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Eindhoven, Netherlands

The development of brain-inspired neuromorphic computing architectures as a paradigm

for Artificial Intelligence (AI) at the edge is a candidate solution that can meet strict energy

and cost reduction constraints in the Internet of Things (IoT) application areas. Toward this

goal, we present µBrain: the first digital yet fully event-driven without clock architecture,

with co-located memory and processing capability that exploits event-based processing

to reduce an always-on system’s overall energy consumption (µW dynamic operation).

The chip area in a 40 nm Complementary Metal Oxide Semiconductor (CMOS) digital

technology is 2.82mm2 including pads (without pads 1.42mm2). This small area footprint

enables µBrain integration in re-trainable sensor ICs to perform various signal processing

tasks, such as data preprocessing, dimensionality reduction, feature selection, and

application-specific inference. We present an instantiation of the µBrain architecture in

a 40 nm CMOS digital chip and demonstrate its efficiency in a radar-based gesture

classification with a power consumption of 70 µW and energy consumption of 340 nJ

per classification. As a digital architecture, µBrain is fully synthesizable and lends to a fast

development-to-deployment cycle in Application-Specific Integrated Circuits (ASIC). To

the best of our knowledge, µBrain is the first tiny-scale digital, spike-based, fully parallel,

non-Von-Neumann architecture (without schedules, clocks, nor state machines). For

these reasons, µBrain is ultra-low-power and offers software-to-hardware fidelity. µBrain

enables always-on neuromorphic computing in IoT sensor nodes that require running on

battery power for years.

Keywords: spiking neural network, neuromorphic computing, radar signal processing, IoT, edge-AI

1. INTRODUCTION

Information processing in the brain has been a topic of active research for decades (Cappy,
2020). As a computing substrate, the brain structure is exciting from an engineering perspective.
It is massively parallel, impressively low power, enables scalable operation, and memory and
computation are multiplexed together in the same substrate. As a result of the study of the
brain, research in neuromorphic computing has been trying to build brain-inspired models of
information processing and respective hardware implementations thereof.

Unlike conventional computer architectures designed to perform exact calculations, a biological
brain seems optimized for signal processing in the presence of noisy or incomplete inputs. It
is very robust to damages and partial failures. As a result, neuromorphic computing offers an
alternative for algorithms and compute architectures that perform (statistical) signal processing
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and neural processing tasks. Even though we are far from
having understood the brain’s functioning altogether, the study
of its operation leads us to several important architectural
features, which we can successfully and effectively adopt in silicon
technology of computing machines.

Many of the brain’s energy and compute efficiency features
come from its asynchronous and event-driven operation (Yu
and Yu, 2017), which promotes and simultaneously exploits
sparse computations. In conventional processor/accelerator
architectures where high-energy consumption is unavoidable,
the focus is on maximizing efficiency (and speed) by
increasing the number of operations possible per unit of
energy consumed. By contrast, in neuromorphic architectures,
sparsity exploitation results in skipping redundant operations,
and efficiency is achieved by directly reducing both latency
and energy consumption. Reducing operations translates
to fewer computations and less power density (i.e., power
per silicon area) in the neuromorphic processors. Besides,
asynchronous event-driven processing allows for theoretically
infinite scalability as every neuron can process its inputs
independent of other neurons. It also lets the information
flow as fast as possible, which results in a low latency
response. It is not required to route a dynamic clock pulse
to every neuron in a silicon implementation, as each neuron
immediately evaluates its membrane potential against the
threshold without the need for a global synchronization signal
(a clock).

This paper introduces µBrain, a neuromorphic IC for ultra-
low power (<100 µW) neural network processing for edge AI
IoT applications. µBrain exploits low-cost digital technology,
but unlike most other digital neuromorphic Integrated Circuits
(ICs) (as shown in Table 2), it relies on local on-demand
oscillators and a novel delay-cell to avoid the use of a global
clock and it supports event-driven processing. µBrain, in the
absence of input stimuli, only consumes leakage power while
maintaining its internal state stored in the neuron’s membrane
potential, synaptic weights, and network dynamics. Furthermore,
µBrain does not exploit separate memory blocks (either on
-chip or off-chip memory), but memory and computation
are co-localized in the IC area, avoiding the data access and
energy overheads of distal memories of conventional Von-
Neumann architectures.

The use of digital technology leverages synthesizability, and it
provides reliability for use in various IoT applications. Besides,
the high area efficiency of digital gates offered in advanced
process nodes makes analog neurons less attractive.

The µBrain architecture is based on digital event-based
spiking neurons organized in layers (recurrent topologies
are also supported). Inputs and outputs are digital pulses
(rate- or time-coded), whereas the synaptic weights are
programmable and are stored on-chip with a customizable
bit-width. Depending on the application requirements, the
µBrain architecture can be customized during synthesis
for bit precision, network topology (number of neurons
in each layer, and number of layers), and connectivity.
In contrast, neuron parameters and synaptic weights are
runtime programmable.

The niche of µBrain in the landscape of neuromorphic
processors and accelerators is ultra-low-power (e.g., hundreds
of µW) lightweight machine-learning data processing near-
or in-sensor (and by “in-sensor” we mean integration at
the IC level). Example target deployments include radar
signal classification, biomedical signal analysis on wearable
devices, low-dimensional image classification deployed on
luminaires, audio analysis and tactile sensing analysis in thin-film
electronics, data processing on ingestible sensors, andmany other
IoT applications.

1.1. Background and Related Literature
Neuromorphic compute accelerator ICs leverage Spiking Neural
Network (SNN) processing, using stateful neuron models that
exchange information in the form of sparse asynchronous
events (spikes). State-of-the-art implementations are based on
analog, digital, or hybrid mixed-signal silicon technology (such
as Schemmel et al., 2010; Qiao et al., 2015; Furber, 2016; Neckar
et al., 2018), often in combination with “exotic” non-volatile
memories (NVM) (Zhang et al., 2018), or photonic technology
(Prucnal and Shastri, 2017), or spintronic devices (Grollier
et al., 2020). This broad range of options accounts for varying
degrees of emulation of the real brain structures, integration,
and features.

Analog neuromorphic ICs resemble the biological neural
cells more than digital ICs (Indiveri et al., 2011). They model
potassium and sodium channels and N-methyl-D-aspartate
(NMDA) receptors with their intricate dynamics. Yet, they suffer
from variability, high design cost, low flexibility, and low neuron
density. When implemented in conventional silicon technology,
neurons store their membrane potentials (neuron states) in a
leaky capacitor, which costs a large area, and analog synaptic
circuits mimic adaptation and learning with programmable
synaptic weights with low digital resolution (Bartolozzi and
Indiveri, 2007). Alternatively, a dense Resistive Random Access
Memory (ReRAM) crossbar may be used to build the synaptic
connections between neurons (Liu et al., 2015). In ReRAM
crossbars, the bit cell’s resistance is the programmable synaptic
weight that connects a presynaptic with a post-synaptic neuron.
Due to process variations, the analog chips are not exactly
reproducible and are vulnerable to temperature changes. In
theory, it is possible to overcome the variations by using
an adaptive self-learning neuron model and efficient on-chip
adaptivity/learning mechanism to compensate for the variations
and noise (Kuzum et al., 2012). However, such mechanisms
make the neuron more complex. Their performance is not yet
sufficiently reliable to enable the use of such technology in critical
applications (e.g., health care, automotive, safety). The analog
approach is not suitable for our work as µBrain targets inference
only, IoT use cases, and easy and affordable reproducibility
and integrations with other ICs (e.g., sensors) leveraging in-
sensor processing.

By contrast to analog circuits, digital ICs rely on logic gates
to emulate neurons and synapses and dense memory to store
neuron state and synaptic weights (Frenkel et al., 2018). This
approach’s motivation is to make a synthesizable architecture
integrated quickly in a System On a Chip (SoC) and results in a
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low-cost implementation. In theory, due to using logic gates, the
required area in this approach can be higher than in analog chips.
However, it is easier to use state-of-the-art technology nodes (like
7 nm and below) for digital, which offers much better density
at reasonable power consumption. One disadvantage of digitally
designed chips is the implementation of membrane potential
leakage as an additional periodic operation. This disadvantage is
not so relevant if the frequency is low enough, i.e., in the same
order as the input spike rates. Besides this, since commercial
electronic design automation (EDA) tools are optimized for
synchronous deployments, it is not straightforward to implement
fully event-driven implementations.

Likewise, in µBrain, we followed a fully digital approach.
However, our leakage mechanism is event-based and, therefore,
does not necessarily need to be periodic. Additionally, we have
designed a lightweight local oscillator (a delay cell) that can
drive self-timed digital blocks (similar to Davies et al., 2018) to
overcome the lack of support in Electronic Design Automation
(EDA) tools.

At the intersection of these two approaches, mixed analog
and digital neuromorphic ICs may combine analog circuit
networks with a digital readout layer (Corradi et al., 2019) or an
analog ReRAM crossbar for synaptic connections with digitally
implemented neurons (Ni et al., 2017). In this case, at the
interfacing between the analog and digital circuit, analog signals
are discretized using an analog to digital converter. As activations
in SNNs are binary (no multiplication is required), this method’s
main advantage is the possibility to store multiple bits in
one memory cell. Additionally, bio-inspired learning algorithms
can be implemented using resistive memory cells’ physical
characteristics and can facilitate on-chip learning. Even though
µBrain is compatible with non-volatile memory technologies as
a replacement of the distributed memory (digital flip-flops) for
synaptic weights, we ruled out the analog option for the reasons
mentioned before.

As electrons’ speed is much faster than ions, a silicon neuron
can process spikes some orders of magnitude faster than its
real-time biological equivalent (nanoseconds switching on/off
time for transistors, vs. milliseconds neuronal and synaptic time
constant). This fact has motivated neuromorphic digital IC
engineers to implement time-multiplexed digital neuromorphic
chips (Davies et al., 2018, Merolla et al., 2011). In digital
implementations, it is possible to separate the processing part
and the memory. For example, one physical neuron core
can emulate many (virtual) neurons and one physical link to
emulate many (virtual) synaptic connections. Time-multiplexing
methods employ fast computations and constantly shuffle
neuron’s membrane potential from/to neuron memory and their
synaptic weights from/to synaptic memory. Furthermore, such
an architecture may host multi-neuron cores, each assigned the
emulation of a group of neurons, e.g., a layer, which can exchange
spikes asynchronously in a packet-switched form through
a network-on-chip (NoC); and based on the Address-Event
Representation (AER) of spikes in packets. The advantage of
the time-multiplexing approach is a higher neuron and synapse
density compared to the previous approaches and leveraging
of more complex neuron models [or even programmable

(Painkras et al., 2013)] at the cost of increased memory access
and complex data-shuffling primitives. Time-multiplexing may
be disadvantageous for ultra-low-power designs as it requires
additional control circuitry, increasing power consumption
to manage the core’s coherence. Also, contra to biological
neurons, the distance between memory and compute cores
increases the power consumption. As events inside each core
are processed serially, at peak activity times, processing latency
also increases or is not guaranteed and may result in event
drop out (depending on the depth and occupancy of event
queues). Finally, packetization and explicit addressing of events
(as in AER protocols) increase communication overhead (power
consumption) due to the additional address processing and
routing and memory requirements for queueing events in transit
(events are not a binary pulse or a direct signal anymore). In
the µBrain architecture, we do not time-multiplex the processing
of multiple neurons in a core (rather, each core is assigned
exclusively to one neuron) because for the size of networks we
are considering, the total silicon area of neurons is negligible
compared to the total area of synapse memory. In addition, a
packet-based event addressing is not required internally among
neurons, but we have opted for AER communication at the chip
interface with the outside world for ease of integration with
existing neuromorphic sensory systems.

The µBrain area is memory dominated, which is not a good
characteristic. However, µBrain requires distributed memories
and motivates the search of alternative memory technologies
to Static Random Access Memory technologies. Many novel
memory technologies are currently being investigated as
candidate solutions for neuromorphic technologies, such as
Phase Change Memories (PCM) (Nandakumar et al., 2018),
Resistance switching memory (RRAM) (Indiveri et al., 2013),
Electrochemical Metalization Memories (ECM) (Hao et al.,
2021). For this reason, our architecture is not focusing on the
memory aspect, as it could soon be replaced with some of the
novel technologies.

2. MATERIALS AND METHODS

2.1. Event-Based Architecture
An overview of the main building blocks of the µBrain
architecture and their interactions is provided in Figure 1A.
Event-based integrate-and-fire (IF) neurons are arranged in a
fully parallel topology of layered populations, which means
that each neuron is physically implemented in silicon (not
time-multiplexed). Within each layer, there may exist lateral
synaptic connections (that can leverage recurrent connectivity).
Every neuron independently (no global clock) accumulates
weighted incoming synaptic spikes and emits a spike itself
when the neuron’s accumulator overflows. Input spikes trigger
the membrane voltage integration, with immediate threshold
evaluation, resulting in distributed granular activations. As
input pulses arrive asynchronously before a neuron layer,
an event arbiter resolves any ordering conflicts if spikes
arrive simultaneously. Synaptic weights have a fixed bit-width
(determined at synthesis) representing 2’s complement integer
quantized values, in the range [−2W−1

− 1,+2W−1
− 1], where
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W represents the number of bits. For a given bit-width, the range
of quantized weight values can be linearly or logarithmically
arranged (the latter case has been taken into account since
precision is often more critical for smaller weight values).

Note that while the neuron implements an Integrate-and-Fire
(IF) neuron model (see Figure 1C), a Leaky Integrate and Fire
(LIF) model can also be facilitated by using one of the neuron
inputs to provide a periodic leakage signal. This will necessitate
an external clocked input (see Figure 1C).

2.2. Input/Output Interface
Input and output spikes are transmitted to/from µBrain using
a simple communication protocol based on the Address Event
Representation (AER). Unlike other common neuromorphic
AER systems (Boahen, 2000), which rely on a handshake
mechanism, µBrain uses only a strobe signal whose rising
edge informs when the address data are ready to be parsed
(Figure 1B). The strobe is then kept high for a few ns to indicate
a time duration that the address data remain valid and a spike is
propagated throughout the network.

The AER representation allows seamless interfacing with
event-based sensors like the silicon retina (Lichtsteiner et al.,
2008) and silicon cochlea (Liu et al., 2010), and microcontrollers
to perform further downstream spike-based signal analysis
(classification, regression, etc.).

2.3. Spike Arbiter
The spike arbiter before each layer of neurons (shown in
Figure 2A) detects the presence of at least one input spike and
dispatches it to the recipient layer neurons. When more than
one spikes arrive simultaneously, the spike arbiter takes care of
ordering and spacing them in time1. The arbitrations delays are
in the order of ns, while the incoming spikes arrive with a spacing
in the order of µs, or even ms (input frequencies range from Hz
to hundreds of kHz).

This functionality is implemented as follows (see Figure 2A).
Incoming spikes trigger an Input Edge Detector (implemented as
shown in Figure 2C) and are immediately propagated to a spike
register before the Priority-Encoder. A round-robin or linear
polling algorithm generates a 1-hot encoded mask, which gets
applied to the spike register contents to select a single spike
for propagation. Suppose there has been registered more than
one simultaneous spike in the spike register. In that case, the
difference between the spike register contents and the masked
output (i.e., remaining spikes) are fed back to the Input Edge
Detector for subsequent recursive processing (until all spikes are
consumed one-by-one by the Priority-Encoder). The spikes that
come out of the arbiter (see Figure 1C) activate (index) parts of
the post-synaptic weight memory to select weight values from
the fan-out synapses into the respective neurons’ accumulators;
to incrementally implement a weighted spike integration at each
downstream IF neuron.

1In this respect, input spike arbitration does not preserve the timing of inter-

arrivals.

Upon the arrival of incoming spikes and throughout their
consumption, the arbiter circuit becomes on-demand self-
clocked by means of a multi-phase single-cycle oscillator and a
special delay-cell circuit (explained next).

2.4. The Multi-Phase-Oscillator and Delay
Cell
In the absence of a global system-clock, the Multi-Phase-
Oscillator (Figure 2B) is an on-demand activated local clocking
circuit at the heart of the arbiter that warrants correct
pacing of its phases for ordered propagation of spikes among
neurons and across layers; and in this sense, it is the key
component for the event-driven operation of µBrain. The
primary sophistication that enables this functionality is a delay-
cell (within the multi-phase-oscillator).

Whenever (at least) one spike is latched in the arbiter and
propagated to the priority encoder, it sets off one oscillation cycle
in the multi-phase-oscillator, which by means of the delay cell
gets delivered in sequence at different places of the arbiter to
activate, temporarily only, first the loading of the spike register
in the priority encoder, then trigger the 1-hot masking/selection
of a spike, and finally activate the synaptic memory selector. Its
operation is depicted in Figure 2C.

The delay cell’s generated delays are fixed and take
into account the maximum input spike frequency, various
integration technology variation parameters, and the overall
timing constraints of the circuit during synthesis/place-and-
route of the IP. The current prototype operates in a few ns (we
used 100ns to have a safe margin). This is a substantially large
delay given that in standard CMOS technology timing circuits
are generally energy-consuming. It is, however, possible to make
considerable delays (hundreds of ns to hundreds of µs) without
sacrificing power dissipation using CMOS thyristors (Zhang
et al., 2004). Our design uses two thyristors in a cross-coupled
configuration (see the schematic of Figure 3B), in which the
current in the delay cell is limited with a near-threshold bias
voltage. The final layout of this cell is compact and, in our design,
requires 3.0 µm2. The delay must be within safe margins while
its actual value does not need to be precisely tuned. In the face of
these challenges, the delay cell’s custom design plays a crucial role
in µBrain’s low power consumption.

The delay generation is explained as follows: assume that
Vn = 0 and Vp = Vdd such that both transistors are off (see
Figure 3A). Then, because of the current source Ic, Vn goes up
linearly until Vn = Vtn during a time td1 when the NMOS
transistor starts to conduct:

td1 =
CnVtn

Ic
(1)

Voltage Vn keeps going up linearly:

Vn(t)− Vn =
Ic

Cn
t (2)
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FIGURE 1 | µBrain event-driven architecture. (A) The digital architecture is organized in layers. Each layer consists of an arbiter, a weight memory matrix for forward

and recurrent connections, and a set of IF neurons. The architecture can be synthesized for an arbitrary number of neurons, weight bit width resolution, and synaptic

memory size M, Nx – where M, is the number of inputs and Nx is the number of neurons in layer indexed by x. (B) Input/Output address event representation signals

and timing. (C) Simplified schematic of a digital spiking neuron. Input spikes arriving at random times select corresponding weights, which in turn are added (or

subtracted) by an accumulator. Each time the accumulator overflows, the neuron’s circuit emits an output spike on the axon output. The graph below shows the time

progress of the accumulator value representing the neuron’s membrane potential. Output spikes are shown below the neuron’s membrane potential.

Vp goes down until Vdd−Vtp during a time td2 when the PMOS
transistor starts to conduct:

Idn =
βn

2
(Vn − Vtn)

2
=

βn

2

(

Ic

Cn

)2

(3)

The charge on capacitor Cp is simply the integral in the td2 time
interval, as:

∫ td2

0
Indt = CpVtp (4)
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FIGURE 2 | (A) Logic block diagram of spike arbiter (thick lines represent many parallel signals). (B) Logic block diagram of the local oscillator and the timing of the

self-generated clock pulses. (C) Logic block diagram of the input edge detector (edge-triggered) implemented through an S/R circuit. It is parameterizable with a

parameter H representing the number of states (so it can remember H-1 spikes). Here we show the case in which (H = 2), i.e., the most straightforward configuration.

Which means that td2 is:

td2 =
3

√

6C2
nCp

βnI2c
(5)

After, the voltages quickly move to Vn = Vdd and Vp = 0 Finally
the total delay time td results in:

td = td1 + td2 =

(

Vtn

Ic
+

3

√

6Vtp

βnI2c

)

CL (6)

Where CL = Cp = Cn.
The current in the CMOS delay cell (Figure 3B) is limited

with a near-threshold bias voltage on node VN . The delay
between nodeA andX tracks with process variations, voltage, and
temperature (PVT).

3. RESULTS

This section presents an evaluation of an instantiation of
µBrain’s IP in a 40 nm technology node. For reference
comparison of µBrain with other tiny spiking neural network
processors, we perform the standard benchmark of handwritten
digits recognition (MNIST). We also showcase the capabilities
of µBrain while performing a radar-based hand gesture
classification task.

3.1. µBrain’s ASIC Prototype
We have produced a prototype implementation (see Figure 4)
consisting of 336 neurons organized in a Recurrent Fully
Connect (RFC) layer of 256 neurons, followed by two Fully

Connected (FC) layers of 64 and 16 neurons, respectively. The
synaptic weights’ resolution in all layers has been fixed to 4 bits,
representing discrete values from −7 to +7. The weights are
runtime re-programmable in local flip-flops, organized via a shift

register circuit. The RFC layer has a random connectivity pattern
of about 30%, allowing savings in weightmemory and using it as a
reservoir. After the RFC layer, two FC-connected layers can serve

as a second shallow network or can act as a readout classification
network. The RFC has 19,878 weight registers (synapses), and
the FC has 17,488, which is a total of 37,366. This adds up
to 149,464 distributed memory bits (18.2 kB). Both RFC and
FC have a global-scale input. When active, the synaptic weights
get scaled by a factor of 8 before being accumulated in the

neurons. The scaling option sets the threshold to 8 instead of
64. The neuron accumulators’ size is 7 bits and can effectively
store only positive values from 0 to 63. A neuron will generate

an output spike when its accumulator value (i.e., “membrane
voltage”) overflows. In that case, the accumulator content will not
be reset but rather wrapped around. The accumulator’s wrapping

implies that the neurons reset to the overflow amount after
emitting a spike. If a spike causes an underflow, the neuron
accumulator is kept to zero. Each FC neuron has a bias input
with a corresponding synaptic weight value. The global bias input
emulates linear membrane leakage. The reset of the membrane
potential at the overflow amount enables to map the behavior
of the µBrain neurons to the Rectified Linear Units (ReLU)
activations in a mean-rate approximation (to ease ANN to
SNN conversion).

µBrain layout area is 2.82 mm2, we used the 40 nm TSMC
technology with I/O voltage of 2.5 V, and a core voltage 1.1 V. A
micro-graph picture of the prototype device is shown in Figure 5.
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FIGURE 3 | Schematic design of the delay cell. (A) A CMOS thyristor is a combination of a PMOS and an NMOS transistor, in which the drain of the PMOS is

connected to the gate of the NMOS. (B) Two cross-coupled CMOS thyristors implementing a delay-cell.

FIGURE 4 | µBrain’s ASIC instantiation for the experiments in this paper consists of three layers: a recurrent layer of 256 neurons with circa 30% lateral connectivity

and two fully connected layers counting 64 and 16 neurons, respectively. VN is the global near-threshold bias voltage used to tune the delay cells. The global scale

inputs are digital inputs used to set to scale within a layer the synaptic weights.

3.2. Handwritten Digits Classification With
µBrain
µBrain is designed for inference only, and training spiking
neural networks can be done off-line with various techniques
(Rueckauer et al., 2017; Neftci et al., 2019; Sengupta et al., 2019).

µBrain is compatible with both spike-time and mean-rate coding

schemes. As a proof of concept, we tested the µBrain prototype

with a mean rate approach in which we converted a pre-

trained Artificial Neural Network (ANN) into a spiking neural

network (as first introduced by Pérez-Carrasco et al., 2013). This
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FIGURE 5 | µBrain’s micro-graph, the IC is implemented in 40 nm TSMC technology with an I/O voltage of 2.5 V and a core voltage of 1.1 V. (A) Micro-graph picture

compared with a Euro cent coin. IC area is 2.82 mm2 (including pads). (B) Area breakdown: 59.6% flip-flops for synaptic weights and tri-state weight selectors

(synapses), 35.7% spike arbiters, 4.1% neuron accumulators, and 0.6% remaining routing logic. Memory is completely distributed over the area (no Von-Neumann

bottleneck).

choice has been dictated by the static nature of the MNIST
images and the simplicity of training and testing offered by
the standard deep-learning frameworks [e.g., Tensorflow (Shukla
and Fricklas, 2018)]. For these reasons, we have also exploited a
feed-forward ANN network without relying on recurrent lateral
connections. We trained a fully connected network of Rectified
Linear Units (ReLU) with 256 inputs, 64 hidden, and 10 output
units, respectively, and no biases. Since our instantiation of
µBrain has only 256 inputs, we reduced the MNIST input images
to 16 × 16 pixels. Pixel grayscale values are mapped into firing
rates for the first layer of 256 neurons. The grayscale values
[0, 255] are linearly mapped in the arbitrary selected frequency
range [100, 655 kHz].

After training, the ANN activation values are encoded in the
spiking neurons through their mean rate activations2. The weight
values transferred from the trained ANN model to the SNN
remain the same but are quantized and scaled to fit the limited
4-bit precision in the µBrain instance (i.e., the range [−1, 1]
maps to the integer range [−7,+7]). The network’s output is
read out using a single measure of Inter Spike Interval (ISI).
The output neuron that has the shortest ISI is considered the
correct output class, and the network can proceed to compute
the following input.

Figures 6A,B show the impact of weight quantization. The
software simulation of the spiking neural network closely
matches the hardware measurements. With <4 bit weights, the
accuracy decreases significantly. The accuracy in the classification
of the 10,000 digits in the MNIST test set (16 × 16 pixels) is
consistently 91.7% (92% in the software trained model), with
an average energy per prediction of 308 nJ. This performance is

2Note that the actual mean rate frequencies are not significant: it is their frequency

ratios that matter.

consistent with the literature (for the quantization scheme and
size of the network used, as reported in Table 2).

3.3. Radar-Based Hand Gesture
Classification With µBrain
Unlike vision-based imaging sensors, radar imaging systems
directly capture motion profiles and temporal variations in the
environment through active probing and intercepting the back-
scattered power. Here, we applied machine learning to classify
thesemotion patterns as previously proposed in Lien et al. (2016).
To use our µBrain prototype in a radar signal classification
use case, we converted the traditional micro-Doppler maps into
tiny binary images that have been interpreted as spiking inputs
for the µBrain device. These binary images indicate which of
the 256 input neurons receive spiking inputs, just as in the
case of MNIST. Binary images achieve comparable accuracy
as grayscale input images, with no statistical difference. This
motivates the use of micro-Doppler features as good features
for gesture recognition. In contrast to camera-based vision,
radar micro-Doppler can provide compressed outputs (sparse
FFT coefficients) for faster inference while being robust in low-
visibility conditions (e.g., in dark environments).

3.3.1. Event-Based Frequency-Modulated

Continuous-Wave (FMCW) Radar Sensor
For proof of concept experimentation, we used a low-power, low-
resolution, 8 GHzUltrawide-Band (UWB) FrequencyModulated
Continuous Wave (FMCW) radar from Liu et al. (2019). The low
range-resolution (<20 cm) and use of UWB technology in this
radar make it a very low-power consumption sensor (20 mW),
yet still very effective for various IoT applications, such as vital
sign detection (Liu et al., 2019; Mercuri et al., 2019).
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FIGURE 6 | (A) Accuracy achieved in simulation and on the µBrain device, with a two-layer fully connected neural network. The red mark shows the accuracy

achieved with the µBrain device. (B) Quantized weight distribution for the two layers of the shallow network. (C) The blue line shows the current measurement on the

chip during handwritten digits classification (MNIST). The network is reset after two consecutive spikes are emitted by any output neurons (peak current reflects the

reset). Vertical dashed lines indicate a single-digit classification. The mean current consumption for this digit is < I ≥ 88µA, and it varies among test samples. To

classify this digit, it takes 2,769 µs.

FMCW radars transmit a continuous wave with linearly
ramping up and/or down frequencies (chirp), starting from a
frequency f0 up to frequency fn. Figure 7 shows a measurement
of the back-scattered power. Here, we only state that the 8 GHz
radar has a range resolution of about 30 cm,making it challenging
to detect single finger movements, but enough to detect whole
hand gestures’ temporal trajectory. The bandwidth of a radar is
defined as the frequency interval Bw = fn − f0. This frequency
interval defines the range resolution according to res = c/2Bw,
in which c is the speed of light.

A photo of the lab prototype platform on which the radar
sensor IC is mounted is provided in Figure 8. This serves
as a test platform for the pre-fabrication of a miniaturized
IoT sensor for vital-sign monitoring, activity classification, and
other indoor applications. In this prototype, the bulkiest part
is an SoC platform, where backend logic (time-and-frequency
domain) and communication is implemented and tested on a
Field Programmable-Gate Array (FPGA) and embedded Linux

processor. A Unix socket interface is used to communicate the
spike event data to µBrain. The overarching objective is that the
whole FPGA SoC will be obsolete and µBrain will be ultimately
packaged in the same IC with the radar sensor. We refer the
reader to Liu et al. (2019) for detailed circuits and operational
range descriptions.

3.3.2. Radar-Based Hand Gesture Classification in

µBrain
With the aforementioned radar setup, we collected a hand-
gesture dataset containing four dynamic gestures from five
subjects. Data recordings include the subject standing at a
distance of 2 m from the antennas (RX and TX). The gestures
consist of swinging the right or left arm in the horizontal
direction (horizontal), waving with the right or left hand by
keeping the palm facing out (hello), moving the hand with the
palm facing out radially toward and away from the radar (toward)
and finally we recorded background activity in which none of
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FIGURE 7 | FMCW SISO radar signal illustration. (A) A transmitter antenna transmits a signal of linearly increasing frequency starting at f0 until fn. A receiving antenna

captures back-scattered signal from the environment. Td represent chirp duration, while Ti is the PRI (time interval) between chirps. (B) A radar frame is a collection of

192 consecutive chirp receptions.

FIGURE 8 | The lab prototype test platform on which the 8 GHz UWB FMCW

radar IoT sensor IC is mounted for collecting data and carrying out

measurements for vital-sign monitoring, activity classification, and other indoor

applications.

the above gestures appeared in a static background (background).
The radar system streams out chirp frames (collections of a fixed
number of received chirp signal returns; as a 2d-matrix of time-
domain data). In our setup, we collect 192 chirps in a single
frame, while the number of ADC samples per chirp is 512. The
ADC resolution is 10 bits. The time interval between emitted
chirps has been set to Ti = 1.2 ms while the chirp duration is
Td = 41µs; therefore, a frame consists of 238 ms of recordings.
Figure 9 (top left) shows three successive frames divided by
a vertical dashed line. The second figure from the top left in
Figure 9 shows a micro-Doppler map obtained by processing
three frames of radar signal (Chen et al., 2014) (computed
as described in Supplementary Material). The micro-Doppler
maps show the distribution of reflected energy over velocity,
at a fixed distance, as a slow-time function. These maps thus
provide rich information of the gesture dynamics over time. We
converted the micro-Doppler maps into binary images, which

serve as spike inputs, to directly interface the radar system with
spiking neural networks in µBrain. In this conversion we apply a
dynamic threshold on the micro-Doppler map, the threshold on
the micro-Doppler map has been set to Thr = µ+ s · σ , in which
µ is the mean of the micro-Doppler map as µ =

1
n

∑n
i=1 Pi,

σ is the standard deviation, and s a scaling factor (s = 0.15).
The scaling factor is a hyper-parameter, serving as a crude noise
filter by means of quantizing, and its optimal value is determined
through grid search. After thresholding, the pixel values above
the threshold value have been set to one while all the others to
zero. The image has been scaled to 16× 16 pixels as µBrain only
supports up to 256 input channels. We show samples from the
dataset in the right panel of Figure 9.

As per theMNIST use case, we have trained a traditional ANN,
and then we have converted it into a spiking neural network. The
binary images [0,1] have been mapped with input frequencies
equal to 0 Hz and 655 kHz. As previously, we have evaluated
the output of the network using a single measure of ISI. The
output neuron index with the lowest ISI predicts the input class.
Using this dataset, we have achieved an accuracy of 93.4% and
energy consumption of 340 nJ per classification. Table 1 show
the confusion matrix for the radar-gesture classification on the
test set.

For comparison, in Scherer et al. (2020), the authors
developed a very low power embedded processing system for
real-time gesture recognition based on radar sensing, which

achieves 86.6–92.4% accuracy with energy consumption per
classification of 4.52 mJ on inputs from a constellation of high-

resolution 60 GHz FMCW radars. One of the two datasets they

consider (11-gesture) includes fine gestures with fingers, while
the other one (5-gesture) containedmore coarse-grained gestures

analogous to ours. The radar sensor we used is a much lower
resolution (operating at only 8 GHz, with a range resolution
in the order of ten of cm instead of sub-cm), and the antenna
we used does not provide angular information therefore, the
samples are much less informative. The networks they trained
were one 2D-CNN (seven layers deep) in tandem with a 1D
TCN (10 layers deep) with 16 bit fixed-precision weights, which
is to be contrasted with our 2–3 layer SNN of only 4-bit weight
precision. Nevertheless, the accuracy we achieve is competitive
while our energy consumption per classification is 3-plus orders

Frontiers in Neuroscience | www.frontiersin.org 10 May 2021 | Volume 15 | Article 664208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Stuijt et al. µBrain

FIGURE 9 | (A) Shows the preprocessing of the radar signal for 3 frames of raw ADC data (A top), to a micro-Doppler map (A middle), to a thresholded, scaled (16 ×

16), and binarized version of the micro-Doppler map (A bottom). The binary image gets converted into a spike stream for the µBrain chip. (B) Shows examples from

the preprocessed radar gesture dataset in which the label at the top associates to its respective gesture as 0: hello, 1: toward, 2: horizontal, 3: background.

of magnitude lower, making our solution truly an ultra-low-
power one.

While not directly comparable (but rather as an indicative
reference), this performance is on par with results in the literature
based on the DvsGesture dataset (Amir et al., 2017) for gesture
recognition from a dynamic vision sensor (Delbrück et al., 2010).
Using various spiking networks and other machine learning
models, the reported accuracy (Amir et al., 2017; Shrestha and
Orchard, 2018; Ghosh et al., 2019; Wang et al., 2019; Kaiser et al.,
2020;Maro et al., 2020) lies in the range between∼91 and 96% for
10-gesture classification. In a more closely related to our setup,
the authors in Maro et al. (2020) report ∼82 and∼93% accuracy
with and without, respectively dynamic background suppression

filtering, using a two layer network and based on a new dynamic
vision sensor dataset (NavGesture) that contains five gestures
very similar to ours. Last but not least, it is worth pointing that
in Amir et al. (2017) from the above list, a 3,951-neuron spiking
CNN was deployed in a single True North IC, measuring 44.5
mW power consumption (without the leak) for this task.

4. DISCUSSION

This paper introduced µBrain, a lightweight neuromorphic
inference engine for ultra-low power applications in the IoT
domain. It offers an alternative to neural network accelerators
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TABLE 1 | The confusion matrix for on-chip classification of the radar gesture

dataset (test-set).

Hello Toward Horizontal Background

Hello 70 0 0 5

Toward 0 66 5 4

Horizontal 0 6 120 0

Background 2 0 0 55

when there is a high degree of sparsity (temporal, low-rate)
in the input signal that can be exploited to reduce power
consumption. Off-the-shelf deep-learning accelerators for edge
inference, such as Google EdgeTPU (Cass, 2019), Intel Movidius
(Ionica and Gregg, 2015), and Nvidia Jetson (Mittal, 2019)
perform a competitive number of operations per watt. However,
they cannot efficiently exploit sparsity in the signals to scale
their energy use. This means that when the input signal is
highly sparse (e.g., natural signals like audio/video/EEG/etc.),
they end up performing a large number of redundant operations,
which can be skipped. For example, when the sparsity is higher
than 95%, <5% of operations are required, and the remaining
are just overhead. In deep learning algorithms achieving over
70% activation sparsity while maintaining accuracy within 2% is
challenging (Wen et al., 2016; Kurtz et al., 2020). By contrast, in
Yin et al. (2020) SNN architectures achieve a very high degree
of spatio-temporal sparsity (more than 95%) with negligible
accuracy loss.

Compared to many typical ANN accelerators for edge AI,
µBrain inherently exploits all types of sparsity (spatial, structural,
and temporal) in achieving its ultra-low-power signal processing
tasks. Spatial and temporal sparsity relate to neuron activations,
while structural sparsity relates to synaptic weights. µBrain takes
advantage of spatial sparsity by operating in a truly event-
driven fashion: computations take place only for the parts of the
input that are non-zero and only when a non-zero activation is
propagated through the network, all other lateral parts of the
network remain silent conserving energy. It also takes advantage
of temporal sparsity since it uses stateful neurons: the memory
potential in each neuron is integrating the changes of its inputs,
state is thus updated only when there are changes between
subsequent inputs and a neuron fires and activates other down-
stream neurons only when there is sufficient amount of change
in the inputs (level crossing). In the absence of any input spikes
nothing is active downstream (conserving energy) until there
is a change (spike) in space or time. Finally, structural sparsity
is programmable in µBrain at synthesis time. Suppose a model
has a pruned network topology. In that case, µBrain can be
synthesized with reduced synaptic connectivity, which saves area
and static power for maintaining weight memory which would
otherwise be set to zero as at runtime (an overhead in fully
connected crossbar architectures). To give an impression of the
related energy costs and savings from reducing spike activity
(dynamic power) and synaptic connectivity (static power), in the
topology of the MNIST use-case (section 3.2), we measure on
average 11,500 spikes per classification (for 6,400 input stimuli

per image), where µBrain consumes around 26pJ per spike
(including communication, neuron accumulation, and synaptic
read) and out of which 30% is static power3. Reducing the
network connectivity (structural sparsity) or increasing the speed
of the network reduces linearly the static power expended due
to leakage. Increasing the thresholds in the neuron parameters
(spatio-temporal sparsity) also reduces the dynamic power.

One big challenge in digital neuromorphic chips and µBrain’s
design is static power consumption (leakage power). While the
architecture is designed to have event-driven dynamic power
consumption (consume dynamic power only when there is an
event), there is no control on static power. Since the architecture
area is dominated by memory, most of the static power is
consumed to keep the flip-flop-based memories alive. However,
this challenge can be tackled at various levels, such as using
Fully-Depleted Silicon-On-Insulator (FDSOI) (Carter et al.,
2016) manufacturing technology, advanced non-volatile memory
technologies (Burr et al., 2017), digital design tricks (e.g., power
gating when no inputs are present), and by pruning at synthesis
time unneeded synaptic connectivity (as discussed above).

µBrain has been designed to offer flexibility and
customizability for different applications in the IoT domain.
This means that it is possible to change the number of neurons
in each layer, the number of layers, connectivity structure, and
the parameters’ resolution. The design incentive is to empower
in this way IoT applications where power consumption is the
number one priority and make integration with various sensors
effortless (more often than not by packaging µBrain and the
sensor in the same IC); to perform tiny machine learning tasks
that were not possible or affordable (energy-wise) before. It
is less efficient for implementing very deep neural networks
as silicon area efficiency plays an essential role. The lack of
time-multiplexed neuron cores in µBrain limits the scalability.
However, avoiding time-multiplexing of neuron processing has
been a conscious trade-off given the target application domain
(i.e., small networks, energy efficiency), since it has enabled the
co-location of memory and processing.

Another aspect that, at first sight, might appear as a limitation
ofµBrain is the use of Integrate-and-Fire (IF) neurons. However,
there is recurrent synaptic connectivity among neurons the
absence of leakage in the neurons may see as unnecessarily
restrictive to the effectiveness of recurrent network architectures.
In practice, however, quite the opposite holds. It is easy to
introduce leakage at a fine-grained neuron level (different
leak functions and with varying parameters per neuron); by
sacrificing for this purpose, one neuron’s inputs. This choice
has been motivated by the intended use of µBrain primarily for
experimental purposes.

Finally, one current inconvenience in the µBrain
architecture is that the delay cell, which is one of the critical
components, requires re-customization when ported to different
manufacturing technologies. Moreover, while there is an
advantage in going to small node technologies in terms of power
consumption and area, the delay cell’s speed will remain the

3These numbers are for Vdd 1.1 V in 40 nm technology, with 53 µA leak current

and 74 µA total current in 42 s of classifying 10,000 samples.

Frontiers in Neuroscience | www.frontiersin.org 12 May 2021 | Volume 15 | Article 664208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Stuijt et al. µBrain

TABLE 2 | Reference comparison of µBrain with other neuromorphic processors for the MNIST handwrittend digit classification.

µBrain Frenkel et al.

(2018)

Park et al.

(2019)

Cho et al.

(2019)

Chen et al.

(2018)

Moradi et al.

(2017)

Davies et al.

(2018)

MNIST accuracy (%) 91.7 (16 × 16) 91.4 (16 × 16) 97.83 91.6 (16 × 16) 97.9 – 96.4

Neuron/Synapses used for MNIST 74/17k 10/2.5k 410/199k 2048/149k 1546/666k – 10/7840

VDD (V) 1.1 0.55–1.1 0.8 0.7 0.525–0.9 1.3–1.8 0.5–1.25

Energy/Prediction (nJ) 308 15 @ 75 MHz,

54 @ 1.3 MHz

236.5 – 1700 – 85,52*

Technology (nm) 40 28 FDSOI 65 40 10 FinFET 180 14 FinFET

Physical neurons cores/total neurons 336/336 1/256 410/410 2048/2048 4096/4096 1024/1024 128/131072

Power 73 µW 35–447 µW 23.6 mW 46.6 mW (2.3

uW * 4096

neurons)

94 mW 400 µW @ 10

Hz average

firing rate

110 mW

Area (mm2 ) 2.68 (1.42 core only) 0.086** 10.08 2.56 1.7 43.79 60

Synaptic resolution # bits 4 4 >10 2/3 7 2 (analog) 1–9

Clock frequency Event-driven 75 MHz 20 MHz Global Async.

Locally sync

110 MHz

(neurons)

105 MHz Event-driven Event-driven

Fully synthesizable Yes Yes Yes Yes Yes No (Analog

Mixed Signal

design)

Yes

Supported algorithm SNN feed-forward, recurrent SNN online

learning,

feed-forward

SNN on-line

learning

SNN

feed-forward,

recurrent

SNN/BNN

online-

learning, feed

forward,

recurrent

SNN

feed-forward,

recurrent

SNN, online-

learning,

feed-forward,

recurrent

The µBrain’s power is measured with the input frequencies of [100, 655 kHz], this result in an average time per classification of 4.2ms. *Blouw et al. (2019). **Only IP core area without

peripheral and pads.

same in practice. While this is a minor nuisance, it is slightly at
odds with the otherwise general design portability provided by
the synthesizability in a complete digital design.

4.1. µBrain and Low-Power Neuromorphic
Devices
Several other ultra-low-power neuromorphic processors have
recently been developed. Table 2 compares our proposed
architecture with the other state-of-the-art neuromorphic
architectures for which the power consumption reported is
<120 mW. Among them, µBrain achieves competitive energy
consumption per prediction (308 nJ/MNIST classification)
without compromising accuracy. It is an entirely event-driven
design (i.e., consumes only leakage power in the absence of input)
and is fully synthesizable.

µBrain should be categorized as a small-scale neuromorphic
processor. Unlike large-scale processors (like Davies et al.,
2018), where the power consumption is several mW, small-
scale processing units like µBrain only consume a few µW
and therefore can be integrated with battery-powered always-
on devices (for example, in wearable or implantable devices).
Additionally, these processors can be integrated with the sensors
to build a highly efficient sensor-processor system-on-chip (SoC).

Frenkel et al. (2018) designed and implemented a 256-neuron
processor with online learning capability and time-multiplexing
of an entire topology in a single physical neuron core. The

neurons in this design are fully connected (256 × 256 synapse),
which allows for arbitrary topologies. However, this high
amount of synaptic connections is an overhead not required
for many applications. In µBrain, our approach is to sacrify
runtime flexibility for efficiency. Therefore, we decided to
perform mapping-synthesis co-optimization. After synthesis and
fabrication of the chip, in µBrain, it is only possible to modify
the synaptic weights of the SNN but not the main configuration
(synaptic connectivity). This saves substantial area and allows for
highly efficient implementation of the processing unit for a target
application (for example, when integrating with a radar sensor).

Also, by contrast to Frenkel et al. (2018) as well as Davies et al.
(2018),µBrain does not time-multiplex neurons in neuron cores,
which leverages the co-localization of memory and compute (to
improve latency and energy consumption).

Park et al. (2019) also presented a clocked SNN architecture
processor, but the proposed processor consumes over 20 mW
and cannot be used for always-on, battery-powered applications.
In contrast to this work and Frenkel et al. (2018), µBrain does
not use a fixed clock frequency, making it more efficient for
event-based applications. Compared to other event-driven ASICs
like Davies et al. (2018), the shallow processing pipeline ofµBrain
allows for a lightweight oscillator to generate just a few pulses
upon each event’s arrival.

Moradi et al. (2017) presented an analog neuromorphic
processor. Even though the analog design has clear advantages
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over the digital one, it is not easily integratable and synthesizable
with other digital units (e.g., sensors) and therefore different
from our proposed solution. As we discussed before, analog
design is also vulnerable to manufacturing variations, making
its simulation and training in software difficult. It is challenging
to use for critical applications like healthcare. Nevertheless,
µBrain gets as close as possible to an analog design by featuring
a clock-less architecture (truly event-driven) and co-localizing
computation and memory in the same die.
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