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Fluorescence imaging devices have been indispensable in elucidating the workings
of the brain in living animals, including unrestrained, active ones. Various devices are
available, each with their own strengths and weaknesses in terms of many factors.
We have developed CMOS-based needle-type imaging devices that are small and
lightweight enough to be doubly implanted in freely moving mice. The design also
allowed angled implantations to avoid critical areas. We demonstrated the utility of the
devices by using them on GCaMP6 mice in a formalin test experiment. Simultaneous
implantations to the capsular-lateral central amygdala (CelL.C) and dorsal raphe nucleus
(DRN) were proven to be safe and did not hinder the execution of the study.
Analysis of the collected calcium signaling data, supported by behavior data, showed
increased activity in both regions as a result of pain stimulation. Thus, we have
successfully demonstrated the various advantages of the device in its application in
the pain experiment.

Keywords: fluorescence imaging, pain perception, CMOS-based imaging, formalin test, nociception

INTRODUCTION

Fluorescence imaging brain implants have been indispensable to the field of neurobiology. Their use
has given much insight of the inner workings of the brain in vivo (Grienberger and Konnerth, 2012).
There are a number of types of such devices than can be safely used in living, active animals without
compromising the process of a study. These animals are genetically encoded to express fluorescent
calcium indicators that signal neuron firing, in a process referred to as calcium signaling. Though all
types have their advantages, they also have limitations that must be acknowledged when considering
their use. Selecting the appropriate tool can mean the success or failure of doing a study.
Microendoscopes have been used in fluorescence imaging of deep brain tissue. They come
in multiple configurations, of differing materials and collection methods (Helmchen et al., 2001;
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Silva, 2017; Ozbay et al., 2018; Scott et al., 2018; Klioutchnikov
et al., 2020). Resolution of collected images is enhanced by the
inclusion of a focusing element or lens. The lens itself can be the
endoscope, such as the gradient refraction index (GRIN lens).
The available endoscopes can be rigid, such as the GRIN lens
or silica-containing fibers, but have been miniaturized enough
to be of practical use (Levene et al., 2004; Flusberg et al., 2005).
These properties provide minimal invasiveness, but also limit
mobility since use of these tools require restrained animals.
Movement is necessarily restrained because of the fixed sizeable
tabletop equipment required for the excitation light source and
fluorescence emission collection.

Miniature head-mountable integrated microscopes are an
innovation on the use of microendoscopes (Ziv and Ghosh,
2015; Resendez et al., 2016; Liberti et al., 2017; Jacob et al.,
2018). They can be used to acquire high resolution images
of brain activity from freely moving animals. The implanted
component is a cylindrical lens (e.g., GRIN lens) that refracts
light to the microscope module secured on an animal’s cranium.
Though miniaturized, the sheer bulk needed to accommodate
the components gives the device some weight, more than 2
grams in some cases (Helmchen et al, 2001; Ozbay et al,
2018; Scott et al., 2018; Klioutchnikov et al., 2020). This entails
consideration for the weight burden on smaller experimental
animals, like mice, and the possible effects on brain activity
(Ziv and Ghosh, 2015).

Our lab has developed a needle-type implantable device that
has the advantages of the aforementioned devices (Figure 1A;
Ohta et al,, 2017; Rustami et al., 2020; Sunaga et al., 2020).
Our device uses a complementary metal-oxide semiconductor
(CMOS)-based image sensor chip (imaging area of 120 by 40
pixels, 7.5 wm per pixel, hence 300 x 9,000 wm) and a blue-
light micro-LED (for green fluorescent protein (GFP) excitation),
mounted on a thickened flexible printed-circuit substrate (FPC)
(Figure 1B). It has a width of 0.7 mm, a thickness of 0.2 mm,
an insertion allowance of up to 4.5 mm, and an average weight
of 26.6 mg. Its small features and rigidity prevent excessive
tissue damage, allow simultaneous implantation of another
device, and make possible angled implantations to avoid critical
areas and reach difficult sites. Though simultaneous use is still
possible with the use of miniature microscopes (de Groot et al.,
2020), our devices are much lighter, providing less of a burden
on the test animal. The sensor chip allows for imaging of
calcium signaling fluorescence, but not to the same resolution as
microscopy imaging.

In this study, two of these implantable CMOS-based imaging
devices were simultaneously used in mice induced to experience
pain via subcutaneous formalin injection. Pain is an immediate
and powerful aversive event that has prominent related behavior
and can usually activate relevant brain sites with very low latency
(review by Woolf, 2010). The devices are implanted adjacent to
the capsular-lateral subsection of the central amygdala (CeLC)
and the dorsal raphe nucleus (DRN). The central amygdala has
been regarded as a center to the processing of pain signals
(Bernard et al., 1989; Neugebauer et al., 2004; Ossipov et al., 2010;
Veinante et al., 2013) and responsible for pain-related behavior
as an output center of the amygdala (Ji et al., 2017). Meanwhile,

the DRN has serotonergic connections with the CeLC (Peyron
et al., 1997) and has been implicated in the process of pain
modulation (Wang and Nakai, 1994; Stamford, 1995; Li et al.,
2017; Lopez-Alvarez et al., 2018). Together, they are part of
a system responsible for processing aversive stimuli and stress
(Spannuth et al., 2011; Groessl et al., 2018; Ren et al., 2018; Zhou
etal., 2019).

This study’s aim is twofold. First, it is to demonstrate that
the simultaneous use of two devices on an unrestrained animal
is without risk and also allows the animal behave unhindered.
Second, is to provide useful inner-brain imaging data of the
pain processing circuitry. This is accomplished through calcium
imaging at the relevant sites. Overall, we aim to show that our
device can complement established brain imaging implants while
also providing unique advantages.

METHODOLOGY

Device Fabrication

The CMOS imaging chips, designed by our laboratory, were
cleaned by submersion in acetone (Fujifilm Wako), twice, and
then in isopropanol (Fujiflm Wako) for 5 min each. After
drying, they were each mounted on a polyimide, gold-circuit-
printed FPC substrate (Taiyo Industrial) taped on a glass slide
using a thin layer of epoxy resin [low viscosity epoxy resin
Z-1 (N), CraftResin]. The blue-light-emitting micro LEDs (ES-
VEBCMI12A, Epistar), with a central emission wavelength of
470 nm, were also mounted in the same fashion.

The blue-light filter was prepared by first dissolving Valifast
Yellow 3150 dye (Orient Chemical Industries) with cyclopentanol
(1:1, w/w) overnight in a light-proof vial. In the same container,
the mixture was mixed with Norland Optical Adhesive 43
(Norland Products) (2:1, w/w) using a vortex. The resulting
adhesive mixture was spin coated (Spincoater model: 1H-D7,
Mikasa) on a silicon-coated [CAT-RG catalyst and KE-106
silicone (Shin-Etsu Chemical), 1:10, w/w] cover slip with a size
of 23 mm x 23 mm under the following setting: 3 s to 500 rpm-
5 sec at 500 rpm-5 s to 2,000 rpm-20 sec at 2,000 rpm-5 s to
0 rpm. The spin coated material was immediately heated on a hot
plate at 100°C for 30 min then left to set in room temperature
overnight. The filter film was cut with an Nd: YAG laser (Callisto
VL-C30RS-GV, TNS Systems) to make a grid of 10,000 x 3,500
jvm sheets.

Cut filter sheet were manually placed over the entire imaging
area of the CMOS chips. The device was baked in a vacuum oven
(AVO-250NS, ETTAS) for 2 h at 120°C and left to cool.

Using a needle, red resist resin (ST-3000L, Fujifilm) was
applied on the sides of the CMOS chip. This resin prevented entry
of stray blue LED light through the sides of the chip.

The CMOS chip and the LED were connected to the circuitry
of the FPC with micro aluminum wires (Tanaka Electronics)
using a wire bonder (7400C-79, West Bond). The wiring was
sealed by a protective cover of epoxy resin [low viscosity epoxy
resin Z-1 (N), CraftResin] and left to set overnight.

The processed device was incised off from the excess FPC
material with a blade. The sides at implantable end of the cut FPC

Frontiers in Neuroscience | www.frontiersin.org

May 2021 | Volume 15 | Article 667708


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Rebusi et al. Simultaneous CMOS-Based Imaging

filter

FPC substrate

imaging chip

micro-LED

aluminum wiring

FIGURE 1 | CMOS-based implantable needle-type device for fluorescence imaging. (A) Left: Image of the needle-type implantable device as seen under a
microscope (28 x magnification). This device has undergone all steps of the fabrication process; Right: Higher magnification of the imaging device (from selection,
45x). (B) Partial breakdown of the device (left), and the placement of its components (right).

substrate of the device were coated with a thin layer epoxy [low
viscosity epoxy resin Z-1 (N), CraftResin] to cover jagged edges.

The devices were lined and bound together with a ribbon
of Kapton tape and were enclosed in a parylene coater (PDS
2010, Specialty Coating Systems). They were coated with 5 grams
of dichloro-c-cyclophane (GalentisS.r.l.). The thickness of the
parylene deposition layer is about 2.5 wm. This transparent,
long-lasting coating serves as a bio-protective sheath to prevent
infiltration of biological substances into the device that can
damage the circuitry.

Implantation

All animal handling procedures were approved by the Nara
Institute of Science and Technology (NAIST) Animal
Committees, and were performed in accordance with the
institutional guidelines of the animal facilities of NAIST.

GCaMP6 mice [strain: FVB-Tg(Thyl-GCaMP6)5Shi.,
provided RIKEN BRC through the National Bio-Resource
Project of the MEXT, Japan (Ohkura et al., 2012)], around
2 months of old of either sex, were implanted with two of
our CMOS-based imaging devices (Figure 2A). They were
positioned adjacent to the CeLC and the DRN, both in the left
hemisphere (Figure 2B).

The mice were anaesthetized. Hair was removed from the top
of their heads and the scalp was disinfected with 4% clorhexidine
(Hibitane). They were restrained to a stereotaxic platform (SR-
6M, Narishige) using earbars. A heating pad was provided
underneath the animals to stabilize body temperature.

Skin was excised from the dorsal side of the head, just
enough to access the implantation sites. The cranium was
exposed by clearing away tissue and washing with PBS (Fujifilm
Wako). After aligning the bregma and lambda, coordinates for

the brain site targets were marked on the cranium [CeLC:
AP: —0.8 mm, ML: —3.35 mm (left), DV: —4.0 mm; DRN:
AP: —5.56 mm, ML: —0.35 mm (left), DV: —3.31 mm; all
DV coordinates counted from the dura]. All coordinates were
determined using the Paxinos Mouse Brain Atlas (Franklin and
Paxinos, 2008) and calibrated in previous trials. Two small
micro-screws were shallowly secured into the cranium, spaced
some distance from the marked sites. Small cranial windows of
around 1 mm in diameter were created on the targets using a
dental drill (Hypertec II, Morita) and were cleansed of debris
and blood with PBS.

The implants were gently wiped with 70% ethanol (Fujifilm
Wako) using cotton swabs and were secured to stereotaxic
manipulators (SM-15M, Narishige). They were slowly implanted
into the windows, with the CMOS chip facing medially toward
the target, up to the predetermined depth. For the DRN, the path
of implantation was angled 25° posteriorly to avoid damaging the
major superficial blood vessel lying between the entorhinal cortex
and the cerebellum (Figure 2B).

Once the targets were reached, the cranial windows were
sealed with silicone elastomer (Kwik-Cast). The exposed cranium
and the surrounding incised skin were sealed with dental cement
(Super-Bond kit, Sun Medical). The cement was also used for
stabilizing and anchoring the implanted device unto the skull
surface and the inserted screws. The manipulators and other
restraints were removed. The mouse was allowed to recuperate
for at least 12 h in a heated enclosure.

Formalin Test

A modified formalin test was done with the aim of recording
brain activity during pain perception, indicated by fluorescence
from calcium signaling due to neuronal action potentials.
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FIGURE 2 | The implanted mouse and the paths of the implants to their
targets. (A) Left and Middle: A mouse that has just underwent
double-implantation, under anesthesia. Note the differing angles of the
implanted devices; Right: Implanted devices attached to cables used for
supplying power and collecting calcium-signaling fluorescence data. (B) Paths
of implantation through the brain. The cross (x) indicates the location of a large
superficial transverse blood vessel on the brain’s surface. (C) Coronal sections
depicting lesions from implantations and the loci of the brain site targets.
Lesions do not reach the dorsal brain surface because the sectioning and the
implantation planes are not parallel, more so for the DRN targeting. Upper
Left: AP: =1.58 mm, 25x; Upper Right: Zoomed in section from rectangle in
upper left image, dashed line approximates the perimeter of the central
amygdala (CeA), 45x; Lower Left: AP: —4.36 mm, 25x; Lower Right: Zoomed
in section from rectangle in lower left image, dashed line approximates the
perimeter of the DRN (dorsal, ventral, and lateral subsections), 45x.

Behavior attributed to pain perception, such as licking, was
used to support the validity of the fluorescence imaging
data (Figure 3A).

The whole recording procedure was done within a darkened
canvas tent. This is to prevent the interference of light from
sources such as illumination lamps for animal handling, interior
overhead lighting, and sunlight passing through windows. Light
from such sources are of high enough intensity to permeate

the very thin skull, and overlying layers, of the experimental
mouse. Such filtered light can still be detected by the implanted
devices due to the high sensitivity of the CMOS imaging chip.
The orbit and the frontal cranial bone are especially exposed
to light penetration. Though the parietal cranium bone is
covered with reinforcing dental cement, the cement itself is
translucent. Implanted mice were anaesthetized with isoflurane
(Fujifilm Wako) using an isoflurane pump (410 Anaesthesia
Unit, Univentor). The implants were then connected to cables
that were then connected to a slip ring. The rotating slip ring
prevented entanglement of the cable pair and served as a bridge
between the implants and the power sources (6146 DC Voltage
Current Source, ADCMT) and collecting equipment (custom-
made, NAIST).

After securing the connections, the mice were kept in an
observation enclosure and monitored with a webcam (CMS-
V37BK, Sanwa Supply). Illumination was under blue-light that
was blocked by the blue-light filter and the red resist coating
of the device. Their brain activity and behavior were recorded
on a personal computer using specialized custom-made software
(CIS_NAIST) and a webcam software (Bandicam) (Figure 3B)
for a minimum of 10 min to serve as a baseline. Afterward,
they were subcutaneously injected using a 30G needle with either
20 WL 2% paraformaldehyde-PBS (Fujifilm Wako) [“Formalin”
group (n = 3)] or PBS (Fyjifilm Wako) [“PBS” group (n = 3)] at
the plantar side of the right hind-paw, contralateral to the side
of the implantations. Brain activity and behavior were recorded
for a minimum of an hour. For the duration of the experiment,
experimenters vacated the tent to prevent affecting behavior.

At the end of the experiment, the mice were sacrificed with
an overdose IP injection of sodium pentobarbital (Somnopentyl,
~0.2 mL, KS Medical). They were perfused with a tubing pump
(TP-10SA, AS ONE) with normal saline (Otsuka) and then 4%
formaldehyde (Fujifilm Wako). Their brains were extracted and
stored in 4% formalin overnight. Coronal sections of the brains
(100 pm) were prepared using a vibratome (Linear Slicer PRO7,
Dosaka) and were used to confirm successful targeting of the
brain sites (Figure 2C). Data from animals with unsuccessful
implantations were disregarded.

Implanted Brain Temperature Reading

The inner-brain temperature, in Celsius, of an implanted
mouse was measured during activation of the blue-light micro-
LED at 0.5 mA. Two thermocouples (Cu/constantan (Type T)
thermocouple, Muromachi Kikai Co., Ltd., Tokyo, Japan) were
bounded unto needle-type devices with Parafilm M (PM-996,
Pechiney Plastic Packaging). One thermocouple terminal was
located by the LED and another at the devices insertion tip,
serving as a reference site away from the LED. The thermocouples
were connected to a microcomputer thermometer (BAT 700 1H,
Physitemp Instruments LLC).

Mice were anaesthetized and implantations were done into
the DRN of one mouse and the CeLC of another as previously
described, but with some differences. After implantation,
elastomer sealant was not used as a protective cover. Instead,
PBS-moistened pieces of Kimwipe were applied on the exposed
region surrounding the implant and were held in place with
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FIGURE 3 | Formalin test with brain activity imaging. (A) The experimental design of the modified formalin test. (B) Left: Screenshot of the computer monitor during a
formalin test. On the screen is the CIS_NAIST software that displays the windows (40 x 120 pixels, 300 x 9,000 wm) for raw, processed, and reference frames of
real-time video data, in pairs from left to right. The left of the pair is the fluorescence image from the Cel.C, and the right of the pair is from the DRN. Also displayed
are the fluorescence level traces at the bottom and frame number information at the middle right. The overlying the CIS_NAIST software window is the video feed of
the mouse behavior from the webcam; Right: A sample of a processed image of the CeLC with discernible fluorescent structures. Heatmap values are voltage values

that represent AF.

Parafilm. The animal’s body temperature was allowed to stabilize.
Temperature was recorded for 5 min before LED activation, for
an hour during activation, and for 5 min afterward.

Data Processing

Videos of the brain fluorescence activity were collected using
CIS_NAIST and screen recordings of the working computer.
Images of the fluorescence in the CeLC and the DRN were
extracted from the time immediately after the injection of the

substance and every 10 min thereafter, until the end of the 1-
h observation period. The clearest calcium imaging result was
selected as a representative example of each sampling group.

Behavior recorded by the webcam was reviewed and pain-
related behaviors were taken note of, specifically the licking of the
injected site. Behavior was quantified by tallying the amounts of
pain-induced licks on the affected paw per 2.5 min blocks within
the 1-h observation period. The results were graphed as a number
of licks per time block along the passage of time.
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Imaging data was acquired using CIS_NAIST, and saved as
RAW files. The data was extracted from the files and analyzed
using MATLAB (MathWorks). Custom made codes were written
in order to process and visualize the data. For processing, the data
was first stored as a 3-dimensional matrix (2D spatial pixel array
across time), then separated into two for the CeLC and the DRN
data. Afterward, the period of injection was determined from
webcam recordings, and also by looking at the offset frames in
the averaged data set.

Removal of hum noise was performed by making a column
vector containing the average values of each row in the pixel
array. The average value of that was computed and subtracted
to each element of the column vector. The resulting vector was
subtracted to each column in the pixel array. This was done in
each frame. That is, given a pixel reading F; (x, y) at frame ¢,
wherex = 1:n,y = 1:ny, the following steps are performed
for each t:

(1) Form the column where

() = o

vector Xt

™ | Fi(i,y) foreachy = 1:n,.

ny
(2) Calculate F;, = i y_ L % ()
(3) Form the column vector hy, where h; (y) = F — % ()/)
(4) The new reading F;(x,y) is then given by

Fi(xy) = Fi(xy) =h ().

The data was normalized (AF/Fy) by getting the average of the
frames before injection as the baseline. That is, given F; (x, y),
the baseline Fj is given by Fy (x, y) = ti* Zf: L Fr (x, y), where

t* is the frame number before injection. The normalized pixel
AF _ E—
Fo — F

reading F; (x, y) is then given by F} = , where

Fi(x, Fo(x,
F;" (x, )’) _ i lf",o)(x ;)( J’)

Based on a previously published study (Takehara et al., 2016),
the approximate size of neurons was computed and the regions
of interest (ROIs) were selected accordingly. Specifically, it was
assumed that the maximum distance between a visible ROI and
image sensor surface was 100 wm, and therefore; the full-width
at half-maximum (FWHM) would increase 3-4 times compared
to a distance of 0 wm. Given the soma and device pixel sizes
(8-9 wm and 7.5 pm, respectively) and the 4 times increase in
soma size due to the distance from image sensor, then the ROI
was computed to be around 6 x 6 pixels. Regions that seemed
like neurons based on fluorescent activity were selected as ROIs
for further analysis. The average of each ROI was plotted and
compared against background values outside the ROIs. A scale
bar representing 5% change from baseline was generated. A color
plot showing the intensity of each pixel in a frame was graphed
to visualize the ROIs. The behavioral data was aligned with the
calcium imaging data to see their relationship.

Afterward, the first-differenced calcium traces in each ROI
were cross-correlated or auto-correlated. First-difference was
applied to ensure stationarity of the data. That is, given a calcium
trace reading z; at time ¢, the first-differenced calcium trace Az,
attime tis Az; = z;41 — z;. First-differencing was implemented
using diff() function of MATLAB. Cross-correlation between
CeLC and DRN ROIs was calculated by shifting the DRN data
across time. That is, given the CeLC calcium trace reading x; at

time ¢ and the DRN calcium trace reading y; at time ¢, the non-
normalized cross-correlation coefficient R at lag m is given by

if m >0
ifm <0’

T—m
_ 1 XtVi—
Ry, y(m) = [Zﬁy_xl(_tﬁ)m

The (normalized) cross-correlation p at lag m is then given by
Px,y (M) = «/WWRXJ (m). Here, Ry x (m) and R, ,, (m)
represents the non-normalized auto-correlation at lag m for
x¢ and y;, respectively. The DRN time lag with the highest
correlation with CeLC m* = argmax,, pyy (m) was recorded
as the best time lag. Cross-correlation analysis was implemented
using xcorr() function of MATLAB. The three ROIs from CeLC
and three ROIs from DRN were cross-correlated as follows: CeLC
vs. DRN, CeLC vs. CeLC, and DRN vs. DRN. Therefore, a total of
27 cross-correlations were analyzed per mouse.

To measure the relationship between brain imaging and
behavior, the mutual information coefficient (MI) between these
variables was computed. Basically, the mutual information
coefficient (Cover and Thomas, 2006) between two (discrete)
random variables X and Y is given by

px.y (x.9)
ZZPXY Xy lOg(pX(x)py ()/))

xeX yey

1(X;Y) =

Similarly, if X, Y are continuous, then the summation is
replaced with integration. However, since brain imaging is a
continuous random variable, while the behavior is discrete, MI
was measured using an adapted method (Ross, 2014). MI was
computed using discrete_continuous_info_fast() function of
Ross (2014). Since the imaging data was a continuous real-valued
dataset, it was binned and averaged across the same 2.5 min
window of the behavioral data. This enabled the measurement
of mutual information between continuous imaging data and
discrete behavioral data, where a higher value indicates more
dependence between the two.

Finally, statistical analysis was done using MATLAB. Non-
parametric tests were performed: Kruskal-Wallis test for the
cross- and auto-correlation analysis and non-parametric two-way
ANOVA (Friedman’s test) for the brain calcium imaging and
licking behavior relationship analysis were performed. P-values
less than 0.05 were considered significant. Boxplots with median
and interquartile range were graphed also using MATLAB.

RESULTS

Brain Recordings: Fluorescence Imaging

and Internal Temperature

No notable complications on the welfare of the experimental
mice were encountered during the duration of the study.
Implantation surgery was accomplished without issues and
all the mice recuperated fully the following day. No signs
of distress that may have come from the implantation
were observed. Furthermore, there were no indications of
encumbrance of the head. Post mortem weighing of the
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cement-bound dual implants, excluding the parietal portion
of the cranium, gave an average weight of 0.474 g (n = 5).
The only signs of discomfort were the pain-related behavior
and inflammation reaction of the Formalin group mice after
injection and the slight agitation immediately resulting from
animal handling.

Images of the calcium signaling from representative
examples were chosen (Figure 4). The top right corner of
the DRN in the Formalin group had an increasing intensity
throughout the time course, from the 20-min mark onward,
with distinct and prominent fluorescence. The CeLC of
the same group, particularly the lower-left of the imaging
area, initially displayed some fluorescence that gradually
lessened over time.

On the other hand, the PBS group had more uniform
and constant images across time. Slight changes in overall
fluorescence can still be seen, such as a brighter DRN and CeLC
at the 30-min mark. The changes are quite difficult to spot by eye
alone. Therefore, a more quantitative approach was taken.

Readings in a double-implanted mouse depict very small
increase in deep brain tissue temperature during activation of
the blue-light micro-LED (Figure 5). At most, there was 0.5°C
increase in the portion of the DRN next to the LED. The results
also show that proximity to the LED does not necessarily lead to
a higher tissue temperature.

Data Analysis

To better visualize changes in CeLC and DRN fluorescence
activity, the whole frame average across time was computed in
all mice (Figure 6, top and middle). In addition, the paw-licking
behavior of the mice was also measured simultaneously (Figure 6,
bottom). Due to the small size of the implantable device, both
CeLC and DRN can be visualized at the same time in a freely
behaving mouse. Based on the AF/Fj scale bar, the Formalin
group generally had higher amplitudes than the PBS group. For
example, Formalin Mouse 2 displayed higher fluorescence values
compared to PBS Mouse 2 in the CeLC. Furthermore, Formalin
Mouse 1 had higher fluorescence intensities than PBS Mouse 1 in

CeLC DRN

Formalin
Group

20 min.

-405

30 min.

60 min.

FIGURE 4 | Brain activity fluorescence immediately after injection of formaldehyde or PBS. Neuronal fluorescence from the replicates that demonstrated detectable
and distinct signals are presented. Time shown refer to the minutes that has passed after injection of the assigned substance. For all image pairs, CeL.C is on the left
and the DRN is on the right. Heatmap values are voltage values that represent AF.
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FIGURE 5 | Recorded change of DRN and CeLC temperatures during implantation. Temperature readings were done in the vicinity of the implanted devices,
specifically by the LED and at the device insertion tip. Thin vertical lines in the graph indicate start and end points of LED activation time.

Frontiers in Neuroscience | www.frontiersin.org 7 May 2021 | Volume 15 | Article 667708


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Rebusi et al.

Simultaneous CMOS-Based Imaging

Formalin Group

Mouse
§ = P
g Mouse
2
< WW%
g Mouse
-10 0 10 20 30 40 50 60
Minutes
»  Mouse
b4 "
[ 1
F w LJLM
E
Z Mouse
g 2 P ST D O o S I ——
[
& Mouse
g 3 I 1AFIF0.05
o
= -10 0 10 20 30 40 50 60
Minutes
2
_§ 5 150
25
@ E A“‘._QLO_L’_IAH
=] woj-ﬁw
-10 0 10 20 30 40 50 60

Minutes
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the DRN. In addition, the Formalin group had higher frequency
of fluorescent peaks for both brain sites. This was most apparent
for Mouse 2 and 3 for CeLC and Mouse 1 for DRN. Conversely,
the PBS group had graphs that are comparatively flatter. Since
this was a proof-of-concept to show that the dual-implantable
device works, more mouse samples and further analysis can be
done to quantify the difference in amplitudes and frequencies
between both groups.

Pain-related behavior was observed from all the mice of
the Formalin group, as reflected by the average number of
licks. A high number of licks was seen in the initial minutes
after injection. The licking behavior then subsided after 10
min. Then, after 30 min licking behavior started to increase
again. This bi-phasic response may correspond to the acute and
inflammatory phase of formalin injection, as will be discussed
later. Interestingly, peaks in licking behavior also corresponded
to higher fluorescence activity in the CeLC and DRN. On
the other hand, the PBS mice did not display any hindpaw-
licking behavior. These results confirm the successful execution
of the formalin test.

Another two mice were selected as representatives, one per
sampling group, to visualize analysis of multiple regions of
interests (ROIs) (Figure 7). Slight differences in timing and
intensity of fluorescence can be seen in ROIs of the same brain
region. For instance, in the Formalin-injected mouse, DRN ROI2
displayed more fluorescence activity than DRN ROIIl at the
20-min mark. It is also observable that the ROIs of the DRN
have higher and more distinct spikes than the background.
Furthermore, ROI 1 and 2 of the CeLC had higher fluorescence

amplitudes than ROI 3. However, CeLC ROI 3 still had higher
fluorescence than the CeLC background values.

On the other hand, the PBS-injected mouse had ROI values
that are relatively similar with the background. Similar to
Figure 6, the PBS mouse had a more constant fluorescent activity
where its peaks do not deviate too far from the average noise
value. The peaks of the Formalin-injected ROIs were more
distinct and had higher amplitudes compared to its baseline level
before injection.

The relationship between each ROI was explored. The small
size and large field of view of the device made it possible to
measure cross-correlation of multiple ROIs within and between
the CeLC and DRN. First, cross-correlation analysis of the
Formalin-injected mouse showed distinct and clear peaks mostly
at time lag 0 (Figure 8). The only exception was the cross-
correlation between CeLC ROI 1 and the DRN ROI 1. The data
indicated that when the first-differenced DRN data is shifted 1
frame back, then the correlation with first-differenced CeLC data
increases. This means that when the CeLC fluorescence increases,
there is a positive correlation that the DRN fluorescence will also
increase after 0.094 s. However, this was only true for one ROI
of the CeLC. The other two ROIs of the CeLC showed a definite
peak at 0 time lag, which indicated that the cross-correlation was
highest at 0 s delay.

In contrast, the PBS-injected mouse had less clear and less
distinct cross-correlation peaks. It can be seen that most of the
cross-correlation graphs are broader, especially for DRN ROI 2.
Furthermore, the best time lag is less consistent among the ROIs,
with one pair having the highest cross-correlation at 6 frames
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(0.562 s) and two pairs of ROIs at 5 frames (0.468 s). This may
indicate less synchronization between CeLC and DRN neuronal
firing in PBS-injected mouse.

To provide more insight and see if the results are consistent,
the cross-correlation of ROIs in each mouse was analyzed
(Figure 9). Majority of the peak cross-correlations was at time
lag 0 (Figure 9A). However, it can be observed that PBS mice
had several non-zero and non-one time lags. For example, PBS
Mouse 1 had a high cross-correlation (p = 0.69) at —8 frames
when analyzing between its CeLC ROI 1 and DRN ROI 2. Then
its CeLC ROI 2 and DRN ROI 2 had the best lag at 43 frames.

Furthermore, even within the DRN, there was a high cross-
correlation at 8, 15, and 4 frame lags for PBS Mouse 1, 2, and 3,
respectively. On the other hand, more cross-correlations at time
lag 0 can be seen in Formalin-injected mice. For instance, when
comparing within the same brain region (i.e., CeLC vs. CeLC
or DRN vs. DRN) all ROIs displayed a best time lag of 0, with
the exception of DRN ROI 2 and 3 of Formalin Mouse 2. Taken
together, this may indicate less synchronization within the DRN
of PBS-injected mice.

To compare the difference between the number of frame
lags higher than 1 for each mouse group, a two-tailed unpaired
t-test was performed. The number of frame lags higher than
1 was statistically higher in the PBS group compared to the
Formalin group (p = 0.00773, Unpaired ¢-test). This confirmed
the hypothesis that PBS-injected mice had a higher number of
ROIs that were not as synchronized compared to the Formalin-
injected mice.

Finally, to measure the relationship between the brain calcium
imaging data and licking behavior of mice, we calculated their
mutual information (MI). The MI between calcium imaging of
PBS mice and their licking behavior is close to 0, showing a
lack of a relationship. On the other hand, the Formalin mice
displayed higher MI levels across different ROIs and brain
areas (Figure 10A). This was further confirmed using two-way
ANOVA, wherein the Formalin group was significantly different
compared to the PBS group (p < 0.05). However, no difference
was detected between CeLC and DRN within each group.

By using this MI metric, the capability of the dual-implantable
device to correlate brain activity and behavior was demonstrated.
This showed the potential of the device for use in further
experiments and analysis.

DISCUSSION

We have demonstrated that the use of our device in a
double-implantation set-up is feasible and will not introduce
complications that can affect animal welfare. All trials proceeded
successfully with no mice had displaying signs of excessive
distress or injury from the implantation. Additionally, internal
or core brain temperature of the implanted mice are well within
the normal physiological levels of rodents, with the maximum
limit at around 38°C (Yarmolenko et al., 2011; Mei et al., 2018).
This is true whether the LED was activated or not. Along with
the very minute increase in temperature during LED activation,
temperature-related necrosis can be said to have not occurred.

The relatively low internal body temperature can be attributed
to the sleeping state of the recorded mouse (Sela et al., 2021).
With the devices’ viability and novel features, many methodology
changes can be explored. It is important to note that these
statements are only applicable to short-term set-ups, those lasting
for a few days per run. Nevertheless, the use of the device is still
very safe for many methods.

The calcium signal imaging results have shown that there are
perceivable qualitative differences in the fluorescence between
the Formalin-injected and the PBS-injected group. The increase
in signaling of the former group is attributable to nociception
itself, as supported by behavioral data. Though the trend is
not wholly consistent among mice, there a discernible pattern
that can still be observed using our new device. In the images,
fluorescent forms or shapes can be seen, especially in that of
the DRN of the Formalin group. These forms are surely not
individual neurons. They are much larger than the widest span
(9-10 pwm) of an average soma of neurons found in the selected
sites. Light scattering through the tissue cannot be discounted as
contributing to the size of the forms as seen on the images, but
their effects are assumed to be minimal (Takehara et al., 2016).
They are possibly neuronal clusters or ganglia and not glial cells
because of the nature of GFP expression in GCaMP6 mice. The
actual identity of these fluorescent forms is hard to ascertain
because of the low resolution. This is an unavoidable limitation
in the use of the CMOS imaging chip, especially the version we
are currently using.

The formalin test is a method that can induce a bi-phasic
response to pain: an early acute phase (0-5 min post injection)
and a later tonic or inflammatory phase. The timing of the latter
seems to differ among sources. The phase is mentioned to occur
at around 15 min (Hunskaar et al., 1985; Hunskaar and Hole,
1987; Shibata et al., 1989; Rosland et al., 1990) until 60 min
post injection (Manning and Mayer, 1995a). This is further
complicated by the effect of environmental temperature on the
potency of inflammation (Rosland, 1991; Tjelsen et al., 1992). The
variability in the timing is reflected in the flattened second peak in
the averaged behavior data of the Pain group (Figure 6, bottom).

The CeLC is a major component of the pain matrix. It
has context-specific paradoxical roles of promoting hypoalgesia
(Manning and Mayer, 1995a,b; Kang et al., 1998; Finn et al,
2003; Sabetkasaei et al., 2007; Yu et al., 2007; Veinante et al.,
2013) and hyperalgesia. Hyperalgesia is accomplished during
inflammation (Carrasquillo and Gereau, 2007; Veinante et al.,
2013). Meanwhile, the DRN has also been shown to have an
inflammation-specific antinociceptive function (Palazzo et al,
2004; Cucchiaro et al, 2005). Their inflammation-induced
activation and the somewhat variable nature of the tonic phase
timing might explain the persistent activity spikes of both sites in
the Formalin group. This is reflective of the flattened, prolonged
second peak, representing the tonic phase, in the Formalin
group’s behavior data. This does not apply to the first distinct peak
of the acute phase. Even if both the fluorescence and the behavior
data are indicators of pain perception, the two data sets may
not be total complements to each other because of the complex
effects of formalin-induced nociception. Even so, together they
still provide a holistic portrait for visualizing pain.
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The qualitative visual data also reflects the results of the
behavior analysis. The images of the DRN of the Formalin group
display ROIs of higher fluorescence intensity compared to the
PBS group. The difference is not fully apparent, especially for
the CeLC in the latter half of the observation period. It was
expected to fluoresce more prominently, following its central
role in modulating pain perception. This weak response to pain
stimulation can be attributed to the lateralization of the CeLCs
of the two hemispheres. The right CeLC has been observed
to be more responsive to nociception to a greater degree (Ji
and Neugebauer, 2009; Allen et al., 2021), though this does
not mean that the left CeLC is fully inactive (Allen et al,
2021). The descending architecture of the CeLCs are ipsilateral,
especially the left one (Manning, 1998; Ji and Neugebauer,
2009). Since the study investigated the left brain hemisphere
and induced pain contralaterally, the resulting calcium signaling
could not have been strong. The fact that the devices have
still detected pain-based trends in fluorescence between the two
groups demonstrates its sensitivity.

Cross-correlation analysis showed that the Formalin-injected
mice had more max cross-correlations at time lag 0.Though
some ROIs displayed best lags at 1 or 2 frames, most other
ROIs showed more synchronous activity. In contrast, the PBS-
injected mice had more varying frame lags with several values
higher than 1 frame delay/advance. The analysis indicated that

there may be more asynchronous firing between CeLC and
DRN neuronal firing in PBS-injected mice unlike the Formalin-
injected mice. This suggests a coupling mechanism between or
within the CeLC and the DRN during pain processing. The same
mechanism is present in the adjacent cells of the dorsal root
ganglion (DRG), a downstream neural pathway of the CeLC and
the DRN, during inflammation and nerve damage (Kim et al,,
2016). This synchronization was less apparent in naive mice not
exposed to pain.

Additionally, the highly variable time lag values of the cross-
correlation coefficients of the ROIs portray a heterogenous
population of neurons of differing roles in pain perception. For
instance, the central amygdala can increase or decrease pain-
related behavior depending on the cell type. Cells expressing
protein kinase C-delta played a role in sensitization to nerve
injury and increased pain response, while cells expressing
somatostatin were inhibited and drove anti-pain behavior
(Wilson et al., 2019). Furthermore, adjacent DRN 5-HT neurons
are closely coupled and synchronized; however, non-adjacent
5-HT neurons are not. Also, there is a difference in the auto-
correlograms of serotenergic and non-serotnergic neurons in the
DRN, where non-5-HT cells are more irregular while 5-HT cells
are more periodic (Wang and Aghajanian, 1982). Our analysis
demonstrates such heterogenous interactions and behavior as
well because ROIs within the same brain region, particularly
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FIGURE 8 | Cross-correlation analysis of two representative mice. Top: Formalin-injected mouse; bottom: PBS-injected mouse. The figure shows the
cross-correlation of the first-difference of Cel.C fluorescence imaging data with DRN data. The correlation between CelL.C and time-shifted DRN (across varying lags)
is measured. Peaks indicate high cross-correlation at that specific shift or time lag of the DRN data. The time lag with the highest cross-correlation coefficient (p) is
indicated at the top of each graph.
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PBS

the DRN of PBS mice, showed varying cross-correlograms.
In addition, cross-correlation between CeLC and DRN ROIs
had different time lags even if the mice were in the same
treatment group.

The large gap in the tallied pain-based licking behavior of the
groups confirms the successful execution of the formalin test,
with the PBS group displaying none. This is reflected in the

difference in calcium signaling between the Formalin and the
PBS groups, though the peaks of the behavior tally graph and
the fluorescence graph do not match after the initial phase. So,
even though PBS Mouse 2 demonstrated relatively high CeLC
brain activity, it is not indicative of any pain processing, based
on behavior. This is further supported by and elucidated in the
MI analysis between behavior and calcium signaling result.
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FIGURE 10 | Relationship between brain calcium imaging and licking behavior. Relationship between brain calcium imaging and licking behavior. (A) Plot of mutual
information between imaging and behavior. Blue circles indicate ROIls from CeLC, while red crosses indicate ROIs from DRN. (B) Box plot of the mutual information
(MI) when ROls in each mouse were averaged. PBS mice showed almost 0 MI with behavior, while Formalin mice showed higher Ml values. Non-parametric two-way
ANOVA showed significant difference between Formalin and PBS groups (p < 0.05, a = 0.05), but no significant difference between CeLC and DRN within each
group.

MI is the amount of shared information between the two
data, and shows how related they are with each other. A value
of 0 indicates that the two data are independent. MI has several
advantages such as being unbiased to the sample size, being
model independent, being unrestricted to the data type, being
able to detect linear and non-linear interactions, and being
multivariate (Ross, 2014; Timme and Lapish, 2018). The analysis
showed that the MI between calcium imaging of PBS mice and
their licking behavior is close to 0 (Figure 10A). This means that

the imaging data was not related to any mouse licking behavior in
the PBS-injected mice. In contrast, the Formalin mice displayed
significantly higher MI levels (Figure 10B).

Previous in vivo investigations on the mechanisms of
pain, using calcium imaging, have mostly been done on the
spinal cord level, as a necessity for less injurious methods
of visualizing neural activity (Anderson et al., 2018; Miller
et al, 2018; Xu and Dong, 2019). Our study is one of the
first attempts to simultaneously image pain processing at two
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relevant brain regions in vivo, addressing the need for multi-
site visualization for neuron-network studies (de Melo Reis
et al., 2020). Because the protocols we used, from the lens-less
CMOS-based fluorescence imaging device usage to the general
experimental design modifications, are quite novel, there are
many points for improvement that need to be addressed. Long-
term double-implantation use of the devices can be explored. The
methodology used to demonstrate the device, the formalin test, is
very short in duration. It did not allow for the exploration of this
aspect of device use. Determining the long-term viability of an
implanted device would expand applications to studies involving
chronic pain or multi-stage pain-conditioning experiments
involving the same experimental animals. Retention of dual-
implantation for an extended period can also more ensure better
recuperation of the animals and give insight to potential changes
to the integrity of the implanted devices. This can be done in
future studies because of the parylene coating, which is usually
used on medical implants. Because of the modular design of the
device, components can easily be upgraded almost independent
of each other. There are commercially available CMOS imaging
chips of superior performance that can supplant what we have
used. As of now, image quality derived from the CMOS chip we
have used is relatively of inferior quality compared to that from
lens systems. Because of the optics involved in a CMOS-based
system vs. a lens system, images from the former will never match
the resolving power provided by the latter. Even with an increase
in pixel amount, the resolution will not necessarily improve.
What this study had provided is a starting point for possible use
of better components to better approach data quality of already
established tools, but also providing unique advantages. Materials
for the FPC substrate can also be made thinner, but more rigid,
to ensure better implantation accuracy and safety. The blue-light
filter used on our CMOS chips has been developed in our lab
(Sunaga et al., 2014) and is still being improved upon through
integration of additional filtering layers and better fabrication
methods. Thus, there is proof of concept that the dual use of the
device can work, but the device has potential still for refinement.

CONCLUSION

We have shown that our developed implantable device can
simultaneously be used to image two brain sites in mice while
observing behavior, without hindrance or complications. The
double implantation of the device was implemented across
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