all modalities, singleton pregnancies
and no major brain abnormalities. All scans were acquired
under the developing Human Connectome Project (dHCP)2.
The datasets were qualitatively assessed and graded by a team
of dCHP researchers in terms of the reconstruction and motion
correction quality, SNR levels, presence of artifacts and the global
coverage of the brain ROI. Only the datasets with the best image
quality were selected for this particular study. The distribution of
the GA at birth and PMA at scan is given in Figure 1.

The datasets were acquired without sedation on a 3T
Philips Achieva scanner equipped with a dedicated 32-channel
neonatal head coil and baby transportation system (Hughes
et al., 2017). The multi-shell HARDI volumes were acquired
with four phase-encode directions on four shells with b-values
of 0(20), 400(64), 1000(88) and 2, 600(128) s/mm2, TE
90 ms, TR 3800 ms (Hutter et al., 2018; Tournier et al.,
2020) with 1.5 × 1.5 × 3 mm resolution and 1.5 mm slice
overlap and reconstructed to 1.5 mm isotropic resolution using
the spherical harmonics and radial decomposition (SHARD)
pipeline (Christiaens et al., 2018, 2021) that includes slice-
wise motion correction, distortion correction and exclusion of
corrupted slices. Prior to reconstruction, the diffusion datasets
were preprocessed using the dedicated dHCP pipeline including:
Marchenko-Pastur-PCA-based denoising (Veraart et al., 2016)

2dHCP project: http://www.developingconnectome.org.
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FIGURE 1 | Selected cohort of neonatal subjects from dHCP project: GA at birth and PMA at scan of 170 term subjects (A) and 40 preterm subjects (B).

(MRtrix33), Gibbs ringing removal (Kellner et al., 2016),
susceptibility and eddy-current distortion correction and inter-
volume motion correction with outlier replacement using topup
(Andersson et al., 2003) (FSL4) and eddy (Andersson and
Sotiropoulos, 2016) (FSL), bias field correction based on the b =

0 shell using N4 (Tustison et al., 2010) (ANTs5).
The structural T2w volumes were acquired using a TSE

sequence with TR 12 s, TE 156 ms. The T1w volumes
were acquired using an IR TSE sequence with TR 4.8 s,
TE 8.7 ms. The isotropic T2w and T1w volumes with
0.5 mm resolution were reconstructed using a combination of
motion correction (Cordero-Grande et al., 2018) and super-
resolution reconstruction (Kuklisova-Murgasova et al., 2012).
Intensities of individual T1w and T2w volumes were bias-
corrected and normalized to the same intensity ranges as a
part of the standard dHCP preprocessing pipeline based on
DRAW-Em6 (Makropoulos et al., 2014, 2018). In addition, the
T2w images were normalized with respect to mean CSF signal
intensity. The brain tissue and structure segmentations were
generated by DRAW-Em pipeline (Makropoulos et al., 2014).
For each dataset, the structural and diffusion volumes were
coaligned based on affine registration of T2w and MD volumes
using normalized cross-correlation (NCC) similarity metric
implemented in MRTrix3. The diffusion-weighted imaging
(DWI) volumes were globally normalized prior to the nonlinear
multi-channel registration step (Tournier et al., 2019).

2.2. Extraction of MRI Metrics
The structural metrics include normalized T1w and T2w
intensities and the T1w/T2w ratio reported to be associated
with the myelin content (Glasser and Van Essen, 2011).
Furthermore, we extracted Jacobians (J) of deformation fields
from the MC registration output (section 2.4) to measure local
volumetric changes.

3MRtrix3 toolbox: https://www.mrtrix.org.
4FSL toolbox: https://fsl.fmrib.ox.ac.uk.
5ANTs toolbox: http://stnava.github.io/ANTs.
6DRAW-Em toolbox: https://github.com/MIRTK/DrawEM.

The DTI metrics included MD, RD and FA extracted using
MRtrix3 toolbox (Tournier et al., 2019). The DKI fitting and
calculation of MK was performed similarly to Bastiani et al.
(2019). The NODDI (Zhang et al., 2012) toolbox was used for
fitting FISO, ICVF and ODI metrics. The estimation of micro FA
maps was performed using SMT toolbox (Kaden et al., 2016).
Only the two top HARDI shells were used for µFA and DKI
fitting in order tominimize the impact of artifacts. In addition, we
computed the mean DWI signal mDWI for the top 2, 600 s/mm2

shell since it provides high contrast for WM structures. We
extracted WM ODF from HARDI using MRtrix3 multi-shell
multi-tissue constrained spherical deconvolution (Jeurissen et al.,
2014). The track density imaging (TDI) maps were generated
in the original space of dMRI volumes from the outputs of the
standard MRtrix3 probabilistic tractography based on the 2nd
order integration over fiber orientation distributions (iFOD2)
(Tournier et al., 2010, 2019) with whole brain as the seed region
and 700,000 streamlines for all datasets. This particular number
of streamlines was selected arbitrarily.

2.3. Multi-Channel Registration of Blue
Combined Structural and HARDI MRI
Datasets
We propose a multi-channel non-linear registration technique
to improve accuracy of spatial normalization of both structural
and diffusion MRI images. The method is build on a multi-
contrast ODF registration framework (Raffelt et al., 2011; Pietsch
et al., 2017) implemented in MRtrix3 (Tournier et al., 2019)
which employs SyN Demons (Avants et al., 2007) with an
SSD metric and reorientation of ODF using apodized point
spread functions (Raffelt et al., 2012). In order to decrease
the sensitivity to acquisition or physiology related changes
in signal intensities, we propose to replace the the standard
SSD metric with a new robust local angular correlation (LAC)
registration metric for ODF channels, which is an extension
of angular correlation (Anderson, 2005) originally proposed
for for quantitative assessment of ODF datasets. We further
add structural and tissue parcellation channels with local NCC
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(LNCC) similarity measure. The channels are combined through
weighted fusion of the displacement field updates (Forsberg et al.,
2011). Implementation of the LAC and LNCCmetrics is based on
the registration pipeline in MRtrix3 (Tournier et al., 2019) that
includes reorientation of ODF (Raffelt et al., 2012).

In ODF diffusion model, diffusion signal is represented
as a linear combination of real valued spherical harmonic
(SH) orthonormal basis functions Ylm(θ ,φ). For the task of
image registration, two dMRI volumes can be expressed in
terms of spatially varying spherical functions AODF(θ ,φ, x) and
BODF(θ ,φ, x), where θ ,φ are coordinates on the sphere and x is a
spatial location:

AODF(θ ,φ, x) =
∝∑

l=0

l∑

m=−l

alm(x)Ylm(θ ,φ)

BODF(θ ,φ, x) =
∝∑

l=0

l∑

m=−l

blm(x)Ylm(θ ,φ) (1)

We define local angular correlation ra between AODF and
BODF as:

ra(x) =
〈A,B〉x

〈A〉
1
2
x 〈B〉

1
2
x

=

∑
x′∈N(x)

∑L
l=2

∑l
m=−l alm(x

′)blm(x
′)

(
∑

x′∈N(x)

∑L
l=2

∑l
m=−l a

2
lm
(x′))

1
2 (

∑
x′∈N(x)

∑L
l=2

∑l
m=−l b

2
lm
(x′))

1
2

, (2)

where A and B are 4D images of SH coefficients of order L
with even l = {2, 4, ..., L} harmonic degree terms, e.g., A(x) =

{alm(x)}l=2,...,L,m=−l,...,l and B(x) = {blm(x)}l=2,...,L,m=−l,...,l, N(x)
is the local neighborhood centered at x, and <>x denotes the
inner product calculated over N(x). A(x) and B(x) are also
normalized with respect to local means (Avants et al., 2008). In
this case, the l = 0 term does not contribute to ra values.

Since this is a correlation metric, the corresponding
symmetric updates to the displacement fields 3A and 3B can be
computed in a similar manner to LNCC demons (Avants et al.,
2008):

3A(x) =
2〈A,B〉x
〈A〉x〈B〉x

(
B(x)−

〈A,B〉x
〈A〉x

A(x)

)
∇A(x) (3)

3B(x) =
2〈A,B〉x
〈A〉x〈B〉x

(
A(x)−

〈A,B〉x
〈B〉x

B(x)

)
∇B(x)

Note that LAC operates in 4D (3D space plus SH dimension)
while LNCC is calculated in 3D spatial neighborhood for each
individual ODF channel separately (Raffelt et al., 2011).

In the proposed multi-channel registration pipeline, the fixed
and moving inputs consist of a set of structural (e.g., T2w) and
ODF channels i = 1, ..., I. At every iteration, the fixed Ai and
moving Bi images are registered individually resulting in 3A

i
and 3B

i updates to the displacement fields. The contributions
from each of the channels to the global symmetric displacement
field updates 3A

MC and 3B
MC are locally weighted by 3D gradient

certainty maps based on the approach proposed in Forsberg et al.
(2011).

First, at every iteration, the certainty gradient maps αA
i and

αB
i are computed from the current version of warped channels

Ai and Bi (including both structural and ODF volumes) and
normalized as:

αA
i =‖ ∇AT

i ∇Ai ‖, α̂i
A =

αA
i

max(αA
i )

(4)

Then, the global symmetric MC updates to the displacement
fields 3A

MC and 3B
MC are computed by weighted averaging of the

channel-specific update fields

3A
MC =

∑
i α̂i

A3A
i∑

i α̂i
A

, 3B
MC =

∑
i α̂i

B3B
i∑

i α̂i
B

(5)

This downweights the contributions of the regions in individual
channels characterized by low contrast, ensuring that the output
deformation fields are locally defined by the channels with the
highest structural content. In comparison, themulti-channel SyN

approach (Avants et al., 2007) or the existing alternative DTI-
based MC registration methods (Geng et al., 2012; Gupta et al.,
2015) employ simple averaging of the individual channel updates.
Figure 2 shows an example of certainty maps of T2w, ODF and
cortex mask channels computed for one of the dHCP subjects
along with the average MC weights used for normalization.

2.4. Generation of 4D Multi-Channel Atlas
The 4D parametrized MC atlas of neonatal brain development
was generated from 170 term neonatal datasets in three
sequential steps: (A) initial registration of structural channels to
a single structural template and creation of an average multi-
channel template, (B) refined registration of structural and
diffusion channels to the multi-channel template and creation
of age-dependent average multi-channel templates, (C) fitting of
the signal and deformation fields in time using the Gompertz
function to generate the parametrized 4D multi-channel atlas.
The proposed pipeline is summarized in Figure 3.

2.4.1. Generation of a 3D Multi-Channel Template
We chose the T2w 36 week template from the dHCP neonatal
brain atlas7 (Schuh et al., 2018) as the global 3D reference space
(Y(reforg)) due to the lower degree of gyrification that facilitates
more accurate registration of the cortex. All datasets {Xi},i=1,...,N

were registered to this template using affine alignment with global
NCC followed by non-linear registration guided by two structural

7dHCP weekly neonatal brain atlas: https://gin.g-node.org/BioMedIA/dhcp-
volumetric-atlas-groupwise.
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FIGURE 2 | An example of gradient-based certainty maps of T2w, ODF and cortex mask channels computed for one of the dHCP subjects along with the average

MC gradient map used for normalization.

channels (T2w + cortex mask), similarly to O’Muircheartaigh
et al. (2020):

W
(1)
i = D

LNCC(Y
(reforg)
c ,Xi,c), c={T2; Mcortex};i=1,...,N , (6)

where D is the MC Demons registration operator, W(1)
i are

the output deformation warps for each of the N datasets Xi,c

with c = {T2; Mcortex} channels and Y
(ref )
c is the reference

volume. The MC registration included spatially weighted fusion
of the channels (section 2.3, Uus et al., 2020). The output

deformation warps {W
(1)
i },i=1,...,N were propagated to the rest

of the structural and dMRI channels. The preliminary set of

3D MC templates {Y(1)
c },c={T2; Mcortex; normODF} was generated by

weighted averaging of all registered volumes of T2w, cortex mask
and normalized (section 2.1) ODF channels (Figure 3A).

2.4.2. Generation of Age-Specific Multi-Channel

Templates
At the second iteration (Figure 3B), we used registration with
T2w + cortex mask + normalized ODF channels (section 2.3) to
align all datasets to the multi-channel template (section 2.4.1):

W
(2)
i = D

LNCC+LAC(Y(1)
c ,Xi,c), c={T2; Mcortex; normODF};i=1,...,N

(7)
Next, the datasets were divided into 15 subsets according to PMA,
to sample the range from 37 to 44 weeks PMA into 0.5 week
time-windows. Each of the subsets Nt contains 6-17 subjects

depending on availability. The templates Y
(2)
c,t for each of the

metrics (c) described in section 2.2 were generated by robust
weighted averaging of the metric maps Xi,c transformed with

W
(2)
i in subsets i ∈ Nt :

Y
(2)
c,t =

∑

i∈Nt

ωi,c · 2(Xi,c,W
(2)
i )/

∑

i∈Nt

ωi,c, t=37,...,44, (8)

where2 is the transformation operator, c is the list of all channels
(see Figure 3C). The voxel-wise weights ωi,c are binary maps
with all values with > 1.5 standard deviations from the mean
set to zero. This minimizes the impact of outliers due to any
abnormalities, artifacts or local misregistrations are excluded.

The templatesY(2)
c,t are biased toward 36 weeks reference space,

therefore we calculate the transformations to remove this bias
for each time-point. Since the registration is symmetric, it is

acceptable to choose the inverse warps (W(2)
i )−1 to create the

transformation W−1
av,t from the age-specific average space to the

global reference space:

W−1
av,t =

∑

i∈Nt

(W(2)
i )−1/Nt , t=37,...,44 (9)

Similarly, we create average inverse affine transformation A−1
av,t by

selecting only the scaling and shearing components, followed by
averaging and inverting.

2.4.3. Parametrized 4D Multi-Channel Atlas
In the final step, a continuous 4D spatio-temporal multi-
channel model of the developing neonatal brain (Figure 3C)
was constructed by fitting the Gompertz growth curves to the
time-dependent average metric maps and transformations. We
propose the following form of the Gompertz function since
it allows interpretation of both growth rate (γ ) and peak in
time (τ ):

G(t) = (α − δ)exp(−exp(−γ (τ − t)))+ δ, (10)

where t is the time point, α and δ control the upper and
lower limits of G(t), γ represents the growth rate and τ is
the center point corresponding to the growth peak. The model

was fitted to the time-dependent average metric maps Y(2)
c,t and

transformations W−1
av,t ,A

−1
av,t using least square minimization to

produce continuous spatio-temporal maps in the reference space
as well as average inverse transformations:

Y
ref
c (t) = G(αc, δc, γ c, τ c, t), t=[37;44] (11)

W−1(t) = G(αW , δW , γW , τW , t), t=[37;44] (12)

A−1(t) = G(αA, δA, γ A, τA, t), t=[37;44], (13)
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FIGURE 3 | The proposed pipeline for generation of parametrized 4D MC atlas of neonatal brain development during 37–44 weeks PMA range.

where αc, δc, γ c and τ c are the Gompertz function parameters
of metrics c = {T1w; T2w; T1w/T2w; mDWI; ODF: SH ODF,
TDI; DTI: MD, RD, FA; DKI: MK; NODDI: ODI, FISO, ICVF;
µFA; Jacobian} and t is continuous over 37–44 weeks PMA
range. Unbiased spatio-temporal maps Yc(t) are obtained by
applying nonlinear transformation W−1(t) followed by affine
transformation A−1(t) to the biased spatio-temporal maps

Y
ref
c (t).

2.5. Parcellation of WM Regions
The dHCP structural atlas (Schuh et al., 2018) already provides
parcellations of cortical and subcortical regions based onDRAW-
EM pipeline (Makropoulos et al., 2014), therefore, this work
specifically focuses on WM tracts and transient regions. At first,
we propagated the parcellation map of the major WM tract
regions from M-CRIB-WM atlas (a single subject template at 41
weeks PMA Alexander et al., 2020) by registration of one of the
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T2w M-CRIB-WM atlas subjects to our T2w 44 week template

Y
ref
T2w(44).
Then we performed the MRTrix3 iFOD2 probabilistic

tractography (Tournier et al., 2010) in Y
ref
ODF(41) channel for each

of the 54 WM regions (defined in Alexander et al., 2020) with
propagated labels as seeds. We performed the tractography in
the average template because of the lower noise levels due to
averaging. This was followed by manual refinement of all labels
using the 3D brush with thresholding editing tool in 3DSlicer
(Fedorov et al., 2012) based on the thresholded TDI maps for
individual tracts and inspection of the FA and T2 channels.
The procedure was performed in three iterations with iFOD2
tractography being performed for the WM ROIs refined in the
previous step. The labels were created in the atlas reference space
resampled to 0.5 mm isotropic resolution to account for finer
WM structures.

The transient WM regions were localized as regions with
high rates of signal changes during 37–44 weeks PMA. The
parcellation was generated semi-automatically from the γ av map
obtained by averaging the absolute of growth rate γ c maps for
T1w, T2w, RD and FISO channels. These channels were selected
since they showed similar patterns in the region associated with
the transient fetal compartments (Pittet et al., 2019). The γ av map
(with values varying within [0; 0.5]) was thresholded at 0.25 and
manually refined.

2.6. Atlas-Based Region-Specific Analysis
In order to assess the feasibility of the proposed approach
for atlas-based region-specific analysis studies, we performed
a comparison of term and preterm cohorts. The analysis was
based on both the WM and γ av parcellation maps. At first, all
subjects (selected 40 preterm and 140 term subjects scanned
between 38 and 43 weeks PMA range) were registered to the
PMA-matched atlas space (section 2.3) with T2w, ODF, cortex
and ventricle mask channels. It was identified experimentally,
that adding the ventricle mask channel improves registration
results for preterm subjects since preterm brains commonly have
enlarged ventricles. Therefore, it was used for all subjects in the
term-preterm comparison study.

The comparison analysis between the cohorts was performed
in the atlas space. The structural and dMRI metrics were
computed for each of the ROIs using robust weighted averaging
with only the values with the difference< 1.5 standard deviations
from the mean included. The robust averaging helps to avoid
errors due to image artifacts or local misregistration at the
structure boundaries. The associations between the extracted
metrics and the PMA at scan and the GA at birth were assessed
using the standard ANOVA linear model analysis. The output
p-values were corrected for multiple comparisons using the
Bonferroni correction.

2.7. Implementation Details
The atlas was constructed with isotropic resolution 0.75 mm.
The LAC metric for MC registration of ODF channels was
implemented in MRtrix3 (Tournier et al., 2019). In addition,
we implemented the LNCC Demons metric (Avants et al.,

2008) in MRtrix3 for registration of the structural channels
which, although described in Raffelt et al. (2011), was not
available in the current implementation of MRtrix3. We chose
the default MRtrix3 registration parameters8 for multi-resolution
({0.5; 0.75; 1.0}), SH order (lmax = {0; 2; 2}), regularization of
the gradient update field with Gaussian smoothing with 1 voxel
standard deviation and regularization of the displacement field
with Gaussian smoothing with 0.75 voxel standard deviation.
For LNCC and LAC we chose the local neighborhood with 3
voxel radius (similarly to Raffelt et al., 2011). The proposed 4D
GF fitting step (10) was implemented in MRtrix3. The ANOVA
analysis for comparison between the term and preterm subjects
was performed in RStudio (RStudio Team, 2020) using the
standard lm() function.

3. RESULTS AND DISCUSSION

3.1. Multi-Channel Registration
In our previous work (Uus et al., 2020) we have demonstrated
that the proposed MC registration improves overall alignment
of cortical and WM regions when driven by both structural
and ODF channels in longitudinal cases. Here we confirm
these results in cross-sectional registration. Additionally, we
demonstrate that including the cortex mask as an additional
channel improves accuracy of cortical alignment, which is
otherwise decreased in the presence of ODF channel. This
approach was also used in Makropoulos et al. (2018) and
O’Muircheartaigh et al. (2020) to improve single-channel
T2w registration.

We investigated six scenarios of registration of individual

dHCP subjects to the templates Y
ref
c (t) based on different

combinations of channels: (I) T2w, (II) T2w + Mcortex, (III)
T2w + Mcortex + FA, (IV) T2w + Mcortex + ODF(LAC), (V)
T2w + ODF(LAC) and (VI) ODF(LAC). The performance was
tested on 11 term datasets from 42.00 to 42.57 weeks PMA
since at this age the subjects have significantly higher degree of
gyrification than the average templates. To assess the alignment
in both WM and cortical regions we evaluated similarity of
aligned individual images with the age- and contrast-matched
templates using mutual information (MI) for (A) T1w channel in
the cortical region and (B) TDI channel in the dilatedWM region
(highlighted in yellow in Figure 4). The mutual information
similarity metric and the T1w and TDI channels were selected for
evaluation to minimize bias toward the channels and similarity
metrics used in registration.

We observed that all ODF-guided scenarios led to highest
quality alignment of TDImaps (p < 0.001) and adding additional
channels did not decrease the similarity after alignment (p >

0.05). Including the FA channel improved TDI similarity
compared to T2w and T2w+M (p < 0.001), but it was still
significantly lower than for ODF guided alignments (p < 0.001)
due to the contrast of poorly defined cortical features in FA. In
the cortical region similarity of T1w contrast for the proposed
T2w + Mcortex + ODF MC registration was only slightly lower

8MRtrix3 mrregister function: https://mrtrix.readthedocs.io/en/latest/reference/
commands/mrregister.html.
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FIGURE 4 | Comparison of MC registration results for different combinations of channels. The performance was measured by mutual information (MI) between aligned

images and the age- and contrast-mached templates for (A) the T1w images in the cortical region and (B) TDI maps in the WM region. The regions are highlighted in

yellow contours. The results are statistically significant with p < 0.001 for all cases apart from: all ODF-guided scenarios for the WM ROI, T2w vs. T2w+Mcortex for

WM ROI and T2w vs. T2w+Mcortex + FA for the cortex ROI.

FIGURE 5 | Multi-channel 4D atlas in the reference space (corresponding to 36 weeks PMA). Structural channels: T1, T2, T1/T2 and Jacobian; ODF channels: SH

ODF, mDWI, TDI; DTI channels: MD, RD, FA; DKI channel: MK; NODDI channels: ODI, FISO, ICVF; µFA.
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FIGURE 6 | Example unbiased 4D atlas channels at 38, 41, and 44 weeks PMA. The corresponding Jacobian maps (J) are shown in the reference space.

than the T2w + Mcortex, but it was significantly higher than all
the other scenarios (p < 0.001). Addition of the Mcortex channel
improved the cortical alignment in all cases thus resolving the
limitation reported in our previous work (Uus et al., 2020).

3.2. 4D Multi-Channel Atlas of Normative
Neonatal Brain Development
The resulting multi-channel 4D atlas Y

ref
c (t) in the reference

space (36 weeks PMA dHCP atlas Schuh et al., 2018) is shown
in Figure 5. Unbiased atlases Yc(t) obtained after application
of average inverse warps for 38, 41 and 44 weeks PMA time
points are presented in Figure 6. There are distinct nonlinear
changes due to cortical folding in the T2w templates and
volumetric expansion/contraction due to growth the is visible in
the Jacobian maps.

The created WM parcellations map with 54 ROIs created
in the atlas reference space (section 2.5) for the region-specific
analysis of the metric values is shown in Figure 7B. The
label annotation information follows the original annotations
defined in Alexander et al. (2020). The tractography-based

manual refinement of the originally propagated 2D-slice-
wise segmentations (Figure 7A) from the M-CRIB-WM atlas
provided a more accurate 3D definition of the WM ROIs that
are developed by 44 weeks PMA. Furthermore, it removed
the structural inconsistencies in the original 2D slice-wise
WM segmentations that were performed on DTI directionally-
encoded color maps.

Figure 8A presents the parcellation map of the transient
regions identified by high rates of signal changes during 37–44
weeks PMA segmented from the average γ av map (Figure 8B).
The parcellation map has 24 left/right regions with the majority
being consistent with the transient fetal compartment regions
described in the recently introduced extended MRI scoring
systems of neonatal brain maturation (Pittet et al., 2019)
including periventricular crossroads (Judaš et al., 2005), Von
Monakow WM segments and subplate. We also identified
fast developing regions within the cerebellum and subcortical
gray matter.

In addition, we calculated voxel-wise R2 scores to evaluate
the Gompertz function fit. Our results confirmed that GF offers
higher R2 scores than linear regression with p<0.001 for the
combined γ and WM parcellation map region. The primary
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FIGURE 7 | (A) Original WM parcellation map propagated from the M-CRIB-WM atlas using T2w-guided registration. (B) Final WM parcellation map after

tractography-based manual refinement in the atlas reference space. The 54 ROIs are based on the structures defined in the M-CRIB-WM atlas (Alexander et al.,

2020). The corresponding TDI map highlights the WM pathway regions.

FIGURE 8 | (A) The parcellation map of 24 paired regions identified by high change rates during 37–44 week PMA. (B) The average maturation rate map γ av

computed from T1w, T2w, RD, and FISO channels.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2021 | Volume 15 | Article 661704

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Uus et al. 4D MC Neonatal Brain Atlas

FIGURE 9 | Comparison of the Gompertz function and linear fitting results in terms of R2 values evaluated within the combined WM and γ av parcellation map regions

(A) and frontal Von Monakow WM regions (B). The results are statistically significant with p < 0.001.

FIGURE 10 | Whole brain probabilistic tractography generated from the ODF channel Y ref
ODF

(t) and the corresponding T1w channel Y ref
T1w (t) (in the reference space) in

the frontal WM region at 38, 41, and 44 weeks PMA time points. The developing WM pathway (red circle) can be linked to the increasing T1w signal intensity (yellow

region). The graphs show the signal in age-specific templates Y
(2)
c,t and fitted Gompertz function Y ref

c (t) in the TDI and T1w channels averaged over the region

highlighted in yellow.

regions where the GF fitting outperformed linear fitting were
the γ av parcellation map and the local WM regions such as the
frontal Von Monakow WM regions (labels 1 and 4 in the γ av

parcellation map). Figure 9 shows R2 values for GF vs. linear
fitting comparison for a subset of channels.

Examples of the non-linear patterns in signal changes also
can be observed in the graphs in Figures 10–13 showing
average signal values in 3 × 3 × 3 voxel ROIs and the
corresponding average GF fitting results. However, the relatively
small improvement in R2 suggests that a linear fit also offers

a reasonable approximation during this short time-window
and that it is acceptable to use the linear model based
ANOVA analysis for interpretations of trends in early neonatal
brain development.

3.3. Visual Analysis of Normal Neonatal
Brain Development
Figure 10 shows the output of iFOD2 probabilistic tractography
(Tournier et al., 2010) generated from the ODF channel and

Frontiers in Neuroscience | www.frontiersin.org 12 June 2021 | Volume 15 | Article 661704

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Uus et al. 4D MC Neonatal Brain Atlas

FIGURE 11 | Examples of the signal changes in time (in the reference space) in T1w/T2w (A), FA (B), µFA (C), and MD (D) channels. First column: 37 week template.

Second column: 44 week template. Third column: signal change in time. Fourth column: γ c maps. Fifth column: Signal change in time in age-specific templates Y
(2)
c,t

and fitted Gompertz function Y ref
c (t) computed over 3 × 3 × 3 voxel regions in two locations: PLIC (blue) and superior corona radiata (red). The regions highlighted with

yellow contours have > 0.2 weeks growth peak offset in τ c.

the corresponding T1w channel (in the reference space) in the
frontal WM region at 38, 41, and 44 weeks PMA time points. The
increase in the T1w signal (known to be sensitive to proliferation
of cells and myelin precursors and decreasing water content
Girard et al., 2012) can be linked to the developingWMpathways
seen in tractography (highlighted in red circle). The graphs
show the corresponding increasing intensities in the age-specific

average templates Y(2)
c,t and fitted signal values Y

ref
c (t) of the TDI

and T1w channels computed in the small frontal Von Monakow
WM segment (Pittet et al., 2019) highlighted in yellow in the
T1w channel.

The examples of signal intensity changes in time in different
channels and the corresponding growth rate maps γ c are
presented in Figures 11–13. The regions highlighted in yellow
have a growth peak offset in time ≥ 0.2 weeks from the
40.5 weeks central time point in τ c and can be interpreted
as indicators of earlier or later maturation with respect to
the central time point of 40.5 weeks PMA. The graphs show

average signal values in 15 discrete age-specific templates Y(2)
c,t

and the corresponding fitted signal Y
ref
c (t) calculated within

small 3 × 3 × 3 voxel regions at specific locations, including
the right posterior limb of internal capsule (PLIC), superior
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FIGURE 12 | Examples of the signal changes in time (in the reference space) in TDI (A), FISO (B), and T2w (C) channels. First column: 37 week template. Second

column: 44 week template. Third column: signal change in time. Fourth column: γ c maps. Fifth column: Signal change in time in age-specific templates Y
(2)
c,t and fitted

Gompertz function Y ref
c (t) computed over 3 × 3 × 3 voxel regions in two locations: prefrontal corpus callosum (red) and Von Monakow WM segment (blue). The

regions highlighted with yellow contours have > 0.2 weeks growth peak offset in τ c.

corona radiata, periventricular crossroads, corpus callosum, Von
MonakowWM segment and cerebellum.

The WM tracts are characterized by different maturation
times and rates (Iida et al., 1995). The T1w/T2w contrast (linked
to myelination by Glasser and Van Essen, 2011) shows gradual
signal increase from 37 to 44 weeks (Figure 11A). The γ T1w/T2w

map and the average signal graphs YT1w/T2w(t) confirm that
the rate of T1w/T2w signal increase is the highest in the PLIC
region (blue) and the corona radiata (red). The value of the
τT1w/T2w parameter of the Gompertz function is approximately
40.5 weeks in both regions which is in agreement with the
previously reportedmyelinationmilestones (Counsell et al., 2002;
Wang et al., 2019). There is also a noticeable increase in the
cortical T1w/T2w signal, also previously reported by Bozek et al.

(2018), which may be due to the ongoing myelination or the
increased cell density (Girard et al., 2012). Both FA and µFA
signals (Figures 11B,C) gradually increase in all WM regions in
agreement with the trends reported in Feng et al. (2019) and
Dimitrova et al. (2020). The µFA map shows generally higher
degree of changes than FA, potentially due to the increasing
crossing fiber effect, while in γ FA, the more prominent WM
changes are observable primarily in the corona radiata, sagittal
stratum and superior longitudinal fasciculus as well as the parietal
crossroads and subplate (highlighted with arrows). The γMD

map of the MD channel (Figure 11D) shows a large decrease
in the superior corona radiata, sagittal stratum and the transient
fetal compartments associated withWMmaturation (Judaš et al.,
2005; Pittet et al., 2019) including the periventricular crossroads
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FIGURE 13 | Examples of the signal changes in time (in the reference space) in T1w (A), RD (B), MK (C), and FISO (D) channels. First column: 37 week template.

Second column: 44 week template. Third column: signal change in time. Fourth column: γ c maps. Fifth column: Signal change in time in age-specific templates Y
(2)
c,t

and fitted Gompertz function Y ref
c (t) computed over 3 × 3 × 3 voxel regions in two locations: cerebellum (blue) and periventricular crossroads (red). The regions

highlighted with yellow contours have > 0.2 weeks growth peak offset in τ c.

and subplate regions (highlighted with arrows). The MD signal
is slowly decreasing the PLIC region as can be seen in the
corresponding graph (blue). All of the presented γ c maps also
show significant changes in the periventricular parietal crossroad
regions (highlighted with arrows) with the significant decrease in
MD and increasing in T1w/T2w.

Given the fixed number of streamlines used for probabilistic
tractography, there is a notable redistribution of the TDI
amplitude from the main to proximal WM tracts (Figure 12A).
The corresponding growth rate γ TDI map is positive in the
frontal (anterior corona radiata) and thalamic radiation WM
regions (highlighted with arrows) and negative in the internal
capsule. The R-L time profile in the frontal region (Von
Monakow WM segment, blue) shows the increased track density

at 44 weeks. The average TDI signals Y
ref
TDI(t) in this region

(blue) and the corpus callosum (red) are also characterized by a
significant degree of nonlinearity. the NODDI FISO component

(Figure 12B) shows a prominent reduction in the same frontal
region which is in agreement with the expected decrease of water
content and progressing maturation of WM pathways (Girard

et al., 2012). Similarly to TDI, the average FISO signals Y
ref
FISO(t)

in the investigatedWMROIs have nonlinear shape with the steep
decrease occurring during the 39.5–43 weeks period. A similar
decrease is observed in T2w signal (Figure 12C). The FISO
channel in the sagittal view in Figure 13D also demonstrates
similar patterns in the periventricular crossroads (red).

Most of the channels also show prominent changes in
the cerebellum associated with the normal maturation process

(Figure 13, blue). The T1w signal intensity Y
ref
T1w(t) is gradually

increasing due to WM development along with the increasing
microstructural complexity reflected in the MK channel with
the high γMK map values and the expected decreasing trends of

the RD Y
ref
RD(t) and FISO YFISO(t) signals (potentially due to the

decreasing amount of free water Girard et al., 2012).
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FIGURE 14 | Atlas-based region-specific analysis. The regions significantly associated with GA at birth are highlighted with red (p < 0.001), yellow (p < 0.01) and

cyan (p < 0.05) and overlaid over the averaged TDI map in two coronal view locations. (A) WM parcellation regions. (B) γ av parcellation regions.

3.4. Atlas-Based Region-Specific Analysis
In order to demonstrate the feasibility of the proposed MC atlas-
based analysis approach and give an example of one of the
possible applications, we performed ANOVA analysis to assess
the influence of GA at birth on microstructure of WM regions
delineated in our new atlas, with PMA as a confounding variable.
To assess the feasibility of using the ANOVA analysis for the
investigated datasets, we performed linear fitting for each of the
channels. The γ c values showed high correlation with the linear
slope maps with the average NCC for all channels in the whole
brain ROI 0.90∓0.09 (without CSF).

This is in agreement with the appearance of the global trends
in Figures 10–13 as well as the other reported studies (Feng
et al., 2019; Dimitrova et al., 2020; O’Muircheartaigh et al., 2020)
and confirms that during the short period between 37 and 44
weeks PMA range a linear approximation can be considered to
be acceptable for ANOVA-based studies.

Figure 14 visualizes WM and transient regions in selected
channels where average signal value was significantly associated

with GA at birth. The main regions that have significant
correlation of multiple indices with GA include: the corona
radiata, superior longitudinal fasciculus, corpus callosum and
thalamic radiation. The T1w/T2w contrast also showed to have
significant correlation with GA in the internal and external
capsule ROIs (Figure 14A). There is also a significant difference
between the cohorts within the majority of γ av parcellation
regions (Figure 14B), which is in agreement with the expected
prolonged existence of transient compartments in preterm
subjects (Kostović and Judaš, 2006).

Figure 15A highlights the differences in the maturation rate
γ c maps between the term and preterm cohorts. The graphs
in Figure 15B show the average signal values in the frontal
right Von Monakow WM segment (highlighted in yellow in
the γ c maps). The rather wide range of values in all indices
is potentially related to both the large size of the investigated
WM region (approximately 3000 voxels) as well the individual
variability also commonly observed in other neonatal brain
studies (Feng et al., 2019; O’Muircheartaigh et al., 2020). There
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FIGURE 15 | Atlas-based analysis: comparison of the term (140) and preterm cohorts (40) for 38 to 43 weeks scan PMA range for a subset of channels c={

T1w/T2w; TDI; RD; FA; FISO; µFA }. (A) The γ c maps of GF fitting for the term and preterm cohorts for 38 to 43 weeks PMA range. (B) The mean signal values in the

frontal WM ROI from the γ average parcellation map (highlighted in yellow in the gamma maps) for the term (blue) and preterm (red) cohorts for 38–43 weeks PMA range.

is a clear increasing trend in T1w/T2w, FA and TDI for the
term cohort along with decreasing FISO and RD. However,
the slopes for the preterm cohort are close to zero with high
variance in the signal values. Furthermore, in this region, the
preterm subjects are characterized by significantly higher FISO
and RD values and lower T1w/T2w, TDI and FA than the term

cohort at the 42–43 week PMA period. This is consistent with
the commonly reported lower FA and higher diffusivity values
in preterm groups (Hermoye et al., 2006; Knight et al., 2018;
Dimitrova et al., 2020), again suggesting delayed maturation
of transient compartments in premature babies (Kostović and
Judaš, 2006).
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4. LIMITATIONS AND FUTURE WORK

The generated atlas is specific to the dHCP acquisition protocols,
which might limit its application in terms of comparison with
datasets from other studies. However, the proposed tools can
be applied to generate study- and acquisition-specific 4D MC
atlases. We investigated a relatively narrow neonatal period, and
extension to a wider age range would improve the reliability
of the Gompertz function fit and bring more insights into
early brain development. In addition, a detailed region-specific
statistical evaluation of the expected signal distributions of MRI-
derived indices within the normal term cohort would need to
be performed to allow accurate detection of image artifacts and
brain abnormalities. Furthermore, the current work did not
investigate the optimal preprocessing parameters required for
fitting NODDI andµFA dMRI models, the effect of filtering (e.g.,
Smith et al., 2015) on the tractography outputs or the impact of
different registration settings (e.g., channel weighting).

The study comparing term and preterm brain development
included only 40 preterm subjects and they were not grouped
with respect to specific types of anomalies, which can
be addressed in future as more datasets become available.
Furthermore, this work did not evaluate the influence of
multi-channel registration on the extracted values of different
microstructural indices. The generated WM parcellation map
also potentially requires additional verification with respect to the
correct definition of individualWM regions. Including additional
cortical and sub-cortical regions or fixel-based analysis (Raffelt
et al., 2017) could also enrich the insights into normal and
preterm microstructural brain development.

5. CONCLUSIONS

In this work, we proposed and implemented a novel pipeline
for generation of continuous 4D multi-channel atlases. It is
based on multi-channel ODF+T2w+Mcortex guided registration
and the Gompertz function fitting of both signal intensities
and spatial transformations. The multi-channel registration
pipeline implemented in MRtrix3 employs the novel local
angular correlation similarity metric for ODF channels, LNCC
metric for structural T2w and weighted fusion of the updates
to the displacement fields. It also includes the cortex mask
channel guided by LNCC metric for better alignment of the
cortical regions.

Based on the proposed methods, we generated the first
continuous multi-channel atlas of the normal term neonatal
brain development during 37–44 weeks PMA generated from
170 subjects from the dHCP project. The atlas contains 14
channels including structural (T1w, T2w and T1w/T2w contrast)
and DWI-derived metrics based on ODF, DTI, DKI, µFA and
NODDI models. The Gompertz function fitting of the signal
intensity and spatial transformation components in 4D allowed
parametrization of the atlas. The output γ maps representing the
rate of change can be used for interpretation of how maturation
processes are manifested in different structural and diffusion
MRI-derived metrics. Visual inspection of the fitting results
showed that γ c maps of the T2w, T1w, FISO, MD, RD and

TDI channels are characterized by the high contrast in the fetal
transient compartments (Pittet et al., 2019).

The atlas also includes two detailed WM parcellation maps:
(i) the map with the major WM tract ROIs based on the
definitions from the recently introduced M-CRIB-WM neonatal
atlas (Alexander et al., 2020) and (ii) the map of the regions
associated with high γ signal change rates during the normal
WM maturation process. We tested the applicability of these
parcellation maps for region-specific atlas-based studies on
comparisons between the term and preterm cohorts. The results
of this study showed significant effects linked to prematurity in
multipleWM regions including the transient fetal compartments.
The atlas and the software tools will be publicly available after
publication of the article to support future studies of early
brain development1.

In summary, the proposed multi-channel registration and
atlas facilitate combined analysis of structural and diffusion
MRI indices in the same reference space without a bias from
single-channel registration. Furthermore, combination of high
resolution T2w and cortex mask channels with low resolution
ODF channels aids better combined alignment of cortical and
WM structures. To our knowledge, this is the first work that
defines the pipeline for merged structural and diffusion MRI
atlas-based analysis in neonatal brain studies.
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