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Alzheimer’s disease (AD) is the most common form of age-related dementia. Despite
decades of research, the etiology and pathogenesis of AD are not well understood.
Brain glucose hypometabolism has long been recognized as a prominent anomaly that
occurs in the preclinical stage of AD. Recent studies suggest that glycolytic metabolism,
the cytoplasmic pathway of the breakdown of glucose, may play a critical role in the
development of AD. Glycolysis is essential for a variety of neural activities in the brain,
including energy production, synaptic transmission, and redox homeostasis. Decreased
glycolytic flux has been shown to correlate with the severity of amyloid and tau pathology
in both preclinical and clinical AD patients. Moreover, increased glucose accumulation
found in the brains of AD patients supports the hypothesis that glycolytic deficit may
be a contributor to the development of this phenotype. Brain hyperglycemia also
provides a plausible explanation for the well-documented link between AD and diabetes.
Humans possess three primary variants of the apolipoprotein E (ApoE) gene – ApoE∗ε2,
ApoE∗ε3, and ApoE∗ε4 – that confer differential susceptibility to AD. Recent findings
indicate that neuronal glycolysis is significantly affected by human ApoE isoforms
and glycolytic robustness may serve as a major mechanism that renders an ApoE2-
bearing brain more resistant against the neurodegenerative risks for AD. In addition
to AD, glycolytic dysfunction has been observed in other neurodegenerative diseases,
including Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis,
strengthening the concept of glycolytic dysfunction as a common pathway leading to
neurodegeneration. Taken together, these advances highlight a promising translational
opportunity that involves targeting glycolysis to bolster brain metabolic resilience and by
such to alter the course of brain aging or disease development to prevent or reduce the
risks for not only AD but also other neurodegenerative diseases.

Keywords: Alzheimer’s disease, glycolysis, bioenergetics, biosynthesis, apolipoprotein E, diabetes, brain
resilience

ALZHEIMER’S AS A METABOLIC DISEASE

The human brain contains an average of more than two hundred billion cells, one quadrillion
connections, 100 km of nerve fibers, and 600 km of blood vessels (Steiner, 2019). Therefore, it
is not surprising that a brain demands an outstanding amount of energy and building blocks to
maintain its highly dynamic homeostasis. An adult brain makes up only 2% of total body weight,
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but it uses about 20% of total body energy (Costantini et al.,
2008). The brain’s significant energy-consuming quality is largely
attributed to the extremely active and complex processes involved
in neuronal transmission. Failures to maintain basal energy levels,
such as those under hypoglycemia or hypoxia, can potentially
induce synaptic loss and cognitive impairment within a few
minutes, thus rendering the brain exceedingly vulnerable to
energy deficit-mediated damage (Fleck et al., 1993; Takata and
Okada, 1995; Yamane et al., 2000).

Accumulating evidence indicates that in the development of
AD, pathophysiological changes can occur up to 20–30 years
before clinical symptoms manifest. Metabolic dysfunction has
been recognized as a prominent anomaly in the brain during
this preclinical stage (Small et al., 1995; de Leon et al., 2001;
Mosconi et al., 2006, 2008b; Langbaum et al., 2009). The cerebral
metabolic rate of glucose (CMRglc) is a critical indicator of
neuronal and synaptic activity (Malonek and Grinvald, 1996;
Attwell and Iadecola, 2002; Rocher et al., 2003; Khatri and Man,
2013). By means of positron emission tomography (PET) imaging
and using 2-[18F]fluoro-2-deoxy-D-glucose (FDG) as the tracer,
studies have shown that nearly all clinical AD symptoms are
accompanied by significant reduction of CMRglc, and the
extent and topography are correlated closely with symptom
severity (Mosconi, 2005). Among individuals with mild cognitive
impairment (MCI), the prodrome of AD, significantly decreased
glucose metabolism has also been observed in AD-vulnerable
brain regions, such as hippocampus, posterior cingulate cortex,
and temporal cortex (Mosconi et al., 2008a,b). This condition
reportedly predicts the progression from MCI to AD with greater
than 80% accuracy. Additionally, individuals carrying an ApoE4
allele without dementia were found to exhibit a mild but definite
reduction in CMRglc comparable to the typical AD pattern when
compared to non-carriers (Small et al., 1995; Reiman et al., 1996,
2001, 2004; Perry et al., 2002; Mosconi et al., 2008a). This cerebral
metabolic deficit substantially predisposes neurons to energy
perturbation and functional crisis (Sims et al., 1980; Lying-Tunell
et al., 1981; Hoyer et al., 1988; Filosto et al., 2007; Esteves et al.,
2008; Vlassenko and Raichle, 2015; An et al., 2018; Vlassenko
et al., 2018).

A great deal of research has sought to understand the
biological basis responsible for the impaired glucose metabolism
observed in the brains of AD patients and high-risk individuals.
Glycolytic deficit has long been suggested as a prominent
metabolic abnormality in the early stage of AD, evidenced by
a much greater decline in cerebral glucose utilization when
compared to the decrease in cerebral blood flow and the cerebral
metabolic rate of oxygen (Hoyer et al., 1991; Fukuyama et al.,
1994). These early findings have been solidified by recent studies,
demonstrating that reduced glycolytic flux correlates closely with
the severity of the disease, with more plaques and tangles found in
the brains of AD patients (An et al., 2018). Moreover, studies have
shown that a number of glycolytic elements, including glycolytic
enzymes, glycolytic metabolites, and amino acids produced
in the glycolytic pathway, are altered in AD. This suggests
that glycolytic impairment associated with AD may cause
both bioenergetic and biosynthetic disturbances that ultimately
disrupt the metabolic and synaptic homeostasis, leading to

abnormal protein deposition and cognitive decline (Sims et al.,
1987; Fisher et al., 1991; Bigl et al., 1999; Hashimoto et al., 2004;
Katsouri et al., 2011; Madeira et al., 2015; Wu et al., 2018). In this
review, we summarize the current understanding of the function
of glycolysis in the maintenance of brain health, and the role of
glycolytic dysfunction as a possible cause of neurodegeneration in
AD and other neurodegenerative conditions. We further discuss
the research evidence that supports the emerging opportunity of
targeting glycolysis as a potential therapeutic strategy aimed to
bolster brain metabolic resilience and by such to alter the course
of brain aging or disease development in the fight against the
neurodegenerative risks for AD.

GLYCOLYSIS OVERVIEW

Bioenergetic Function of Glycolysis
Many tissues can utilize fat or protein as a source of energy.
Others, however, such as the brain, depend primarily on glucose
to maintain normal functions (Maughan, 2009). Glycolysis
is the cytosolic pathway in which one molecule of glucose
is broken down into two molecules of pyruvate, along with
a net production of two molecules of ATP and NADH
(nicotinamide adenine dinucleotide). Pyruvates are then fully
metabolized in mitochondrial respiration. The first five reactions
of glycolysis constitute the preparatory or investment phase,
where ATP is consumed, while the other five reactions form
the payoff phase where ATP is produced (Figure 1a). Three
key rate-limiting enzymes are utilized in glycolysis: hexokinase,
phosphofructokinase-1 (PFK-1), and pyruvate kinase (PK). Each
of them serves as a critical and tightly regulated site. In the initial
step of glycolysis, hexokinase catalyzes the phosphorylation of
glucose by ATP to produce glucose-6-phosphate (G-6-P), in
which an ATP molecule is consumed. Hexokinase is feedback-
inhibited by G-6-P as well as when the function of PFK-1 is
suppressed, thus ensuring less hydrolysis of ATP and glycolytic
intermediates. Notably, hexokinase possesses a low Km (high
affinity, strong binding) for glucose which enables it to function
actively even if the concentration of glucose is very low (Niemeyer
et al., 1975; Massa et al., 2011).

Among the three key glycolytic enzymes, PFK-1 is regarded
as the crucial point of regulation. PFK-1 converts fructose
6-phosphate to fructose 1,6-bisphosphate with consumption
of another ATP molecule. This pathway is considered the
commitment step to glycolysis and is allosterically regulated
by the energy state of the cell. PFK-1 is inhibited by high
levels of ATP and citrate, but activated when the ratio
of ATP/AMP is low (Berg et al., 2007). When the body
experiences acidosis (low pH), PFK-1 will also be suppressed
to avoid excessive lactate production. In addition, fructose 2,6-
bisphosphate acts as a potential activator for PFK-1 by enhancing
its affinity for fructose 6-phosphate and inhibiting fructose-1,6-
bisphosphatase, thus diminishing the inhibitory effect of ATP
(Lunt and Vander Heiden, 2011).

The third, irreversible reaction is catalyzed by PK, which is
also the final step of glycolysis, converting phosphoenolpyruvate
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FIGURE 1 | Bioenergetic and biosynthetic pathways of glycolysis. (a) Glycolysis breaks down glucose into two molecules of pyruvate accompanied by a net
production of two molecules of ATP and 2 NADH + 2 H+. Metabolic intermediates derived from glycolysis serve as precursors in the biosynthesis of non-essential
amino acids including serine, glycine, cysteine, and alanine. (b) The pentose phosphate pathway consists of two phases: oxidative and non-oxidative phases.
Oxidation of G-6-P to pentose phosphates leads to the production of NADPH and five-carbon sugars, which are critical for reductive biosynthesis, antioxidant
defense, and RNA/DNA synthesis. PPP is interconnected by transketolase and transaldolase with glycolysis. (c) Fructose-6-phosphate produced from G-6-P serves
as the starting point that diverts 2–3% glucose to the hexosamine biosynthesis pathway, a branch derived from glycolysis, which generates the “sensing molecule”
UDP-N-Acetylglucosamine (UDP-GlcNAc), the substrate of the enzymes involved in protein N- and O-glycosylation. The rate-limiting enzyme of the pathway is
glutamine: fructose-6-phosphate amidotransferase (GFAT).

to pyruvate and yielding two molecules of ATP. This ATP-
forming reaction occurs by substrate-level phosphorylation and
is highly regulated by the energy state of the cell. When the cell
undergoes a high rate of glycolysis, fructose 1,6-bisphosphate can
activate PK to keep up with the rate of glycolytic flux. Increased
concentrations of downstream, energy-yielding intermediates,
such as ATP or citrate, will inhibit PK and decelerate glycolysis
(Berg et al., 2007). However, when cells are under energy deficit
conditions, such as low blood glucose levels, phosphorylation
of PK reduces its enzymatic activity, thereby limiting the
consumption of glucose by the liver to meet the urgent energy
demand of vital organs such as the brain (Pilkis et al., 1982).

Reducing equivalents, in the form of NADH, produced
by glycolysis, are used to facilitate ATP production in the
mitochondria by donating electrons to the electron transport
chain. Cells normally rely on oxidative phosphorylation as the
main source of energy (Zheng, 2012), however, the rate of ATP
generation in the glycolytic pathway has been observed at a
much higher level than oxidative phosphorylation in a number of
different types of cells and tissues, such as muscle cells, neurons,
astrocytes, microglia, endothelia cells, activated lymphocytes, or
tumor cells (Pfeiffer et al., 2001; Pellerin et al., 2007; Pearce et al.,
2013; Schmitz et al., 2013; Voloboueva et al., 2013; Ghesquiere
et al., 2014). This phenomenon is essential to organisms when

rapid ATP production is needed, such as muscle cells in heavy
exercise or acute initiation of neuronal activities.

Biosynthetic Function of Glycolysis
Producing energy is not the sole purpose of glycolysis. A wide
variety of metabolic intermediates generated in the glycolytic
pathway flow into a range of biosynthetic processes, including
gluconeogenesis, lipid metabolism, the pentose phosphate
pathway (PPP) and the TCA cycle. The Warburg effect has long
been observed in rapidly proliferating cells and firstly described
in cancer, where growing cells use glycolysis as the predominant
pathway for ATP production even when oxygen is abundant
(Warburg, 1956). Studies have demonstrated that induced
chemotherapy-resistant cell lines, such as human LoVo colon
carcinoma cells and HeLa, have elevated aerobic glycolysis (AG),
indicating a mechanistic link between resistance and glycolysis
(Ganapathy-Kanniappan and Geschwind, 2013). The Warburg
effect may also play a role in anti-apoptotic effects in Aβ resistant
neural cell lines via hypoxia inducible factor 1, indicating its
protective role in AD brains (Newington et al., 2011). Thus, the
significance of glycolysis extends beyond rapid energy generation
both to facilitate nutrient assembly into essential precursors of
biosynthesis and to promote cellular homeostasis.
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Several amino acids are directly derived from glycolytic
intermediates and play important roles in maintaining normal
cellular function (Figure 1a). The carbon backbone that
originates from 3-phosphoglycerate serves as the structural unit
in the biosynthesis of serine, glycine, and cysteine, whereas
pyruvic acid functions as the carbon provider for biosynthesis of
alanine. Serine serves as one of the major sources for generation
of nicotinamide adenine dinucleotide phosphate (NADPH) in
the cell via the tetrahydrofolate (THF) cycle, supports cell
proliferation via the regulation of pyruvate kinase, and functions
as a head group when supplied directly to the biosynthesis of
phosphatidylserine, a component of cell membrane in the brain
(Lunt and Vander Heiden, 2011; Ye et al., 2012; Tedeschi et al.,
2013; Fan et al., 2014; Lewis et al., 2014; Maddocks et al., 2014;
Ducker et al., 2016; Gao et al., 2018). Moreover, the production
of D-serine, a co-agonist of NMDA glutamate receptors, has been
shown to be negatively controlled by glycolytic flux in astrocytes,
via the interaction of serine racemase (an enzyme that converts
L-serine to D-serine) and glyceraldehyde 3-phosphate, suggesting
that glycolysis may play an important role in modulating
excitatory neurotransmission in the brain (Suzuki et al., 2015;
Guercio and Panizzutti, 2018). Le Douce et al. (2020) recently
reported that glycolysis-derived L-serine production in astrocytes
is impaired in AD. As the precursor of D-serine, reduced
L-serine can cause D-serine deficiency leading to impaired
NMDA receptor activity and synaptic and cognitive deficits (Le
Douce et al., 2020). Alanine and aspartate play key roles in
body function as well. Alanine transaminase (ALT) catalyzes
the reversible reaction of glutamate and pyruvate into alanine
and α-ketoglutarate, while aspartate transaminase catalyzes
glutamate and oxaloacetate into aspartate and α-ketoglutarate.
The subsequent alanine is then shuttled into the liver and
enters the urea cycle. Aspartate can give rise to asparagine
and the first committed step of pyrimidine biosynthesis by
providing four atoms of the ring. The transamination reaction
can also produce intermediatepyruvate and oxaloacetate, for
gluconeogenesis thereby exerting its important role in both
facilitating nutrient cycling and maintaining energy homeostasis.

A branch of glycolysis that accounts for 2–3% of total
glucose metabolism is the hexosamine biosynthesis pathway
(HBP) (Figure 1c) (Marshall et al., 1991). Fructose 6-phosphate,
together with glutamine, is diverted to generate UDP-N-
acetylglucosamine (UDP-GlcNAc). This end product of HBP
is then used to form glycosaminoglycans, proteoglycans, and
glycolipids (Schleicher and Weigert, 2000; Milewski et al., 2006;
Yang and Qian, 2017). UDP-GlcNAc also functions as the
substrate for O-linked N-acetylglucosamine transferases (OGTs)
in various species involved in protein N- and O-glycosylation
(Wells et al., 2001; Wells and Hart, 2003; McLarty et al.,
2013; Hwang and Rhim, 2018). Glutamine: fructose-6-phosphate
amidotransferase (GFAT) catalyzes the rate-limiting step in HBP
conversion of fructose-6-phospate and glutamine, thus serving
as an important regulatory point (Marshall et al., 1991). The
regulation of GFAT, however, is not fully understood. A previous
study suggests that glucose-6-phosphate dehydrogenase (G6PD)
O-GlcNAcylation promotes the pentose phosphate pathway as
well as cell proliferation and survival through an increased

binding affinity of NADP+ to G6PD (Rao et al., 2015).
O-GlcNAcylation is also reported to play a key role in regulating
pyruvate kinase expression and activity leading to accumulation
of upstream glycolytic metabolites (Chaiyawat et al., 2015; Wang
et al., 2017). Overall, this evidence potentially suggests that
glycolysis is an important mechanism underlying the regulation
of the hexosamine biosynthetic pathway.

In addition to supporting UDP-GlcNAc biosynthesis,
glycolysis also plays an important role in regulating triglyceride
synthesis, by forming Glycerol-3-phosphate (G-3-P) through
the reduction of dihydroxyacetone phosphate (DHAP) via
G-3-P dehydrogenase (Zechner et al., 2012). G-3-P and
fatty acyl CoAs are primary materials for de novo synthesis
of glycerolipids, which are crucial for energy homeostasis,
proper lipid transport, balancing glucose/lipid metabolism, and
generation of metabolic signals (Prentki and Madiraju, 2008;
Zechner et al., 2012). Research also finds that DHAP acts as an
important precursor existing in the membranes of mitochondria
and exhibits an important functional role in mitochondrial
bioenergetics (Schlame et al., 1990, 1993; Paradies et al., 2014).
Additionally, a deficiency of triose-phosphate isomerase (TPI
or TIM), the enzyme catalyzing the rapid interconversion of
DHAP and D-glyceraldehyde 3-phosphate (GAP), will lead to
progressive neurological dysfunction and childhood mortality,
thus highlighting its unique role in the process of glycolysis
(Orosz et al., 2008).

GLYCOLYSIS FUNCTIONS IN THE BRAIN

The human brain depends mostly on glucose as the source of
fuel, rendering it at great risk for neuronal dysfunction when
glucose is in short supply. Apart from glucose, the brain can also
utilize other energy substrates. Ketone bodies can provide energy
(Owen, 2006; Zielke et al., 2009), but its fuel role is considered
minor, except in times of starvation and glucose deprivation.
Studies indicate that neurons predominantly undergo oxidative
phosphorylation, whereas astrocytes are mainly responsible for
lactate production via glycolysis (Hyder et al., 2006; Belanger
et al., 2011). For the past 25 years, a prevalent viewpoint
on neuroenergetics has been presented and developed: the
astrocyte-neuron lactate shuttle (ANLS) (Pellerin and Magistretti,
1994). Upon intensified neuronal activity, glutamate is released
into the synaptic cleft, followed by its action on postsynaptic
receptors and uptake by astrocytes via excitatory amino acid
transporters (EAAT). Glutamate in astrocytes is then converted
by glutamine synthetase into glutamine, which is released by
astrocytes, and taken up by neurons from the extracellular
space. Within neurons, glutamine is converted to glutamate
by glutaminase, packed in synaptic vesicles, and prepared to
be released, thus the neurotransmitter pool of glutamate is
replenished and the glutamate-glutamine cycle is completed
(Mason, 2017). The uptake of glutamate by astrocytes is driven
by a sodium gradient generated by Na+/K+ ATPase, of which
ATP source is primarily from glycolysis (Pellerin and Magistretti,
1996). Theories suggest that neurons take up the extracellular
lactate as the energy substrate from astrocytes in support of ATP
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generation upon the intensified neuronal activity (Magistretti and
Allaman, 2018). The increased demand of energy accompanied
by the glutamate-glutamine cycle induces higher glucose uptake
from the circulation and enhanced lactate release by astrocytes,
which attenuates extracellular prostaglandin E2 uptake, thus
providing a potential mechanism underlying vasodilation and
increased cerebral blood flow (Gordon et al., 2008; Howarth,
2014; MacVicar and Newman, 2015). A few studies have also
indicated a neuroprotective role of an elevated brain lactate level,
as evidenced by its ability in preventing neuronal excitotoxicity
and decreasing lesion size in animal stroke models, possibly
via an ATP- and redox-dependent pathway (Ros et al., 2001;
Berthet et al., 2012; Jourdain et al., 2016; Margineanu et al., 2018).
However, controversies exist showing neurons are capable of
maintaining glutamatergic activity independent of the glutamate-
glutamine cycle (Kam and Nicoll, 2007). Studies also showed
that GABAergic neurons may not necessarily rely on lactate
(Magistretti and Allaman, 2018). In addition, studies have also
shown that, in response to increased neuronal activities, rather
than obtaining lactate from astrocytes, neurons are capable of
increasing glycolysis to produce lactate themselves, underscoring
the role of glycolysis in sustaining neuronal function and
maintaining homeostasis in the brain (Yellen, 2018).

Glycolysis in Membrane Transport
It is a well-known fact that oxidative phosphorylation produces
ATP in a much more efficient manner than does glycolysis.
However, in acute neuronal events, glycolysis has been shown
to become the dominant pathway for ATP generation (Fox
et al., 1988). Proper functions of many ionic pumps such
as Na+/K+-ATPase, H+-ATPase, and Ca2+-ATPase have been
linked to membrane-bound glycolytic enzymes, both in the
central nervous system and in other tissues, indicating that
glycolysis-derived ATP may be an important source of energy for
ion transport, which is critical for the conduct of action potential
and synaptic transmission. V-type H+-ATPase (V-ATPase) is an
ATP-dependent pump that mediates transmembrane transport of
protons, thereby maintaining pH gradients between intracellular
compartments, and V-ATPase is also required for proton
secretion from the plasma membrane of certain specialized cells.
V-ATPase has the highest expression in the brain and is a crucial
constituent of synaptic vesicles. On the membrane of synaptic
vesicles, V-ATPase pumps protons through the membrane into
the synaptic vesicle, creating a proton concentration gradient,
which is then used as an energy source, driving the movement
of neurotransmitters into the vesicle through their respective
transporters. Neurotransmitter concentration in the vesicle is an
essential step preceding neurotransmitter release, underscoring
the extremely essential role of V-ATPase in synaptic transmission
(Moriyama et al., 1992). A number of studies have shown close
interactions of V-ATPase with glycolytic enzymes, including
PFK-1, Pfk2p, aldolase, and hexokinase, indicating the functional
dependence of V-ATPase on glycolysis (Moriyama and Futai,
1990; Lu et al., 2001, 2004; Su et al., 2003; Nakamura, 2004; Kohio
and Adamson, 2013; Chan et al., 2016; Woody et al., 2016).

Moreover, evidence exists that, following synaptic
transmission, glutamate is quickly removed from the synaptic

cleft by astrocytic uptake. This is an extremely efficient process
in part powered by increased glycolysis that further increases the
activity of Na+/K+-ATPase and the Na+-dependent cotransport
uptake system in astrocytes (Pellerin and Magistretti, 1994).
Furthermore, one study shows that when Caenorhabditis
elegans neurons are under energy stress, a compensatory
mechanism mediated by glycolysis maintains enough energy to
support endocytosis and the synaptic vesicle cycle (Jang et al.,
2016). Overall, despite the low yield of ATP produced by the
glycolytic pathway, rapid ATP generation by glycolysis provides
a significant advantage over oxidative phosphorylation, thereby
playing a critical role for neuronal processes such as action
potential, neurotransmitter release and uptake.

Glycolysis in Postsynaptic Activity
A further role of glycolysis has been associated with postsynaptic
density (PSD). PSD is a dense protein complex localized
on the cell surface of post synapses in dendritic spines,
containing receptors for almost all glutamate neurotransmission
at excitatory synapses (Chen et al., 2015). The PSD clusters also
regulate ion flux for Na+, K+, and Ca2+, adhesion proteins,
scaffolding proteins, and protein kinases, including protein
kinase A, protein kinase C, and Ca2+/CaM-activated protein
kinase, along with their substrates. The rapid turnover and the
dynamic property of PSD95 implies a great need for energy
supply, as well as a significant quantity of intermediates for
anabolism in dendritic spines, where, however, mitochondria
are seldom present (Li et al., 2004). Instead, glycolytic enzymes
are abundantly expressed in the PSD, including glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) and phosphoglycerate
kinase (PGK), which may possibly be the source of ATP in the
isolated PSD (Wu et al., 1997). Lactate is the end-product of
anaerobic glycolysis functioning, and acts not only as a substrate
for mitochondria, but also a second messenger to modulate the
activity of neurons and astrocytes in neighboring regions. It
is speculated that during acute neuronal activity, a significant
interstitial lactate transient may be observed in areas where
glutamate is released. However, when neuronal activity occurs,
the diffusion and convection of lactate reaches much further than
glutamate and the active zone, away from the area where glucose
is predominantly consumed. Naïve neurons subsequently receive
multiple signals, including lactate, which potentially augments
inhibitory effects by adjacent GABAergic interneurons. This
increased inhibition gives rise to limited glucose consumption
in remote areas, thus recruiting more glucose to the active zone.
The metabolic role of lactate in the brain is well discussed in a
previous review (Barros, 2013). Monocarboxylate transporter 2
(MCT2), responsible for transporting lactate across the plasma
membrane, has been reported to be present in PSD and co-
localize with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor GluR2/3 (Nusser et al., 1994; Bergersen
et al., 2005; Goncalves et al., 2020). It is suggested that
dysregulation of MCT causes axonal damage, amnesia, and
memory deficits (Barros, 2013). These research findings provide
strong support for the role of glycolysis in the regulation of
postsynaptic activities.
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Glycolysis in Redox Homeostasis
Given that the brain is metabolically vulnerable, proper
metabolic response of neurons is critical in defending the
brain against injury, reactive oxygen species (ROS), and
other neurodegenerative insults (Brand and Hermfisse, 1997;
Rodriguez-Rodriguez et al., 2013; Butterfield and Halliwell, 2019).
The pentose phosphate pathway (PPP) in glucose metabolism is
a central source of pentoses and ribose 5-phosphate for cellular
synthesis of nucleotides, as well as for reducing equivalents
in the form of NADPH (Figure 1b). PPP accounts for about
60% of NADPH produced in a human body and is highly
active in the liver, the adrenal cortex, and in red blood cells.
NADPH is essential for cholesterol and steroid synthesis and
respiratory bursts. In addition, NADPH is used by glutathione
reductase to convert disulfide glutathione to reduced glutathione,
which is in turn oxidized by glutathione peroxidase, coupled
with the reduction of peroxides. Therefore, NADPH plays a
critical role in maintaining the cellular redox state, which is
tightly controlled by the rate-limiting enzyme of PPP, glucose-
6- phosphate dehydrogenase (G6PDH). Coordination between
glycolysis and PPP has been extensively described, including the
rearrangement reactions in PPP that convert ribose-5-phosphate
and xylulose-5-phosphate to fructose-6-P and glyceraldehyde-3-
P under transketolase and transaldolase (Patra and Hay, 2014).
Treatment with NADPH protects neurons against ROS and
apoptosis, leading to increased ATP level, reduced long-term
mortality, and improved functional recovery (Soucek et al., 2003;
Mejías et al., 2006; Ying, 2008; Stanton, 2012; Li et al., 2016;
Huang et al., 2018).

Glycolysis in Brain Development
The PPP is a branch pathway from glycolysis after the first rate-
limiting step catalyzed by hexokinase. Apart from its important
role in antioxidant defense and nucleic acid synthesis, PPP also
provides NADPH for reductive biosynthesis, such as biosynthesis
of fatty acids and sterols (Figure 1b). Ranking as the second
highest in lipid content after adipose tissue, human brain
is particularly enriched with lipid content for maintenance
of brain functions, such as synaptic activity, which in turn,
renders it highly vulnerable to fatty acid and lipid disorders
(Poitelon et al., 2020). In contrast to the peripheral system
where lipids are the major form of energy storage, the lipids in
the brain are primarily used for membrane construction, such
as phospholipids (Hamilton et al., 2007). Synapse formation
and elimination dynamically exist throughout a person’s entire
life. A burst of synaptic formation occurs during early brain
development, a phase known as exuberant synaptogenesis
(Huttenlocher and Dabholkar, 1997). This synaptic dynamic is
critical for normal synaptic connection and plasticity, proper
neuronal network formation, task execution, learning process,
and memory establishment. Moreover, studies show that during
neuron differentiation, PFK-1 protein expression significantly
increases, suggesting that glycolysis is necessary in supporting
biosynthesis for neurite outgrowth and synaptic formation
(Goyal et al., 2014; Agostini et al., 2016). In addition, a human
brain represents only 2% of total body weight but contains 20% of

the body’s cholesterol. Membrane lipids, primarily phospholipids,
together with lipid composition of the myelin, comprise more
than 50% of the brain solid matter, with concentration of
brain phosphoglycerides being age dependent (Svennerholm,
1968). Dysregulation of lipid composition in the brain reportedly
contributes to deterioration of CNS functions and pathological
alteration in AD (Svennerholm, 1968; Söderberg et al., 1991;
Velasco and Tan, 2014; Kao et al., 2020). Therefore, an impaired
glycolytic pathway, such as dysregulated hexokinase, may reduce
the essential intermediates and undermine PPP, thus inhibiting
proper brain function and development.

The energy used by a developing brain is striking. Studies
indicate the newborn’s brain is about 13% of body mass but
consumes up to 60% of total body energy, and this soaring energy
utilization lasts throughout one’s entire childhood. Notably, AG
comprises 30% of glucose metabolism in a developing brain,
compared to about 10% in an adult brain (Magistretti and
Allaman, 2015), indicating an important role of glycolysis in
brain development. Moreover, during pregnancy and infancy,
brain volume and weight sharply increase, with brain size
reaching about 75% of an adult’s brain by 2 years old, compared
to 25% at birth (Steiner, 2019). Since neurogenesis mainly occurs
prenatally—although some regions, such as the cerebellum,
continue to generate after birth—rapid postnatal brain growth
is mostly attributed to axon growth, dendritic morphogenesis,
synaptic proliferation/elimination and axon myelination. This is
a period when a brain meets both its highest energy demand
and highest level of AG (Vlassenko and Raichle, 2015; Silbereis
et al., 2016). Goyal et al. (2014) found that the elevated level
of glycolysis during childhood correlates to the child’s highest
rate of synaptic growth. They also discovered that in adult
brain regions with the highest AG, genes that are responsible
for synapse formation and growth are significantly increased
(Vaishnavi et al., 2010; Goyal et al., 2014). Glycolysis is important
in synaptic plasticity and as a link between glycolytic function and
motor adaptive learning (Shannon et al., 2016). Other research
shows that, in early postnatal mice, the neurite architecture was
significantly impaired when glycolysis was pharmacologically
inhibited (Segarra-Mondejar et al., 2018). Additionally, multiple
researchers have demonstrated that glycolysis has a predominant
role in elevated neuritic and synaptic formation, as well as their
turnover, a role that presumably remains throughout human
lifespan (Marder and Goaillard, 2006; Goyal and Raichle, 2013;
Magistretti, 2014). Taken together, even though there are a
limited number of studies, the developing brain is considered to
be predominantly glycolytic. This is largely due to its dependence
on de novo biosynthesis of lipids, amino and nucleic acids
in support of developmental processes such as synaptogenesis,
which ultimately leads to proper neuronal network that underlies
cognitive function (Bauernfeind et al., 2014; Goyal et al., 2014;
Steiner, 2019).

GLYCOLYSIS IN AD

Before reaching adulthood, brain glucose consumption is slightly
reduced. Overall glycolysis, however, exhibits a much steeper
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decline from representing about 30% of glucose utilization to 8–
10% (Vlassenko and Raichle, 2015; Steiner, 2019). Notably, AG
appears to be spatially varied in the brain and is diminished
topographically during normal aging. Regional variations are
involved with reasoning, cognition, navigation, and executive
motor control (Vaishnavi et al., 2010). Consequently, brain
regions relying on high level of AG in young adults can be
exceptionally vulnerable when approaching middle-age, given
AG’s bioenergetic, biosynthetic, and neuroprotective role in the
brain (Goyal et al., 2017).

Correlation Between Aβ Deposition,
Tauopathy, and Glycolysis
Accumulation of neurotoxic Aβ plaques and
hyperphosphorylation of tau have long been considered the
pathological hallmarks that contribute to synaptic disruption
and neuronal loss in the brains of AD patients (Skovronsky
et al., 2006; Querfurth and LaFerla, 2010; Serrano-Pozo et al.,
2011; Krstic and Knuesel, 2013; Amtul, 2016; Harrison and
Owen, 2016). It is reported that Aβ distributes variably among
brain regions, with more deposition found in areas of high
dependence on glycolysis. In a PET study of 33 neurologically
healthy participants, Vaishnavi et al. (2010) discovered that AG
was significantly elevated in the medial, lateral, and prefrontal
cortices, whereas the cerebellum and medial temporal lobes
exhibited lower glycolysis when compared to the mean value
of the brain. Follow-up studies reported that the regions with
increased glycolysis in the resting state of healthy young adults
closely mirror the later regional pattern where Aβ accumulates
in the brains of AD patients (Vaishnavi et al., 2010; Vlassenko
et al., 2010; Goyal et al., 2020). The correlation observed in these
studies is considered a compensatory mechanism in response
to Aβ toxicity and mitochondrial dysfunction at a very early
stage of AD. Another clinical study of 42 individuals aged
53–88 years at either preclinical or symptomatic stages of AD
revealed close relationships among amyloid burden, AG, and
tau deposition. Data showed that reduced synaptic plasticity
and neuroprotection are related to the loss of AG, which
may promote tauopathy in individuals with amyloid burden
(Vlassenko et al., 2018). Studies using h-tau mice, which express
all human tau isoforms, found that reduced glucose utilization,
possibly via the downregulation of glycolysis, directly triggers
tauopathy leading to synaptic dysfunction and behavior deficits
(Lauretti et al., 2017). These results indicate the important role of
brain glycolysis in the pathogenesis of AD.

Altered Glycolytic Metabolite and
O-GlcNAcylation in AD
A prospective ongoing cohort study that began in 1958 by
the Baltimore Longitudinal Study of Aging (BLSA) investigated
whether AD pathogenesis is correlated with dysfunction of
glucose homeostasis. Glucose concentration and ratios of
glycolytic amino acids (serine, glycine, and alanine) to glucose,
which represent the cerebral glycolytic function, were measured
within the autopsy cohort. The results showed that elevated brain
glucose levels and reduced glycolytic flux are associated with the

severity of AD pathology and expression of AD symptoms. They
concluded that impaired glycolytic function may be intrinsic to
glucose metabolic dysfunction inherent in AD pathogenesis (An
et al., 2018). Another clinical study that analyzed 122 metabolites
in the CSF of AD and non-AD subjects showed that only
intermediates of glycolysis, such as dihydroxyacetone phosphate
(DHAP) and phosphoenolpyruvate (PEP), were significantly
decreased in AD patients. The reduction of these glycolytic
intermediates also exhibited positive correlation with Aβ1−42
and Aβ1−42/Aβ1−40 (Bergau et al., 2019). A very recent study
also reported that astrocytic glycolysis-derived L-serine exhibited
a significant decrease in 3xTg-AD mice indicating a reduced
glycolytic flux that led to impaired synaptic plasticity and
memory (Le Douce et al., 2020).

A number of studies have looked at the roles of key glycolytic
enzymes in glycolytic dysregulation of AD; the results, however,
were mostly obtained from postmortem brain specimens of AD
patients and are inconsistent. Hexokinase activity was reported
to decrease significantly in brains, skin-cultured fibroblasts, and
leukocytes of AD patients (Marcus et al., 1989; Sorbi et al., 1990).
Whereas, in a paper of investigating hexokinase activity in a
large Italian pedigree, the results showed no significant change
of hexokinase activity (Mortilla and Sorbi, 1990). Studies of PFK
showed that inhibition of fructose-2,6-biphosphatase (PFKFB3)
led to Aβ accumulation in astrocytes and a higher risk of Aβ

toxicity in cultures of human fetal astrocytes. In a study involving
autopsy of AD patients, PFK activity was shown to decrease
significantly to approximately 10% of the activity in the control
group (Bowen et al., 1979). In another study, PFK activity in
the frontal and temporal cortex of post-autopsy AD brains was
found to be elevated when compared to age-matched non-AD
individuals (Bigl et al., 1999). Furthermore, Sims et al. (1987)
found no decrease of PFK activity in patients with primary
degenerative dementia who are relatively young and at an early
stage of the disease. The activity of the third key glycolytic
enzyme, pyruvate kinase, is reported to significantly increase
in the frontal and temporal cortex of AD brains (Bigl et al.,
1999). However, other studies found a reduced level of pyruvate
kinase activity in an age-dependent fashion in the frontal cortex
of APP/PS1 mice (Harris et al., 2016). Factors that may have
contributed to these inconsistencies include sample preparation
procedure, age of the patients, AD study models, as well as
the stage of AD.

Another key enzyme that has raised great interest in the past
three decades regarding its role in neurodegenerative disease is
GAPDH, a classic glycolytic enzyme that is primarily considered
as the “housekeeping” protein and predominantly presents in
the cytosol. GAPDH catalyzes the conversion of glyceraldehyde
3-phosphate to 1,3-bisphosphoglycerate in a NAD+-dependent
manner and mediates the production of NADH + H+ and
ATP. In a study measuring GAPDH activity in post-mortem
brains of AD patients, the researchers discovered a ∼19%
decline of GAPDH activity in temporal cortex (Kish et al.,
1998). In line with the previous study, Mazzola and Sirover
(2001) found a 27∼33% decline of GAPDH glycolytic activity
in human skin fibroblast cell strains obtained from AD patients.
However, controversies exist with studies showing that GAPDH
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enzymatic activity exhibited a significant increase in the frontal
cortex lysate of six AD patients compared to an age-matched
healthy group (Soucek et al., 2003). A possible explanation of
the observed elevated GAPDH activity which contradicts the
hypometabolism theory of AD brain could be the small sample
size studied. Moreover, a human microglial cell line, CHME-
5, showed an increased level of GAPDH upon the treatment
of plasma from AD subjects (Jayasena et al., 2015). Increased
glycolysis, however, is considered as a compensatory mechanism
of impaired mitochondrial function following the exposure of
AD plasma and functions as the forerunner of the energy deficit
status in the cell. Furthermore, competing theories suggested that
overexpression and aggregation of GAPDH serve as the pro-
apoptotic regulator in neurodegenerative diseases, which possibly
interacts with a voltage-dependent anion channel and mediating
permeability transition of the mitochondria, a mechanism
recognized as the non-glycolytic function of GAPDH (Ishitani
and Chuang, 1996; Kish et al., 1998; Tarze et al., 2007; Nakajima
et al., 2009; Itakura et al., 2015; Lazarev et al., 2020). Moreover, a
heightened level of the reversible S-glutathionylation of GAPDH
was found in the AD brain compared to age-matched control
groups, which leads to the inactivation of GAPDH. The studies
also showed the impaired enzyme activity can be rescued under
certain reducing conditions, such as glutathione (Newman et al.,
2007). Considering S-glutathionylation is an important post-
translational modification in preventing protein from irreversible
oxidation, a proposed theory points to GAPDH as an oxidative
stress sensor, further implying a correlation between reduced
glycolysis and the disturbed redox state of the cell (Gallogly
and Mieyal, 2007). Additionally, inactivation of GAPDH has
been considered to play a protective role under oxidative stress,
by diverting carbohydrate flux to PPP, thus producing more
reducing power, NADPH, against oxidants (Ralser et al., 2007).
However, inactivated GAPDH also results in reduced energy.
Therefore, in the long term when cells become exhausted by
massive oxidative stress, a disastrous cascade effect that ultimately
leads to cell death will be initiated by the cell’s inability to
sustain energy demand and redox homeostasis. GAPDH was also
found bonded on Inositol 1,4,5-trisphosphate receptors (IP3R)
and proposed to mediate Ca2+ release via NADH (Patterson
et al., 2005). Hence, GAPDH also plays a significant role
in regulation of Ca2+ homeostasis, an important mechanism
underlying AD pathogenesis, further linking perturbed glycolysis
to cell death (Canzoniero and Snider, 2005; Bojarski et al.,
2008).

Another area associated with glycolysis that has been
examined in the context of AD is the HBP, also known as the
nutrient sensing pathway (Zhu et al., 2014). Notably, O-linked
N-acetylglucosamine (O-GlcNAc) is found greatly enriched
in the brain, particularly at neuronal synapses, suggesting
a role of the HBP in synaptic transmission (Zhang and
Bennett, 1996; Vosseller et al., 2006; Skorobogatko et al., 2011;
Trinidad et al., 2012). Moreover, increased O-GlcNAcylation
has been demonstrated to promote neuroprotective outcomes
such as reduced cerebral trauma, improved outcome of
strokes, and alleviated stress (Groves et al., 2013; Gu et al.,
2017). Using a human neuroblastoma cell model, upregulating

O-GlcNAcylation led to an increased level of non-amyloidogenic
sAPP α fragments and reduced Aβ secretion, suggesting
O-GlcNAcylation of APP as an anti-Aβ target for AD (Jacobsen
and Iverfeldt, 2011; Chun et al., 2017). O-GlcNAcylation has
also been observed to inversely correlate with phosphorylation
of tau, as demonstrated by fourfold less expression of O-GlcNAc
in hyperphosphorylated tau than in non-hyperphosphorylated
tau. Of particular note, rodent brains with impaired glucose
metabolism exhibit changes in O-GlcNAcylation and tau
phosphorylation that resemble those in the brains with
inhibited HBP, suggesting the HBP is largely controlled
by glucose metabolism (Liu et al., 2009). In sum, given
that the HBP is a branch of glycolysis and that there
is evidence that a decreased level of O-GlcNAcylation can
result from impaired glucose metabolism, elevation of the
HBP activity via boosting glycolysis may be a promising
therapeutic approach in AD.

Redox State, Glycolysis, and AD
Oxidative stress is a common feature in AD (Perry et al., 2002;
Butterfield and Halliwell, 2019). NAD+ is a cofactor for redox
reactions and plays an essential role in glycolysis to regulate
cellular energy metabolism. Increasing evidence suggests that
NAD+ is also involved in many other biological processes
such as cell death, calcium homeostasis, gene expression,
carcinogenesis, immunological functions, as well as aging (Ying,
2008). The NAD+/NADH ratio is an index of cellular reducing
potential, dysregulation of which has been extensively indicated
in AD. A DNA repair-deficient 3xTgAD/Polβ± mouse model
with exacerbated AD features, including tauopathy, synaptic
dysfunction, neuronal death, and impaired cognitive function,
exhibited a reduced cerebral NAD+/NADH ratio and indicated
impaired energy metabolism. Treatment with nicotinamide
riboside reversed the NAD+/NADH ratio and produced
improved phenotypes, indicating that bolstering NAD+/NADH,
potentially via glycolysis, may contribute to AD treatment (Hou
et al., 2018). Another study using primary neuron culture showed
that exposure to Aβ oligomers significantly reduced the NAD+
level and the decreased NAD+ level was rescued by nicotinamide
treatment (Liu et al., 2013). Similar results were also observed in
3xTgAD mice (Liu et al., 2013). In a clinical study to evaluate
the orally administrated NADH effect, 26 AD patients received
NADH (10 mg/day) or a placebo. After 6 months of treatment,
the NADH-treated group performed significantly better on the
Mattis Dementia Rating Scale (MDRS) and the Mini Mental
State Examination and showed no significant progression of AD
symptoms, indicating the therapeutic value of NADH for AD
(Demarin et al., 2004).

Moreover, the NADPH generated by PPP reacts with oxidized
glutathione to form reduced glutathione (Figure 1b). The
reduced glutathione further converts reactive H2O2 to H2O
by glutathione peroxidase, thus maintaining cellular redox
homeostasis. The role of PPP, a branched pathway directing
from the first key step of glycolysis, in maintaining proper
NADPH level and protecting against oxidative stress is thereby
highlighted. In a study that involved 45 AD patients and 28 age-
matched control subjects, both GSH levels and the GSH/GSSG
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ratio exhibited a profound reduction in the AD group (Bermejo
et al., 2008). Additionally, Ivanov et al. (2014) reported that,
during synaptic stimulation in hippocampal slices, a significant
fraction of NAD(P)H response corresponded to glycolysis,
suggesting that glucose serves as an effective energy substrate for
both neurons and astrocytes in network activity. Considering the
biosynthetic dependence of NADPH on glycolysis and its role in
producing GSH from GSSG, proper function of glycolysis is vital
not only for glucose metabolism, but also for maintaining redox
homeostasis in AD.

ApoE Isoforms Differentially Modulate
Neuronal Glycolysis
As in many other chronic diseases, AD risk can be influenced by
multiple factors, such as age, gender, family history, brain injury,
environment, and lifestyle. Notably, results from postmortem
autopsy showed that about 30% of cognitively normal people
present various signs of AD pathology in the brain (Arenaza-
Urquijo and Vemuri, 2018; Dumitrescu et al., 2020), raising
the question of why some people have AD-like pathology but
remain cognitively intact. Individual differences in overcoming
adverse factors and thus maintaining a better performance can be
a reason. This is referred to as brain resilience. Age-dependent
reduced glycolysis in the brain occurs independent of amyloid
plaques and serves as a biomarker for aging (Goyal et al., 2017).
Given that aging is the greatest risk factor for the development
of AD, enhancing glycolysis can potentially increase neuronal
metabolic strength to sustain a better cognition and slow down
or prevent AD progress. For instance, research has shown that
neuronal cells with a higher level of glycolysis are more resistant
to Aβ toxicity, indicating a neuroprotective effect mediated by
glycolysis (Newington et al., 2011, 2012).

ApoE is the primary cholesterol carrier in the brain and must
be produced locally. It is predominantly synthesized by astrocytes
and to a lesser extent by microglia, vascular smooth muscle cells,
and the choroid plexus (Uchihara et al., 1995; Achariyar et al.,
2016). In addition, studies showed that under normal conditions,
neurons also produce ApoE. This may be responsible for ∼20%
of total ApoE protein levels in the cortex (Xu et al., 2006;
Knoferle et al., 2014). Particularly, the intense induction of ApoE
expression has been observed in injured or stressed neurons,
indicating a critical role of this neuron-specific source of ApoE
expression in cellular repair and maintenance (Boschert et al.,
1999; Aoki et al., 2003). Human ApoE exists in three major alleles
(ε2, ε3, and ε4) and each of them conveys different susceptibility
for development of AD. ApoE2 is considered as neuroprotective,
whereas ApoE4 is the greatest genetic risk for AD. Recent
research led by Tarja Malm showed that human iPSC-derived
microglia carrying ApoE4 exhibited a reduced extracellular
acidification when compared to those carrying ApoE3, indicating
an ApoE4-induced glycolytic deficit (Konttinen et al., 2019).
Studies by Zhao et al. (2017) demonstrated that compared to
ApoE3, ApoE4 secreted by astrocytes failed to induce insulin-
stimulated glycolysis in ApoE−/− neurons. In clinical studies,
ApoE4 has widely been associated with early onset of AD, rapid
progression of the disease, more severe impairment of cognitive

function and altered response to AD treatment (Morris et al.,
1995; Nagy et al., 1995; Wilson et al., 2002; Wu and Zhao,
2016). Moreover, studies showed that ApoE2 carriers without
dementia do not display the typical age-related increase of
an Aβ burden (Grothe et al., 2017). Functional connectivity
in the amygdala and entorhinal cortex tends to be increased
and remain stable in individuals with ApoE2 allele (Gong
et al., 2017). Attenuated hippocampal atrophy and a lower level
of age-related myelin breakdown have also been observed in
individuals carrying ApoE2, compared to non-carriers (Bartzokis
et al., 2006; Chiang et al., 2010). The underlying mechanism of
ApoE2 as a neuroprotective variant, however, remains largely
unknown. Recent studies found that ApoE2-bearing mouse
brains exhibit the most robust bioenergetic profile as evidenced
by the highest levels of hexokinase expression and activity,
glycolytic function, and ATP production when compared to both
ApoE3 and ApoE4 mouse brains (Keeney et al., 2015; Woody
et al., 2016; Wu and Zhao, 2016; Wu et al., 2018). In addition,
ApoE2-mediated glycolytic robustness via the upregulation of
hexokinase appears to directly correlate to a healthier cell
status, which could serve as a major mechanism that allows
ApoE2-bearing brains to be more resilient against AD (Zhang,
2018). In summary, growing evidence supports the idea that
introduction of ApoE2 into the ApoE4 brain, such as by a
gene or protein/peptide therapy, can be a plausible strategy to
rescue the glycolytic deficits, improve cognitive function, and
ameliorate AD-related neurodegeneration, thus helping close the
therapeutic gap for AD patients.

BRAIN HYPERGLYCEMIA AS A
COMMON FEATURE IN DIABETES
AND AD

Diabetes has been well established as a risk factor for AD
(Profenno et al., 2010). A great number of epidemiological
studies revealed that being diabetic results in a higher risk of
developing AD in later life, and such a risk is heightened when
diabetes coexists with other risk factors such as the ApoE4
genotype. For example, in a Taiwanese population-based study of
615,532 diabetic patients and 614,871 non-diabetic individuals,
the diabetic group showed a higher rate for developing AD
over a period of 9 years with a hazard ratio of 1.45 relative
to non-diabetics (Wang et al., 2012). In a longitudinal cohort
study that followed up on 824 individuals older than 55 years,
diabetes was associated with 65% higher incidence of AD
over an average period of 5.5 years (Arvanitakis et al., 2004).
Moreover, the Hisayama study followed up on 11,017 individuals
older than 60 years for an average of 10.9 years and showed
that impaired glucose tolerance and diabetes were respectively
associated with 46 and 94% higher risk for developing AD (Ohara
et al., 2011). In a community-based study whose subjects were
obtained randomly from the Mayo Clinic Alzheimer Disease
Patient Registry, the frequency of type 2 diabetes and impaired
fasting glucose (IFG) was compared in 100 AD patients and
138 non-AD age-matched individuals. Results showed greater
spread within the AD patients. Type 2 diabetes was present in
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34.6% of AD patients vs. 18.1% of non-AD patients, whereas
IFG was present in 46.2% of AD patients vs. 23.8% of non-AD
patients (Janson et al., 2004). This indicates a possible common
pathological link between the two diseases. Furthermore, the
Honolulu-Asia aging study revealed that diabetes elevates the risk
of developing AD in ApoE4 carriers compared to an isolated
effect of ApoE4 without a diabetic condition (5.5 vs. 1.7 folds)
(Peila et al., 2002). In light of the close association between AD
and diabetes, the term “Type 3 Diabetes” has been used by some
researchers as a label for AD (Steen et al., 2005; de la Monte and
Wands, 2008). The underlying molecular mechanism, however,
is not well understood. Research efforts directed toward better
understanding of this relationship can ultimately pave the way
toward better understanding of AD causative factors and thus to
identification of key molecular targets that can be focused upon
in future therapeutics.

Multiple studies have explored the relationship between
blood plasma and brain glucose levels. An approach that has
often been used is to alter plasma glucose levels within a
predetermined range by dextrose injections, which is followed
by measuring the levels of brain glucose that are achieved at
different blood glucose levels. In a study performed on 18 healthy
participants with mean age of 41 years, a linear relationship
for glucose levels was shown between the cerebral and vascular
compartments after stabilizing plasma glucose in a range of 4–
30 mM: brain glucose levels proved to be 20–30% of plasma
levels in the tested range (Gruetter et al., 1998). This plasma-
to-brain glucose ratio and hyperglycemia-associated elevation
of brain glucose are comparable to the data obtained in a
study performed on white Wistar rats under normo- and hyper-
glycemia (Silver and Erecinska, 1994). These findings clearly
indicate that peripheral hyperglycemia induces a corresponding
elevation of brain glucose levels. As hyperglycemia is one of the
well-defined pathologies of diabetes, it has been hypothesized that
the blood-brain barrier might adapt to chronic hyperglycemic
states and thus limit the uptake of glucose into the brain as
a protective mechanism. This hypothesis, however, was refuted
in multiple studies which revealed that brain glucose levels
are elevated in states of chronic diabetic hyperglycemia. For
instance, in a study performed on 14 healthy individuals with
mean age of 37, and 14 poorly controlled diabetic patients with
mean age of 43 (type 1 = 8 patients, type 2 = 6 patients),
hyperglycemia was induced in participants to an approximate
blood glucose level of 300 mg/dL. This level produced brain
glucose levels of 4.7 and 5.3 mM respectively in diabetics and
non-diabetics (Seaquist et al., 2005). Another study performed
on male Sprague Dawley rats showed similar results. Levels of
glucose in brain extracellular fluid (ECF) under a hyperglycemic
condition were compared to chronically hyperglycemic diabetic
rats and non-diabetic rats. High plasma glucose (22 and 28 mM)
led to comparable levels of brain ECF glucose in the two
groups (mean brain ECF glucose: 7.5 and 8.7 mM respectively),
while the mean of control-group normoglycemic rat brains ECF
glucose was 2.1 mM at plasma glucose of 8 mM (Jacob et al.,
2002). These data strongly indicate that diabetic hyperglycemia
can directly result in brain hyperglycemia, regardless of the
state of the disease.

As discussed earlier, a decreased glucose metabolic rate
has been widely established as one of the main features of
AD. However, the actual brain tissue glucose levels did not
receive similar attention and the existence of a correlation
between developing AD and alteration of brain tissue glucose
levels was not explored until recent evidence from BLSA
linked Alzheimer’s with accumulation of glucose in the brain
(An et al., 2018). The study revealed that the brains of
AD and asymptomatic AD patients, as opposed to brains
of healthy participants, had higher levels of glucose—an
alteration particularly prominent in brain regions of the
cerebral cortex that are vulnerable to AD pathogenesis.
Furthermore, brain tissue glucose concentrations were positively
correlated with the severity of AD brain pathology. This
and previous evidence lead to the conclusion that brain
hyperglycemia is a shared feature of both diabetic and
Alzheimer’s brains.

A considerable amount of evidence is available concerning
the pathological impact of diabetes and hyperglycemia on the
brain. Animal models of hyperglycemic diabetes have been
shown to exhibit brain abnormalities that are comparable to
dysfunction of Alzheimer’s brains, such as synaptic impairment
(Malone et al., 2008; Liu et al., 2015), brain atrophy, and
mitochondrial impairment (Carvalho et al., 2015). Furthermore,
animal models having both diabetes and AD manifest an
exacerbated level of brain pathology and cognitive impairment
compared to models having AD only. A study that compared
the effects of diabetes versus AD on the brain showed similar
phenotypes in the brains of both a sucrose-induced mouse
model of diabetes and a triple transgenic AD mouse model
(3xTg-AD), including reduced brain weight, mitochondrial
dysfunction, and reduced levels of synaptic and autophagy-
related proteins when compared to WT animals (Carvalho
et al., 2015). Activity of Na+/K+ ATPase, an essential pump
that maintains neuronal resting membrane potential and its
activity, was shown to be impaired by hyperglycemia in isolated
synaptic terminals of aged Wistar rats’ brains (Torlinska et al.,
2006). In a streptozotocin-induced hyperglycemic rat model
of diabetes, neuronal spine density and dendritic branches
were reduced compared to WT rats. The reduction was
accompanied by memory impairment in the Morris water
maze cognitive test (Malone et al., 2008). Synaptic plasticity
as measured by long-term potentiation (LTP) was decreased
in a high-fat diet-induced hyperglycemic mouse model (Liu
et al., 2015). Animals with both diabetes and AD attained
worse outcomes in the Morris water maze test, LTP, and
mitochondrial respiration and enzymatic activities of complexes
I and IV, when compared to animals with only diabetes or
AD (Wang et al., 2015). In a similar study, comorbidities of
diabetes and AD led to increased formation of Aβ oligomers and
deposition of Aβ plaques, increased tau pathology, exacerbated
neuroinflammation, and worsened performance on the Morris
water maze test when compared to animals having only
diabetes or AD (Guo et al., 2016). Overall, considering the
hyperglycemic phenotype and other associated pathological
features shared in brains of animals having both diabetes
and AD, it is probable that brain hyperglycemia serves as a
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mechanistic link between the two diseases and contributes to
AD development. Glycolytic deficit could be a major cause of
increased glucose accumulation and ultimately hyperglycemia in
non-diabetic AD brains.

GLYCOLYTIC DYSFUNCTION IN OTHER
NEURODEGENERATIVE DISEASES

Glycolytic dysfunction has been associated with other
neurodegenerative diseases, including Parkinson’s disease (PD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS). In the glycolytic pathway, phosphoglycerate kinase
(PGK) is a major enzyme that catalyzes the first ATP-generating
step in which a phosphate group in 1,3-biphosphoglycerate
is transferred to ADP, producing 3-phosphoglycerate and
one molecule of ATP. Deficiency of PGK activity caused by
genetic mutations (e.g., c.649G > A) that results in impaired
ATP production had been established as a major cause of
medical conditions such as hemolytic anemia, myopathy, and
neurological deficits (Matsumaru et al., 2017). Multiple studies
have reported that patients suffering from these disorders
exhibited PD-like symptoms, pointing to the role of PGK
deficiency in the development of idiopathic PD (Sotiriou
et al., 2010; Sakaue et al., 2017; Cai et al., 2019; Le Bras,
2019; Shimizu et al., 2020). For example, in one case report,
a child with PGK1 deficiency developed parkinsonism at
9 years of age, whereas the mother, a heterozygous carrier
of the mutation, developed parkinsonism at 36 years of age,
suggesting a gene dose-dependent effect of PGK1 deficiency
in conferring susceptibility to PD (Sakaue et al., 2017).
Similarly, a 25-year-old male carrier of a PGK1 mutation
that caused a marked decrease in PGK activity presented
both exertional myoglobinuria and severe parkinsonism
that was responsive to levodopa treatment (Sotiriou et al.,
2010). These clinical findings have been further validated
in molecular studies conducted in preclinical models. In a
Drosophila model, dopaminergic (DA) neuron-specific PGK
knockdown led to locomotive defects accompanied by significant
reductions in ATP and dopamine levels, and progressive
loss of DA neurons (Shimizu et al., 2020). Furthermore, in
a variety of either toxin-induced or genetic PD models as
well as in iPSC, treatment with terazosin, a PGK agonist,
increased brain ATP and dopamine levels and restored motor
function, providing support for the therapeutic approach of
enhancing PGK and glycolytic activity in the treatment of PD
(Cai et al., 2019).

Altered glycolytic metabolism has been observed in HD
as well, although discrepancies exist. In an iPSC-based model
of the disease, it was found that when compared to control
cells, HD cells had decreased ATP levels, lowered expression
of glycolytic enzymes, and decreased spare glycolytic capacity.
In contrast, both mitochondrial messenger levels and protein
levels, as well as respiratory capacities driven by oxidative
phosphorylation, were largely unchanged. Moreover, ATP
levels in HD cells were restored by treatment with pyruvate
or late glycolytic intermediates, but not earlier glycolytic

metabolites, providing further evidence for glycolytic and not
mitochondrial deficits associated with HD (The HD iPSC
Consortium, 2019). In agreement with these studies, Powers
et al. reported a significant increase in the molar ratio of
cerebral oxygen metabolism to cerebral glucose metabolism
[CMRO(2)/CMRglc] in the striatum of HD patients, and the
group postulated that glycolytic reduction in striatal metabolism
could be involved in the pathogenies of HD (Powers et al.,
2007). On the contrary, in HEK293 cell lines and transgenic
Drosophila expressing polyglutamine (polyQ) in exon 1 of
the huntingtin (HTT) protein, Sameni et al. (2016) observed
an increased glycolytic rate, as indicated by an increased
production of free NADH, in cells and tissues that expressed
the expanded HTT-polyQ, when compared to controls that
expressed unexpanding HTT-polyQ. In another study, it was
found that the WNT/β-catenin pathway was increased in
both HD and ALS, which increased activation of several
glycolytic enzymes, which in turn resulted in increased glycolysis
(Alexandre et al., 2018). An independent investigation conducted
by Manzo et al. (2019) in a Drosophila model of TDP-
43 proteinopathy demonstrated that increased glycolysis may
serve as a compensatory mechanism that neurons attempt
to use to fight against metabolic deficits in ALS. Further
studies are certainly required to resolve these inconsistencies.
Nevertheless, these findings clearly indicate a prominent
involvement of glycolytic metabolism in the development of these
neurodegenerative conditions.

CONCLUSION

Alzheimer’s disease has long been recognized as a metabolic
disease (Drzezga et al., 2003; Chen and Zhong, 2013; de la
Monte and Tong, 2014). In particular, glucose hypometabolism
has been established as a prominent anomaly in the very
early development of the disease (Mosconi et al., 2008c). As
the primary substrate of energy in the brain, glucose is first
metabolized in the cytoplasmic glycolytic pathway, followed
by oxidative phosphorylation in the mitochondria. Beyond its
bioenergetic function, glycolysis plays crucial roles in many
biosynthetic processes, for example, in the production of certain
amino acids, ribose phosphate, and reduced glutathione, as
well as in the glycosylation modification of proteins and lipids.
Specifically, glycolysis has been extensively described for its
essential roles in brain development and fast-occurring neuronal
activities such as ion transport in neurotransmission. Despite its
essential neural functions, glycolysis in the context of AD has not
been explored much until recently (Bergau et al., 2019; Butterfield
and Halliwell, 2019; Theurey et al., 2019; Yan et al., 2020). Several
clinical studies have indicated the involvement of glycolytic
dysfunction in the development of AD pathologies (Vlassenko
et al., 2018). Moreover, increased brain glucose accumulation has
been validated in AD patients, supporting the hypothesis that
glycolytic deficit as an important contributor to the development
of this phenotype (An et al., 2018). Brain hyperglycemia also
provides a plausible explanation for the well-documented link
between AD and diabetes. Human ApoE exists as three isoforms,

Frontiers in Neuroscience | www.frontiersin.org 11 April 2021 | Volume 15 | Article 662242

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-662242 April 26, 2021 Time: 12:6 # 12

Zhang et al. Glycolytic Metabolism in AD

ApoE2, ApoE3, and ApoE4. Carrying ApoE4 is the greatest
genetic risk factor for sporadic AD, whereas ApoE2 carriers are
resistant to AD. Historically, extensive research has focused on
the neurotoxic effect of ApoE4, leaving ApoE2 largely unexplored
(Wu and Zhao, 2016). Recent studies have provided several lines
of evidence supporting the hypothesis that differential regulation
of neuronal glycolysis could serve as one significant mechanism
that underlies the different AD risk of ApoE isoforms (Wu et al.,
2018). Glycolytic robustness, in large part via upregulation of
hexokinase, could play a critical role in conferring ApoE2-bearing
brains their resilience to AD. Besides AD, glycolytic dysfunction
has been observed in other neurodegenerative diseases, including
PD, HD, and ALS, strengthening the concept of glycolytic
dysfunction as a common pathway leading to neurodegeneration.
Taken together, these advances highlight an exciting translational
opportunity not only for the AD field but also for research fields
of other neurodegenerative diseases.
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GLOSSARY

AD, Alzheimer’s disease; ApoE, apolipoprotein E; CMRglc, cerebral metabolic rate of glucose; PET, positron emission tomography;
FDG, 2-[18F]fluoro-2-deoxy-D-glucose; MCI, mild cognitive impairment; ATP, adenosine triphosphate; NAD, nicotinamide adenine
dinucleotide; PFK-1, phosphofructokinase-1; PK, pyruvate kinase; G-6-P, glucose-6-phosphate; AMP, adenosine monophosphate;
PPP, pentose phosphate pathway; TCA cycle, tricarboxylic acid cycle; AG, aerobic glycolysis; Aβ, amyloid beta; NADP, nicotinamide
adenine dinucleotide phosphate; THF, tetrahydrofolate; NMDA, N-methyl-D-aspartate; ALT, alanine transaminase; HBP, hexosamine
biosynthesis pathway; UDP-GlcNAc, UDP-N-acetylglucosamine; OGTs, O-linked N-acetylglucosamine transferases; GFAT,
glutamine: fructose-6-phosphate amidotransferase; G6PD, glucose-6-phosphate dehydrogenase; G-3-P, glycerol-3-phosphate; DHAP,
dihydroxyacetone phosphate; TPI or TIM, triose-phosphate isomerase; ANLS, astrocyte-neuron lactate shuttle; EAAT, excitatory
amino acid transporters; V-ATPase, V-type H+-ATPase; Pfk2p, phosphofructokinase-2 subunit β; PSD, postsynaptic density; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; MCT2, monocarboxylate transporter 2; AMPA, α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; ROS, reactive oxygen species; G6PDH, glucose-6- phosphate dehydrogenase;
BLSA, baltimore longitudinal study of aging; CSF, cerebrospinal fluid; PFKFB3, fructose-2,6-biphosphatase; IP3R, inositol 1,4,5-
trisphosphate receptors; O-GlcNAc, O-linked N-acetylglucosamine; GSH/GSSG, reduced glutathione/oxidized glutathione; iPSC,
induced pluripotent stem cell; IFG, impaired fasting glucose; ECF, extracellular fluid; WT, wild type; LTP, long-term potentiation;
PD, Parkinson’s disease; HD, Huntington’s disease; ALS, amyotrophic lateral sclerosis; DA, dopaminergic; CMRO(2)/CMRglc, ratio
of cerebral oxygen metabolism to cerebral glucose metabolism; polyQ, polyglutamine; HTT, huntingtin.
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