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In this paper, we propose a graphlet-based topological algorithm for the investigation
of the brain network at resting state (RS). To this aim, we model the brain as a graph,
where (labeled) nodes correspond to specific cerebral areas and links are weighted
connections determined by the intensity of the functional magnetic resonance imaging
(fMRI). Then, we select a number of working graphlets, namely, connected and non-
isomorphic induced subgraphs. We compute, for each labeled node, its Graphlet
Degree Vector (GDV), which allows us to associate a GDV matrix to each one of the
133 subjects of the considered sample, reporting how many times each node of the
atlas “touches” the independent orbits defined by the graphlet set. We focus on the 56
independent columns (i.e., non-redundant orbits) of the GDV matrices. By aggregating
their count all over the 133 subjects and then by sorting each column independently,
we obtain a sorted node table, whose top-level entries highlight the nodes (i.e., brain
regions) most frequently touching each of the 56 independent graphlet orbits. Then,
by pairwise comparing the columns of the sorted node table in the top-k entries for
various values of k, we identify sets of nodes that are consistently involved with high
frequency in the 56 independent graphlet orbits all over the 133 subjects. It turns
out that these sets consist of labeled nodes directly belonging to the default mode
network (DMN) or strongly interacting with it at the RS, indicating that graphlet analysis
provides a viable tool for the topological characterization of such brain regions. We
finally provide a validation of the graphlet approach by testing its power in catching
network differences. To this aim, we encode in a Graphlet Correlation Matrix (GCM) the
network information associated with each subject then construct a subject-to-subject
Graphlet Correlation Distance (GCD) matrix based on the Euclidean distances between
all possible pairs of GCM. The analysis of the clusters induced by the GCD matrix shows
a clear separation of the subjects in two groups, whose relationship with the subject
characteristics is investigated.

Keywords: brain network, default mode network, fMRI, graphlet, network comparison, resting state

INTRODUCTION

“Resting-state brain activity” is defined as the activity in the brain when a subject is awake but not
performing a specific cognitive task or responding to external sensory stimuli.

The observation that magnetic resonance imaging (MRI)could be used to monitor temporally
correlated low-frequency activity fluctuations in spatially remote brain areas led to widespread use
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of resting-state functional magnetic resonance imaging (rs-fMRI)
to evaluate resting-state network properties (O’Connor and
Zeffiro, 2019). Inside such a kind of network, the DMN represents
the first and most studied resting-state subnetwork (Raichle
et al., 2001; Greicius et al., 2003; Buckner et al., 2008), and
it has been proposed to support “the construction of internal
mental models based on mnemonic (limbic) systems” (Buckner
et al., 2013). It is a complex large-scale network, crucial for
understanding cognitive functions, that includes a number of
highly interconnected brain regions. The DMN is of critical
importance for maintaining the brain functions during the
resting state. As the brain is engaged in goal-directed activity,
the DMN experiences a progressive deactivation (see for instance;
Anticevic et al., 2012). The main goal of this paper is to provide
a topological characterization of the rs-fMRI network, i.e., the RS
network generated by employing rs-fMRI data.

There is a general consensus on the fact that the areas
forming the DMN are the posterior cingulate cortex (PCC),
the precuneus (PCUN), the medial prefrontal cortex (mPFC),
and the medial, lateral, and inferior parietal regions (mPL, LPL,
IPL, resp.), which contribute to adaptive function, attention, and
internal maintenance (Acheson and Hagoort, 2013). However,
some authors (see for instance; Greicius et al., 2003; Buckner
et al., 2008) also include in the anatomy of the DMN the
ventral medial prefrontal cortex (vMPF), the inferior parietal
lobule (IPL), the lateral temporal cortex (LTC), the dorsal-medial
prefrontal cortex (dmPFC), and the hippocampal formation
(HF). This limbic area is involved in the DMN in its
entireness, including the hippocampus proper (HIP) as well
as the entorhinal (EC) and parahippocampal (PHC) cortices.
Differently, other authors (Andrews-Hanna et al., 2010, 2014),
consider the DMN as a wider set of interconnected and
anatomically defined brain regions. In particular, they speculate
that the DMN consists of the following cerebral areas: The
PCC, the PCUN, the mPFC, and the angular gyrus (AnG)
should act as hubs, while the temporoparietal junction (TPJ),
the lateral temporal cortex, and the anterior temporal pole
constitute the dorsal medial system; and the hippocampus
(HF+), the parahippocampus (PHC), the retrosplenial cortex
(RSC), and the posterior inferior parietal lobe (pIPL) are the
medial temporal subsystem. It follows that the DMN can
be separated into hubs and subsections, which leads to the
intriguing problem of providing a topological characterization of
such brain regions.

In this paper, we use fMRI data obtained after parceling
the brain into 94 cortical areas using the Harvard–Oxford
Atlas (HOA) (see Table 1). Basically, brain parcellations divide
the brain’s spatial domain into a set of non-overlapping
regions characterized by some homogeneity with respect
to the information provided by different image modalities,
such as cytoarchitecture, anatomical connectivity, functional
connectivity, or task-related activation. Hence, an atlas represents
a certain labeling of brain structures. As a consequence, the
nodes we are employing are labeled. From now on, we refer
to “labeled node” simply as “node.” We wish to remark that
other functional neuroimaging techniques can be employed, such
as magnetoencephalography (MEG) (see for example; Finotelli

et al., 2016) as well as different models of investigation, as
shown in Finotelli and Dulio (2015).

In agreement with (Finotelli et al., 2018), where an extended
version of the DMN based on a graph theoretical and statistical
analysis was provided, and with reference to Table 1, we consider
the DMN defined by the left and right frontal poles (respectively,
nodes 1 and 48); the left and right superior temporal gyrus,
posterior division (respectively, nodes 10 and 57); the left and
right middle temporal gyrus, posterior division (respectively,
nodes 12 and 59); the left and right supramarginal gyrus,
posterior division (respectively, nodes 20 and 67); the left and
right angular gyrus (respectively, nodes 21 and 68); the left and
right frontal medial cortices (respectively, nodes 25 and 72); the
left and right cingulate gyrus, posterior division (respectively,
nodes 30 and 77); and the left and right precuneus (respectively,
nodes 31 and 78).

The main goal of this paper is to topologically explore the
RS network and, as a consequence, the DMN and its principal
connections with other cerebral areas. To this aim, we exploit
graphlets, namely, connected non-isomorphic induced subgraphs
of a network (Pržulj et al., 2004; Pržulj, 2007). We model the brain
as a graph, where nodes correspond to specific cerebral areas
and links are weighted connections determined by the intensity
of the fMRI. Then, we select a number of working graphlets
and we focus on the analysis of their orbits, i.e., nodes of the
same graphlet that can be mutually interchanged under a graphlet
automorphism. The frequency of appearance of the orbits is
computed, for each node of the considered atlas, over the 133
graphs corresponding to the subjects. Sorting the resulting node
list based on the frequency of occurrence of orbits, a sorted node
table is obtained, whose columns are pairwise compared. This
allows identifying sets of nodes that are consistently involved with
high frequency in the graphlet orbits all over the 133 subjects.
The analysis of such sets points out that the maximally recurrent
orbits occur on a set of nodes that directly belong to the DMN
or strongly interact with the DMN at the RS. We conclude
that the graphlet approach is an effective tool to select a set of
predominant regions at RS and thus a valid candidate for further
topological brain network analyses.

In the term “graphlet,” the suffix “-let” recalls that the
considered induced subgraphs are small with respect to the size
of the network, pointing out the local nature of the approach.
Focusing on small subgraphs could reveal important features
of some special local neighborhoods where given networks are
worth comparing. For instance, this approach has proved very
successful in cellular network analysis, in particular in showing
the exceptional high agreement of eukaryotic protein–protein
interaction (PPI) networks with the geometric random graph
model (Pržulj, 2007). In this paper, we aim to demonstrate that
following a graphlet approach in the investigation of the brain
network provides a nice topological interpretation of the brain
functional connectivity.

In the second part of the paper, we give a validation of the
graphlet method by testing its power in network comparison,
by means of a network analysis based on a graphlet correlation
distance (GCD) matrix, which defines the Euclidean distances
between all possible pairs of subjects’ networks. The analysis
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TABLE 1 | Harvard–Oxford Atlas (HOA) nodes and corresponding cerebral areas.

Node Cerebral area Node Cerebral area

1 Left frontal pole 48 Right frontal pole

2 Left insular cortex 49 Right insular cortex

3 Left superior frontal gyrus 50 Right superior frontal gyrus

4 Left middle frontal gyrus 51 Right middle frontal gyrus

5 Left inferior frontal gyrus, pars triangularis 52 Right inferior frontal gyrus, pars triangularis

6 Left inferior frontal gyrus, pars opercularis 53 Right inferior frontal gyrus, pars opercularis

7 Left precentral gyrus 54 Right precentral gyrus

8 Left temporal pole 55 Right temporal pole

9 Left superior temporal gyrus, anterior division 56 Right superior temporal gyrus, anterior division

10 Left superior temporal gyrus, posterior division 57 Right superior temporal gyrus, posterior division

11 Left middle temporal gyrus, anterior division 58 Right middle temporal gyrus, anterior division

12 Left middle temporal gyrus, posterior division 59 Right middle temporal gyrus, posterior division

13 Left middle temporal gyrus, temporooccipital part 60 Right middle temporal gyrus, temporooccipital part

14 Left inferior temporal gyrus, anterior division 61 Right inferior temporal gyrus, anterior division

15 Left inferior temporal gyrus, posterior division 62 Right inferior temporal gyrus, posterior division

16 Left inferior temporal gyrus, temporooccipital part 63 Right inferior temporal gyrus, temporooccipital part

17 Left postcentral gyrus 64 Right postcentral gyrus

18 Left superior parietal lobule 65 Right superior parietal lobule

19 Left supramarginal gyrus, anterior division 66 Right supramarginal gyrus, anterior division

20 Left supramarginal gyrus, posterior division 67 Right supramarginal gyrus, posterior division

21 Left angular gyrus 68 Right angular gyrus

22 Left lateral occipital cortex, superior division 69 Right lateral occipital cortex, superior division

23 Left lateral occipital cortex, inferior division 70 Right lateral occipital cortex, inferior division

24 Left intracalcarine cortex 71 Right intracalcarine cortex

25 Left frontal medial cortex 72 Right frontal medial cortex

26 Left juxtapositional lobule cortex (formerly supplementary motor cortex) 73 Right juxtapositional lobule cortex (formerly supplementary motor cortex)

27 Left subcallosal cortex 74 Right subcallosal cortex

28 Left para cingulate gyrus 75 Right para cingulate gyrus

29 Left cingulate gyrus, anterior division 76 Right cingulate gyrus, anterior division

30 Left cingulate gyrus, posterior division 77 Right cingulate gyrus, posterior division

31 Left precuneus cortex 78 Right precuneus cortex

32 Left cuneal cortex 79 Right cuneal cortex

33 Left frontal orbital cortex 80 Right frontal orbital cortex

34 Left parahippocampal gyrus, anterior division 81 Right parahippocampal gyrus, anterior division

35 Left parahippocampal gyrus, posterior division 82 Right parahippocampal gyrus, posterior division

36 Left lingual gyrus 83 Right lingual gyrus

37 Left temporal fusiform cortex, anterior division 84 Right temporal fusiform cortex, anterior division

38 Left temporal fusiform cortex, posterior division 85 Right temporal fusiform cortex, posterior division

39 Left temporal occipital fusiform cortex 86 Right temporal occipital fusiform cortex

40 Left occipital fusiform gyrus 87 Right occipital fusiform gyrus

41 Left frontal operculum cortex 88 Right frontal operculum cortex

42 Left central opercular cortex 89 Right central opercular cortex

43 Left parietal operculum cortex 90 Right parietal operculum cortex

44 Left planum polare 91 Right Planum Polare

45 Left Heschl’s gyrus (includes H1 and H2) 92 Right Heschl’s gyrus (includes H1 and H2)

46 Left planum temporale 93 Right planum temporale

47 Left occipital pole 94 Right occipital pole

of the clusters induced by the GCD matrix shows a clear
and statistically significant separation in two groups, prompting
future investigations on the predictive power of graphlets in brain
network analysis.

The paper is organized as follows. First, we give some
preliminaries and a detailed description of the employed material

and methods (section “Materials and Methods”), including
the algorithms we used. Then we present and discuss, in
section “Results and Discussion,” the results obtained from the
topological network analysis and from the network comparison.
In section “Concluding Remarks,” we finally provide concluding
remarks and future perspectives for this study.
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MATERIALS AND METHODS

We model the brain network as an undirected graph, where
nodes correspond to specific cerebral areas and links are weighted
connections determined by the intensity of the fMRI, which
constitutes a fundamental technique to examine brain activity by
using blood oxygen level–dependent (BOLD) contrast.

It is well known that, even at RS (i.e., in absence of any
task), the BOLD signal exhibits low-frequency spontaneous
fluctuations, revealing how the brain preserves a kind of baseline
activity though no external stimuli are received (see for instance;
Snyder and Raichle, 2012 and the cited bibliography). The
investigation of the RS condition leads to identification a number
of brain regions generally referred to as the DMN. It is worth
mentioning that the neuronal origin of such fluctuations was
not immediately accepted, and the neuroscience community was
mainly oriented to attribute them an artifactual nature related to
the fMRI signals (see Glover and Lee, 1995; Friston et al., 1996;
Wise et al., 2004). The neural origin was definitely established
by showing that resting-state BOLD signals are temporally
correlated within the somatomotor system (Biswal et al., 1995).

Collecting the Functional Data
The dataset exploited in this paper is the same as in Finotelli et al.
(2018, 2019). Each subject underwent a single MRI acquisition
in a 1.5-T scanner (Siemens Magnetom Avanto, Germany) at
Don Gnocchi Foundation, IRCCS Santa Maria Nascente (Milan,
Italy). The following sequences have been collected: [A] rs-
fMRI, BOLD EPI, collected at rest for approximately 6.6 min
(TR/TE = 2,500/30 ms; resolution = 3.1 × 3.1 × 2.5 mm;
matrix size = 64 × 64; number of axial slices = 39; number
of volumes = 160). Subjects have been instructed to keep their
eyes closed, to clear their mind from any specific thought,
and not to fall asleep. [B] High-resolution T1-weighted 3D
(TR/TE = 1,900/3.37 ms; resolution = 1 × 1 × 1 mm; matrix
size = 192 × 256; number of axial slices = 176), as anatomical
references for rs-fMRI analysis. [C] Conventional images (T2-
weighted dual-echo turbo spin echo, FLAIR), to limit the risk
of including subjects with concomitant vascular pathology or
abnormal brain lesions. In particular, subjects with one or more
macroscopic T2-weighted abnormalities located in the deep
white matter (WM) or more than five abnormalities, maximum
diameter < 5 mm, located in periventricular regions have
been excluded from the study. All the rs-fMRI data have been
preprocessed using the standard FSL processing pipeline (Smith
et al., 2004; Jenkinson et al., 2012). All the details about the image
preprocessing and the computation of anatomical and functional
matrices are described in Finotelli et al. (2018, 2019).

Managing the Functional Connectivity
Matrices
BOLD signals are obtained by rs-fMRI methods; they are useful
for investigating brain functional connectivity as well as for
characterizing neurological diseases and mental disorders (Fox
and Greicius, 2010). As detailed in Finotelli et al. (2018, 2019),
we have analyzed the functional connectivity networks of 133

right-handed subjects, 51 males and 82 females of different ages,
ranging from 6 to 79 years. For each subject, fMRI data have
been parceled into 94 cortical areas using the Harvard–Oxford
Atlas (HOA) (Table 1), obtaining 133 symmetric matrices of
size 94 × 94 whose entries, ranging in the interval [−1,1],
correspond to functional connectivity correlations. Such a 3D
matrix of size 94 × 94 × 133 is denoted by F. With the
entries of F being represented by correlation indices, we can
separate positive and negative entries (i.e., positive and negative
correlations of fMRI signal between pairs of nodes) and denote
by F+ and F− the resulting 94 × 94 × 133-sized 3D matrices,
whose entries range in [0,1] and [−1,0], respectively. In this
work, consistently with the majority of the literature on this
topic, we only focus on the non-negative matrix F+, since the
neurobiological description for positive correlation functional
connectivity is more studied and detailed. As described in the
following, to assess the robustness of the results, input data have
been progressively refined by different thresholds. Additionally,
the results have been compared with the outputs obtained from
a randomized set of simulated data preserving the same size and
node degree as the considered sample.

Ethical Approval
Every subject neither declared to take psychoactive medications
at the time of the scan neither had a history of neurological or
psychiatric disorders. According to the recommendations of the
declaration of Helsinki for investigations on human subjects, the
present study exploits methods previously approved by the Ethics
Committee of Don Gnocchi Foundation (Milan, Italy). Written
informed consent from all subjects to participate in the study was
obtained before study initiation; for further details (see Finotelli
et al., 2019).

Graphlets
A powerful tool for investigating a number of network properties
is represented by graphlets. First of all, let us provide a few
useful definitions.

Let G = (V, E) be a graph, where V is the set of nodes, and E is
a set of node pairs, i.e., a set of edges. The two nodes paired by an
edge are said to be its endpoints. Let S be a subset of V: A graph
H = (S, E’) is said to be an induced subgraph of G, if E’ consists of
all the edges of E having both their endpoints in S.

A graphlet in G is a small connected induced subgraph
of G (Pržulj et al., 2004; Pržulj, 2007). Figure 1 displays all
the 30 possible graphlets, with up to five nodes, that can be
extracted from a given graph. An orbit of a graphlet consists
of different nodes that can be mutually interchanged under a
graphlet automorphism. Hence, this relates to the symmetries
of the graphlet.

More intuitively, the orbit defines the “topological character
(or relevance)” of a node inside a graphlet, since it allows to
distinguish between nodes of the graph G “touching” different
nodes belonging to the graphlet Gi (in our case, i = 0, 1, . . . , 29,
see Figure 1).

For example, let us consider the graphlet G1 in Figure 1.
There exists an automorphism that exchanges the endpoints of
the path, while no automorphism of the graphlet exists, which
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FIGURE 1 | Automorphism orbits 0,1,2, . . . ,72 for the 30 up to five-node graphlets G0,G1,. . .,G29. Nodes belonging to the same orbit of a graphlet have the same
color. The non-redundant orbits we take into account are 0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 15, 18, 19, 22, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41,
42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70.

exchanges an endpoint with the middle vertex. This results in
the existence of two orbits, called Orbit 1 and Orbit 2 (see
again Figure 1, where different orbits inside a graphlet have
different colors).

Hence, a node of the graph G can be described by a vector
containing the counts of different kinds of graphlets which such
a node “touches,” or equivalently, the topological characteristics
(orbits) it plays within these graphlets.

As a first step, one selects a number of working graphlets
having up to some prescribed number of nodes. We focus
on up to five-node graphlets, namely, on the 30 graphlets
G0,G1, . . . ,G29 (see Figure 1), which globally define the 73
orbits O0,O1, . . . ,O72. By leveraging the set of orbits, one can
construct vectors collecting different measures associated with
the given network. In detail, for each node, the corresponding
graphlet degree vector (GDV) is formed by letting its j-th entry
equal to the number of times the node “touches” (i.e., belongs
to) the orbit Oj. The GDV can be computed by standard
software packages, such as ORCA (Hocevar and Demsar, 2014).
Many of the entries of the GDV have well-defined topological
interpretations. For instance, the first entry is the degree of the
associated node, the second entry is the number of induced paths
of length two having the node as an endpoint, the third entry is
the number of induced paths of lengths two having the node in
the middle, and so on.

Some of the 73 orbits are dependent on other orbits previously
considered, meaning that their count for any given node can
be derived from the count of other orbits: The corresponding
information is then redundant. In this case, the orbit can be
neglected in the analysis. Focusing on up to five-node graphlets,
it turns out that only 56 of the 73 orbits are non-redundant (see

Yaveroğlu et al., 2014, Supplementary Material section). The list
of the non-redundant orbits is reported in the caption of Figure 1.

Frequency Table and Node Table
We consider the 133 square symmetric matrices F+h ,
h = 1, 2, . . . , 133, of size 94 × 94, corresponding to the
positive correlations collected for all the involved subjects.
Such matrices are then binarized and processed by ORCA
(Hocevar and Demsar, 2014), to look for the graphlets up to
five nodes and count, for each node, the occurrences of the
corresponding 73 orbits.

Following Yaveroğlu et al. (2014), we define the GDVs by
focusing only on the 56 non-redundant orbits listed in the caption
of Figure 1. Actually, since the basic topological information
of our interest is whether a given node i touches a given orbit
j, rather than how many times, we binarize the entries of the
GDVs to define binary graphlet degree vectors (BGDVs). Then,
for each subject h = 1, 2, . . . , 133, we form a 94 × 56 matrix
M+h whose i-th row is the BGDV of node i. Finally, we sum up
the 133 subject matrices M+h to get a single 94 × 56-sized table
Mf =

∑133
h = 1 M+h , called frequency table. We remark that the

entries (i, j) of Mf , called the global orbit touching frequencies,
range in the interval [0,133]: They count how many subjects have
a node i involved in orbit j.

Then we sort each column of Mf individually, so that the i-
th position in each column is represented by the i-th highest
global orbit touching frequency. The corresponding nodes are
annotated in a separate 94 × 56 table. This provides two
94 × 56 sized tables, namely, the sorted frequency table (see
Supplementary Table 1), which is the above-described matrix
Mf with columns individually sorted, and the sorted node table
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(see Supplementary Table 2), where we take note of the node
correspondence after sorting.

Extracting Topologically Relevant Nodes
Our goal is to detect nodes that, all over the entire set of subjects,
are characterized by high topological relevance in the RS network.
We do this as follows.

(1) Sets of nodes are considered which are consistently
involved, with high frequency, in a large number of orbits.
To simplify the analysis, and to discard non-relevant
information, we restrict our attention to the largest global
orbit touching frequencies, specifically to the top quartile,
which corresponds to consider only the first r = 24 rows
of the sorted node table and of the sorted frequency table.

(2) Column equivalence is defined in terms of set equivalence,
i.e., two columns of the sorted node table are equivalent
if they contain the same set of nodes, regardless
of the ordering.

(3) For each k = 1, 2, . . . , r, we check column equivalence
along the first r − k+ 1 rows, for all pairs of columns of
the sorted node table.

(4) For each k, and for each orbit j = 1, 2, . . . , 56, the orbits
having column equivalence with j along the first r − k+ 1
rows are detected.

(5) Results are summarized in an output table, namely a
56 × 24 sized table (see Figure 2) whose entry (j, k) is the
number of columns equivalent to j, along the first r − k+ 1
rows, in the sorted node table.

Cluster Analysis
We further exploit the potentiality of graphlet analysis by
comparing the different performance of the subjects at resting
state through graphlet correlation distance (GCD), namely, the
topological distance between pairs of networks defined in
Yaveroğlu et al. (2014). GCD is defined as the Euclidean distance
of the upper-triangle values of the two graphlet correlation
matrices (GCM), as described here below.

First of all, starting from the above-introduced 94 × 56 GDV
matrix M+h associated with each subject h (h = 1, 2, . . . , 133),
we form a 56 × 56 sized matrix GCM+h whose entry (l,m)
contains the Spearman correlation between columns l and m
of M+h . Thus GCM+h (l,m) quantifies how well the relationship
between the columns l and m (l,m = 1, 2, . . . , 56) can
be described by a monotonic function: In other words, it
captures the tendency of the two columns to have the same
increasing or decreasing behavior. This correlation is preferable
to the usual linear Pearson correlation since the orbit counts
are spread over different scales. Using matrices GCM+h , we
then construct the symmetric 133 × 133 sized GCD matrix,
which collects the Euclidean distances between all possible
pairs of networks. Yaveroğlu et al. (2014) showed that GCD
is clean of redundancies, encodes information about local
network topology, and is a powerful comparing measure among
networks in different domains such as computational biology and
economics (Tantardini et al., 2019). Then, we perform a cluster
analysis based on GCD. Among the several clustering techniques,

we use agglomerative Hierarchical Cluster Analysis (Kaufman
and Rousseeuw, 1990; Lior and Maimon, 2005) and, among the
algorithms for defining the distance between clusters, we adopt
Ward’s method (Ward, 1963; Thirion et al., 2014), since it is
appropriate for Euclidean distances.

RESULTS AND DISCUSSION

In this section, we present the results obtained, as well as the
corresponding discussion, by using the above-described graphlet
methodology, first those concerning the GDV analysis and then
those related to GCM comparison.

GDV Analysis
As discussed in the previous section, the final result of the
GDV analysis is an output table whose goal is to highlight the
nodes which, all over the entire set of subjects, are characterized
by high topological relevance. Figure 2 shows such an output
corresponding to thresholding the functional connectivity matrix
F+ at t = 0.2, i.e., only the entries whose weights are greater
than or equal to 0.2 are retained, while the others are set to zero.
In Supplementary Tables 3, 4, the analogous output tables for
t = 0 and t = 0.1 are reported for comparison. We remark that
changing the threshold implies changing the number and type of
graphlets involving any given node, which, in turns, reflects in
a change of the sorted node and frequency tables. This leads to
possible fluctuations in the results, which are therefore compared
over different threshold values to assure robustness (see below).

Figure 2 reports the nonzero part of the output table, namely,
the 41× 10 table obtained by removing from the output table, as
defined in section “Frequency Table and Node Table,” the leftmost
14 columns and the bottom 15 rows, since all their entries are
equal to zero. A zero entry means that no column equivalence
occurs. Differently, a nonzero entry x in position (j, k) means
that, at the k-th step of the algorithm, the orbit of row j shares
the same nodes with other x orbits. For example, let us consider
k = 19: It contains the result of checking set equivalence on the
top 24− 19+ 1 = 6 rows of the sorted node table. The entry
x = 7 in the first row means that Orbit 0 contains the same six
nodes as seven other orbits.

From the analysis of the output table and starting from the
rows having the highest number of non-zero entries, we can
easily reconstruct the process of orbit aggregation. Indeed, the
two 1’s in the column k = 15 (the first column having non-
zero entries) show that Orbit 2 and Orbit 33 are equivalent on
the first 24− 15+ 1 = 10 nodes. This means that these two
orbits frequently interact with the same 10 nodes, not necessarily
in the same order of occurrence. Of course, this also implies that
the columns of the sorted node table corresponding to Orbit 2
and Orbit 33 will be equivalent in the remaining steps of the
algorithm, since the requirement of column equivalence becomes
less demanding. We resume this by saying that the equivalence
between the columns corresponding to Orbit 2 and Orbit 33
persists since the 15-th step.

The three 2’s at the 16-th step show that Orbit 2 and Orbit
33 are further equivalent to Orbit 11, on the first nine nodes. At
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FIGURE 2 | The output table, i.e., the result of the algorithm of section “Frequency Table and Node Table,” when the threshold t = 0.2 is considered.

the 17-th step Orbit 42 also aggregates. At the 18-th step, Orbit
0 and Orbit 61 add to the previous list, thus forming a set S of 6
orbits whose corresponding columns of the sorted node table are
equivalent on 24− 18+ 1 = 7 nodes. At the same 18-th step,
the four further 1’s indicate that the columns corresponding to

Orbit 13, Orbit 30, Orbit 41, and Orbit 67 are pairwise equal in
two different sets, which cannot be detected precisely at this stage.

At the 19-th step, the columns corresponding to Orbit
55 and Orbit 58 become equivalent to the previous six, so
enlarging S to a set of 8 orbits, with persistent equivalence on
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six nodes. Concerning the pairwise aggregation of the columns
corresponding to Orbit 13, Orbit 30, Orbit 41, and Orbit 67, no
new information is obtained. The output remains stable from the
19-th to the 22-nd step, while at the 23-rd step, the two previous
1’s detected in the columns corresponding to Orbit 13 and Orbit
67 turn into 9, meaning that these two orbits add to the set S, so
that we get 10 orbits that are equivalent on the first two nodes.
Finally, at the last step, Orbit 48 is also included.

Interpreting the Results of the Topological Analysis
Investigating the topology of the orbits can unveil important
neurobiological properties of the brain. Indeed, a connector
hub may be thought of as a sorting center for information
transmission among cerebral areas, while the fact that a node
belongs to different cycles, or even to a clique, gives information
on the resilience of the networks, i.e., on the plasticity of the brain.

The topological meaning of specific non-redundant orbits
descends from their intrinsic structure. For instance (see also
Pržulj, 2007; Yaveroğlu et al., 2014), Orbits 2, 11, 33, 42, 55, and 58
point out the attitude of a node to share information, since they
are the center of the corresponding graph(let); hence, these orbits
could characterize the existence of hubs. The connector hubs are
believed to tune the connectivity of their neighbors in order to
increase their modularity. In particular, it is speculated that such
an action increases information integration across communities,
global modularity, and cognitive performance (Bertolero et al.,
2018). Differently, Orbits 65, 66, and 67 in graphlet G26 being part
of different cycles could be associated with a kind of robustness
of the brain network since information can be shared among
the other nodes even when a connection should be removed
from the network.

Let us now discuss the set of nodes emerging from the
algorithm at the various steps. The main set is undoubtedly the
one composed by six nodes and belonging to eight different
equivalent orbits from the 19-th step on, with the further addition
of three orbits in later steps. Such nodes are 1 (left frontal pole), 22

(left lateral occipital cortex, superior division), 31 (left precuneus
cortex), 48 (right frontal pole), 69 (right lateral occipital cortex,
superior division), and 78 (right precuneus cortex). Remarkably,
nodes 1, 31, 48, and 78 all belong to the DMN and play a
fundamental role (see, e.g., Mansouri et al., 2015; Utevsky et al.,
2016; Zhan et al., 2017), while nodes 22 and 69 are of relevant
neurobiological importance (see, e.g., Japee et al., 2015; de
Schipper et al., 2018). The functional role of the above mentioned
nodes is recalled in Table 2, while we refer the interested reader
to Kolb and Whishaw (2009, 2014) for further details.

Hence, by matching both the statistical outcomes obtained
in Finotelli et al. (2018) and the outcomes in the above-cited
literature, with the topological graphlet-based results of this
study, we are led to propose that the RS network principally
consists of the DMN and a few of the other brain areas that
play a relevant topological role. Of course, we are aware that
such a speculation requires precautions and must be supported
by further analysis, such as the use of a different parceling.

Robustness With Respect to Different Threshold
Levels
Let us now compare the three output tables shown in
Supplementary Tables 3, 4 and Figure 2, obtained by
thresholding the functional connectivity matrix F+ at t = 0,
t = 0.1, and t = 0.2, respectively. Focusing our attention on the
orbits which sooner provide column equivalence, we realize that,
regardless of the threshold value, they involve in all cases a subset
consisting of the same six nodes. Indeed, from Supplementary
Table 3 (t = 0) the orbits which start the column equivalence
process are Orbits 2 and 61 at the 14-th step, which means that
column equivalence selects 11 nodes, which are 1, 7, 22, 23, 31,
47, 48, 54, 69, 70, and 78 (see Table 1 for the corresponding
brain regions). Similarly, Supplementary Table 4 (t = 0.1) shows
that Orbits 55 and 61 provide the first column equivalence. This
occurs at the 19-th step, with the following six nodes involved:
1, 22, 31, 48, 69, and 78. Finally, from Figure 2 we select, at the

TABLE 2 | Neurobiological relevant nodes emerging from the topological graphlet-based algorithm of section “Frequency Table and Node Table.”

Node Name Functional role

1 Left frontal pole In human beings, the largest part of the PFC has the control of internal and purposeful mental action, also known as reasoning
or prefrontal synthesis. The frontal cortex is the “action” cortex, much as the posterior cortex is the “sensory” cortex.

22 Left lateral occipital
cortex, superior division

In Grill-Spector et al. (2001), the authors state that “the lateral occipital complex is a region of the brain that seems to play a
central role in human object recognition.”

31 Left precuneus
cortex

The precuneus is involved in memory tasks, with particular focus on spatial details. Together with the left prefrontal cortex it is
involved in the recall of episodic memories including past episodes related to the self.

48 Right frontal pole Liu et al. (2013) found that the right orbital frontal pole (FP) shows stronger connection probabilities to brain regions of the social
emotion network (SEN), such as the orbito frontal cortex (OFC), amygdala, and temporal pole. The right lateral FP shows
greater connection probabilities to the right dorso lateral prefrontal cortex, a critical node of the cognitive processing network
(CPN). The right medial FP showed stronger connection probabilities to brain areas of the DMN, including the anterior cingulate
cortex and medial prefrontal cortex.

69 Right lateral occipital
cortex, superior division

The occipital lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The occipital lobe is the visual
processing center of the mammalian brain containing most of the anatomical region of the visual cortex. The primary visual
cortex is Brodmann area 17, commonly called V1 (visual one).

78 Right precuneus
cortex

The precuneus is involved in several complex functions such as recollection and memory, integration of information (gestalt)
relating to perception of the environment, cue reactivity, mental imagery strategies, episodic memory retrieval, and affective
responses to pain.

For each node, the anatomical name and functional role is provided. In black bold are denoted the nodes belonging to the DMN.
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FIGURE 3 | Output table of the algorithm of section “Frequency Table and Node Table” when randomized matrices are considered.

15-th step, Orbits 2 and 33 as the orbits which firstly show column
equivalence. In this case, the set of the emerging 10 nodes is 1, 7,
22, 31, 47, 48, 54, 69, 70, and 78. Hence, whatever the threshold
value, we recover the same persistent set of six nodes which are
those above discussed in detail (see Table 2).

Randomization
To quantify whether our results differ from those obtained
with randomly generated data, we have repeated the analysis
by randomizing the 133 functional connectivity matrices with
degree preserving randomization (DPR). DPR yields randomized
matrices that share the same number of nodes, and the same
degree of each node, with the original functional matrices. Note
that, by construction, the network’s degree distribution does not
change while, with a sufficient number of link rearrangements
(or rewirings), the topological structure of the network becomes
completely different.

We have generated 133 DPR matrices from the thresholded
functional connectivity matrices (t = 0.2) and run the algorithm
of section “Frequency Table and Node Table” on such a
random sample. The resulting output table (Figure 3) has a
completely different structure compared to the one based on
actual data (Figure 2): Only a 10 × 3 sub-table contains nonzero
entries, showing very few persisting orbits and only in the very
final steps. We can therefore safely conclude that the above-
discussed results are meaningful as they are very far from those
yielded by random data.

GCM Comparison
The hierarchical cluster analysis based on five-node GCD
(threshold value t = 0.2) is summarized in the dendrogram of
Figure 4A. We clearly note that the 133 networks are separated
into two main clusters, which we denote by C1 (left in the

picture, red, 62 networks) and C2 (right, blue, 71 networks). The
two main clusters, in turn, can be partitioned into fairly well-
defined subclusters, at least two in C2 and two or three in C1. In
Figure 4B, the GCD matrix is visualized in the form of a heatmap,
where the “hot” colors represent short distances (high similarity)
and vice versa the “cold” colors. A “hot” block on the diagonal,
if associated with “cold” areas outside the block, may reveal a
significant cluster. The distinction between clusters C1 and C2
(the two main blocks on the diagonal) emerges quite clearly,
whereas a finer partition is not so evident. Thus, from now on,
we will only consider the above-described two-cluster partition.

The cluster analysis needs to be validated by assessing
the significance of the obtained results. Figure 4C shows the
silhouette plot (Kaufman and Rousseeuw, 1990) associated with
the partition. In the plot, the silhouette value si of each network i
(i.e., each object to be clustered) is displayed with a bar, and bars
are grouped by cluster and organized in decreasing order. The
silhouette value si is defined as

si =
bi − ai

max (ai, bi)

where ai is the average distance from i to the other points of
the same cluster, and bi is the minimum (over clusters) of the
average distances from i to the points in a different cluster. Thus,
si ranges from −1 to +1, with a large value denoting that i is
well-matched to the points in its own cluster. Typically, a large
average silhouette value over a cluster reveals its significance,
and a large average value over all objects i denotes a meaningful
partition. In our case, the averages are 0.34 and 0.47 for C1
and C2, respectively, and 0.41 for the entire pool. These values
are sufficiently large to denote a fair quality of the partition.
Additionally, while a large number of negative s′is is a typical

Frontiers in Neuroscience | www.frontiersin.org 9 April 2021 | Volume 15 | Article 665544

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-665544 April 22, 2021 Time: 14:56 # 10

Finotelli et al. RSN: A Graphlet-Based Topological Characterization

FIGURE 4 | Results of the hierarchical cluster analysis based on five-node GCD. (A) The dendrogram obtained with Ward’s distance: the adopted two-cluster
partition is evidenced by red/blue color. (B) Heatmap of the GCD matrix: “hot” colors represent short distances (high similarity) and vice versa “cold” colors. The
order of rows/columns is consistent with the ordering of the leaves in the dendrogram. (C) Silhouette diagram: The red/blue lines mark the mean silhouette values of
the respective clusters, and the green line the overall mean value. (D) t-SNE (stochastic neighbor embedding): In this 2D plot, the clusters are contiguous but well
separated.

indicator of an incorrect partitioning, in our case we only have
a very limited number of them (4 out of 133, see Figure 4C).

Further evidence of the validity of the results of the
cluster analysis is provided by t-distributed stochastic neighbor
embedding (t-SNE) (van der Maaten and Hinton, 2008), an
algorithm aimed at embedding high-dimensional points in a low-
dimensional space trying to reproduce the similarities between
points by matching their distance. Although it is impossible,
in general, to exactly match distances in a low-dimensional
projection, the algorithm—which is based on matching suitable
probabilistic descriptions of the point sets in the high- and
low-dimensional spaces—is typically successful in visualizing the
original clusters, if any, even in the low-dimensional projection.
By using the Matlab implementation provided by the authors of
van der Maaten and Hinton (2008)1, we have obtained the t-SNE
plot of Figure 4D, which confirms that our two clusters C1 and
C2 are well separated although contiguous.

We now move to investigate the possible relationship between
the above-described two-cluster partition and the available
attributes (sex and age) of the subjects. Table 3 compares the
percentages of males and females of the entire sample with that
of the two clusters. In bold, we highlight the values that are larger
than those of the entire sample (shown in the last row).

1https://lvdmaaten.github.io/tsne/

At first glance, it results that C1 tends to aggregate more
males than the whole sample, while C2 aggregates more females.
This result is statistically significant (p = 0.012, binomial test;
p = 0.001, permutation test with 1,000 permutations), so it is
possible to claim that the structure of the networks—evaluated in
terms of GDVs—is different between males and females, at least
limited to this sample.

In order to explore the role of age, we have arranged the 133
subjects in seven groups of males and seven groups of females
having similar age, as shown in Table 4.

If we turn our attention toward the age classes, the statistical
analysis does not find a significant relationship between clusters
and age groups. As a matter of fact, if we compare what
we found in the age groups in clusters C1 and C2 with the

TABLE 3 | Percentage of males and females in clusters C1 and C2.

# Networks % Males % Females

Cluster C1 62 53.2% 46.8%

Cluster C2 71 25.3% 74.7%

Total 133 38.3% 61.7%

The values larger than the corresponding values in the whole sample are in bold.
Cluster C1 (resp., C2) has a significant predominance of male (resp., female)
subjects with respect to the whole sample (p = 0.012, binomial test; p = 0.001,
permutation test with 1,000 permutations).
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TABLE 4 | Subgroups of subjects, with the corresponding age ranges
and cardinalities.

Subgroup Age range # Males # Females

g1 6–15 10 9

g2 16–25 7 18

g3 26–35 9 11

g4 36–45 7 9

g5 46–57 6 13

g6 58–70 5 10

g7 71–79 7 12

reference percentages in the whole sample, we do not observe
any remarkable relationship between clusters and age groups.
Indeed, the percentage highlighted in bold, and the reference
values shown in the last row in Table 5 are really close.

As shown in Table 6, the same negative evidence is also found
by aggregating the classes g1, g2, and g3 in a single macro-class,
called gA (which therefore includes subjects up to 35 years),
and the rest in another macro-class, called gB. The relationship
between age macro-class and cluster is very weak, if not null,
and by no means statistically significant (p = 0.533, binomial test;
p = 0.416, permutation test with 1,000 permutations).

CONCLUDING REMARKS

We have implemented a graphlet-based topological algorithm
for investigating the RS network. Due to its flexibility, it could
be employed in other fields such as bioinformatics, genetics,
and social interaction. The proposed algorithm proved able to
yield a topological selection of the main areas of the DMN,
as well as a number of related brain regions that are known
in the literature to strongly interact with the DMN. Thus,
we have obtained a topological characterization of the RS,
which seems to be very promising in view of possible further
neurobiological applications.

We have also compared the different performance of the
subjects at RS by means of a topological distance between pairs
of brain networks. The cluster analysis and the statistical analysis
carried out downstream showed a rather clear separation of the
133 networks analyzed in two well-defined clusters: The sex of
the subjects seems to play an important role in determining
the distance between pairs of networks, differently from the
age that, on the contrary, seems not to play. This preliminary
result prompts future investigations on the predictive power of
graphlets in brain network analysis.

As far as we know, graphlets have been applied mainly in
bioinformatics and in economics. An example is their application
in cellular network analysis, in particular in protein–protein
interaction (PPI) networks (see for example Pascual et al., 2013).
Of course, our proposal should be intended as a first step of
a graphlet-based approach to the investigation of the brain
network, and several other studies are needed to consolidate the
promising topological outcomes that we have obtained, possibly
extending the analysis to subjects affected by neurological or
mental diseases. We believe that, in the near future, the graphlet
approach could prove to be a powerful tool in diagnostic,
enabling to support and reinforce the traditional clinical analysis.

We would like to conclude by giving two prospective
future studies of potential impact that would be worth
exploring by means of graphlets, namely, the investigation of
negative entries in the fMRI matrices, and possible biological
interpretation of graphlets.

The problem of a correct interpretation of the negative entries
is undoubtedly of great relevance in neuroscience, since, as far
as we know, their neurobiological meaning has not been fully
understood yet, though some approaches have been proposed
to throw light on this topic (see for example Chen et al., 2011;
Zhan et al., 2017). In this view, and since the proposed algorithm
runs independently of the nature of the input data, we tried to
apply the same graphlet approach to the negative part of the
fMRI matrices. Our guess was that some subset of the so-called
“anti-DMN” (see for example Di Perri et al., 2016; Velichkovsky
et al., 2018) would have been selected. Differently, no stable orbits
in fact emerged, and consequently no subset of topologically
relevant nodes could be clearly determined. At a first glance, the
absence of an emerging anti-DMN was quite surprising, but, at a
deeper analysis, we realized that this is perfectly consistent with
the available dataset, since the exploited Atlas misses the main
brain expected areas. As a consequence, it could be of interest to
reproduce the proposed approach with a suitable setting.

TABLE 6 | Percentage of subjects in the macro age class gA (subjects up to 35
years old) and gB (subject from 36 to 79 years old) in clusters C1 and C2.

# networks gA gB

Cluster C1 62 48.4% 51.6%

Cluster C2 71 47.9% 52.1%

Total 133 48.1% 51.9%

The values larger than the corresponding values in the whole sample are in
bold. No evidence of a significant relationship between clusters and macro age
class emerges (p = 0.533, binomial test; p = 0.416, permutation test with 1,000
permutations).

TABLE 5 | Percentage of subjects in the seven age groups for clusters C1 and C2.

# networks g1 g2 g3 g4 g5 g6 g7

Cluster C1 62 16.1% 16.1% 16.1% 12.9% 12.9% 14.5% 11.3%

Cluster C2 71 12.7% 21.1% 14.1% 11.3% 15.5% 8.4% 16.9%

Total 133 14.3% 18.8% 15.0% 12.0% 14.3% 11.3% 14.3%

The bold values represent the larger percentage of subjects in the seven age groups for clusters C1 and C2.
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Regarding the possible biological meaning of graphlets, we
remark that graphlet-based measures are already considered
and seem to provide promising and powerful methods in the
investigation of biological network (see for example Pržulj, 2007;
Hayes et al., 2013). In our manuscript, working at a macro scale,
we have pointed out how specific orbits play different topological
roles in the functional activity of the brain. There is no doubt
that the investigation of possible biological interpretations of
graphlets could be even explored at a microscale resolution,
even if this would require a completely different parceling of the
involved brain regions.
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