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Studying the molecular development of the human brain presents unique challenges
for selecting a data analysis approach. The rare and valuable nature of human
postmortem brain tissue, especially for developmental studies, means the sample
sizes are small (n), but the use of high throughput genomic and proteomic methods
measure the expression levels for hundreds or thousands of variables [e.g., genes or
proteins (p)] for each sample. This leads to a data structure that is high dimensional
(p � n) and introduces the curse of dimensionality, which poses a challenge for
traditional statistical approaches. In contrast, high dimensional analyses, especially
cluster analyses developed for sparse data, have worked well for analyzing genomic
datasets where p � n. Here we explore applying a lasso-based clustering method
developed for high dimensional genomic data with small sample sizes. Using protein
and gene data from the developing human visual cortex, we compared clustering
methods. We identified an application of sparse k-means clustering [robust sparse
k-means clustering (RSKC)] that partitioned samples into age-related clusters that
reflect lifespan stages from birth to aging. RSKC adaptively selects a subset of the
genes or proteins contributing to partitioning samples into age-related clusters that
progress across the lifespan. This approach addresses a problem in current studies
that could not identify multiple postnatal clusters. Moreover, clusters encompassed a
range of ages like a series of overlapping waves illustrating that chronological- and
brain-age have a complex relationship. In addition, a recently developed workflow
to create plasticity phenotypes (Balsor et al., 2020) was applied to the clusters and
revealed neurobiologically relevant features that identified how the human visual cortex
changes across the lifespan. These methods can help address the growing demand
for multimodal integration, from molecular machinery to brain imaging signals, to
understand the human brain’s development.

Keywords: human brain, development, clustering, synaptic proteins, transcriptomic data, high dimension and low
sample size, sparsity-based algorithm
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INTRODUCTION

As molecular tools have become integrated with human
neuroscience, there has been a renewed interest in mapping
human brain development. Many studies have compared
molecular changes among age groups (Law et al., 2003;
Duncan et al., 2010; Pinto et al., 2010; Kang et al., 2011; Siu
et al., 2015, 2017; Zhu et al., 2018) using distinct life-span
stages that developmentalists have described based on physical,
cognitive, and psychosocial maturation (Sigelman and Rider,
2017). However, age-binning assumes that those stages are a
good fit for molecular development of the brain. In contrast,
other areas of human neuroscience are applying data-driven
approaches such as principal component analysis (PCA) (Bray,
2017) or unsupervised clustering (Lebenberg et al., 2018) to
identify age-related changes in brain development. Applying
cluster analysis to studying the molecular development of the
human brain is challenging because of the limited availability
of developmental postmortem tissue samples. Nevertheless,
clustering algorithms have been developed for high dimensional
biological datasets that have a small sample size (n) but
measurements from many molecular features (p) (e.g., genes
or proteins). Here we apply one of those approaches, sparse
k-means clustering (Witten and Tibshirani, 2010; Kondo
et al., 2016), to illustrate a data-driven approach for studying
brain development that uses the expression of many genes
or proteins to partition samples into age-related clusters.
Then we show that clustering can identify aspects of human
visual cortex development that are not apparent in typical
developmental ontologies.

Cellular and molecular findings from postmortem brain
tissue are used as benchmarks for linking age-related changes
in non-invasive brain imaging signals with the underlying
neurobiology. For example, many imaging studies reference
synaptic development measurements (Huttenlocher and
Dabholkar, 1997) to account for rapid changes in cerebral cortex
MRI signals during the first few years of life. More recently,
gene expression databases have been used to identify candidate
cellular and molecular features, such as those underlying cortical
thinning throughout the life-span (Vidal-Pineiro et al., 2020)
or testosterone-related structural properties of the adolescent
cerebral cortex (Liao et al., 2021). However, the rare and valuable
nature of human postmortem brain samples means that gene
expression studies have small sample sizes, especially compared
to modern MRI studies that use a population neuroscience
approach and aggregate data from hundreds or thousands of
subjects (Paus, 2016). The issue of sample size is especially
critical for brain development, as even well-established tissue
banks (e.g., NIH NeuroBioBank) have fewer than 250 samples
for most age groups and fewer than 50 for key ages of child
development. Finally, the labor-intensive nature of molecular
techniques means that studies can only use a subset of the
available samples [e.g., (Pinto et al., 2010) n = 28; (Kang et al.,
2011) n = 57; (Siu et al., 2015, 2017) n = 30; (Zhu et al., 2018)
n = 26]. Nevertheless, the high dimensional data collected by
molecular studies provide a wealth of information about how the
brain changes across the life-span.

Although MRI and postmortem studies of human brain
development face different methodological challenges, they share
many analytical approaches. Both rely on analyses from the
high dimensional toolbox to uncover information relevant to the
complexities of brain development. Differences in experimental
design, however, place distinct constraints on those analyses.
High throughput molecular tools have significantly increased
the amount of information obtained from each postmortem
sample, generating long lists of gene or protein expression values.
Those values represent a vector that describes where each sample
exists in a high dimensional space that captures the molecular
complexity of human brain development. However, the large
number of measurements but small number of samples means
that the high dimensional space is sparse with points spread
virtually equidistantly across the space. The challenge is to
determine how samples cluster together in that sparse space and
if those data-driven clusters reflect stages of human development.

Cluster analysis is not new in biology (Eisen et al., 1998;
Tamayo et al., 1999; Hastie et al., 2000, 2001), but applying it
to postmortem studies of human brain development presents
unique problems because of the small sample sizes of those
studies. When standard clustering techniques have been used
to study gene expression changes in human brain development,
clusters are found for regional and prenatal versus postnatal
groups, but distinct postnatal clusters matching developmental
stages have not been reported (Colantuoni et al., 2011; Kang
et al., 2011; Carlyle et al., 2017; Li et al., 2018; Zhu et al., 2018;
Disorder et al., 2021). Accordingly, it has been challenging to link
cognitive, perceptual, or social-emotional stages and prolonged
development found using brain imaging with the underlying
maturation of molecular mechanisms in the human brain.

Here we provide a practical guide to sparse clustering that
focuses on overcoming the small sample size problem to reveal
postnatal patterns of molecular development in the human brain.
We introduce sparsity-based clustering, and one approach in
particular, sparse k-means clustering, developed to address the
problem of datasets with a large number of observations from
proteins or genes (p) but a small number of samples (n) resulting
in a data structure that is p � n (Witten and Tibshirani,
2010). Finally, we illustrate the value of applying clustering by
interrogating the neurobiological features of the clusters to reveal
new aspects of the developing human visual cortex.

Challenges Clustering Small Sample
Sizes
Currently, transcriptomic, proteomic, and other omics datasets
of human brain development include measurements of many
molecular features from a small number of samples. The
combinatorial nature of those data makes it challenging to
use traditional statistical comparisons to understand the many
molecular changes that occur in the developing brain. Instead,
high dimensional analyses that use all of the data are needed
to classify the biological features that differentiate the human
brain across the lifespan. However, even when clustering is
used, the complexity of the findings can still be challenging to
interpret, and studies may need to group the data into predefined
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age categories to describe the spatiotemporal dynamics of the
developing brain (Li et al., 2018).

In the mathematical notation used for clustering algorithms,
the genes or proteins are called features or observations and are
represented by p, while the number of samples is represented
by n. Most human brain development datasets are either
p ≈ n or p > n and are best described as high dimensional
datasets with more features than samples. When clustering those
data, algorithms can borrow strength from the large number
of features that represent each sample in high dimensional
space. However, if only a subset of the features contributes to
partitioning the samples into clusters, then the analyses may
run into the curse of dimensionality (Bellman, 1983). For brain
development, this means that developmentally relevant features
may become obscured as more and more genes or proteins that
do not contribute to developmental changes are included in the
dataset. A central problem in analyzing these p > n datasets
is to identify the molecular features associated with age-related
clusters from a very large set of candidate genes. Two approaches
for focusing on relevant features include either preprocessing
the data using dimension reduction methods (e.g., PCA, tSNE)
or using sparsity-based clustering algorithms that retain all of
the features but subset or reweight them during clustering (see
Supplementary Material).

Some of the common approaches to unsupervised dimension
reduction and clustering often used in neuroscience, like PCA
and tSNE, can effectively separate data points into clusters in
low-dimensional space, especially if there are large differences
in features that fall on orthogonal sets of dimensions. For
example, tSNE analysis of transcriptomic data identified separate
clusters for cortical and cerebellar development (Kang et al.,
2011; Carlyle et al., 2017), and PCA has shown that age can
explain a large fraction of the variation in protein expression
during cortical development (Pinto et al., 2015; Breen et al.,
2018). Some of these approaches represent linear combinations
of genes or proteins, and focus on reducing dimensionality
by identifying correlated features. Problems arise when the
features that differentiate clusters are not orthogonal, which
may cause linear methods like PCA breakdown and reduce
the data onto inappropriate dimensions (Chang, 1983). Thus,
traditional dimension reduction and clustering methods are
prone to pruning off too much information and, thereby,
may miss subtle but significant changes in the human brain’s
molecular development. In contrast, sparsity-based clustering
methods follow a different approach that keeps all of the features
and reweights them in a dissimilarity matrix.

Approaches to Sparsity-Based
Clustering
Because traditional dimension reduction methods may prune off
too much information or miss more subtle changes in the human
brain’s molecular development, we tested a set of sparsity-based
clustering algorithms. Here, sparsity refers to the idea that not
all 30,000 genes play a role in brain development and irrelevant
dimensions may mask clusters. Furthermore, as more and more
features are included, observations become increasingly spread
out until they are virtually equidistant. Sparsity-based clustering

is a useful approach for analyzing those high dimensional
data because the algorithms are not distance-based and can
identify a smaller number of molecular features that reflect the
spatiotemporal dynamics of neurodevelopment.

In this section, we introduce and compare four clustering
methods designed to handle data sparsity but it is not an
exhaustive review of sparsity-based clustering.

The agglomerative approach of CLIQUE (Agrawal et al., 1998)
finds grids or subspaces in high dimensional data by assigning the
desired number of equal length intervals (xi) to the grid and a
global density value (tau) as input parameters. Notably, CLIQUE
does not specify the number of clusters in the arguments, but
instead compares how many points are in each rectangle of the
grid with the overall density parameter and continues to partition
the subspaces until the density is less than tau. A rectangle in the
grid is considered to be dense if the proportion of points in it
exceeds the tau parameter. CLIQUE then identifies a cluster as
the maximal set of dense units in a subspace. For example, using
an interval (xi) of 2, each dimension of the data is partitioned
into two non-overlapping rectangles (units) and dense units
are identified for further partitioning if they contain a greater
proportion of the total number of points than the input value for
tau. This approach does not strictly partition points into unique
clusters and usually results in data points being assigned to more
than one cluster. CLIQUE is also prone to classifying points as
outliers and excluding them from the analysis.

The divisive clustering of PROCLUS (Aggarwal et al., 1999)
is based on medoids and uses a three-step top-down approach to
projected clustering. The steps involve (1) initializing the number
of clusters (k) and the number of dimensions to consider in the
subspace search, (2) iteratively assigning medoids to find the best
clusters for the local dimensions, and (3) a final pass to refine the
clusters. Typically, PROCLUS has better accuracy than CLIQUE
in partitioning points into clusters, but the a priori selection of
cluster size (k) is not easy and demands an iterative approach to
finding clusters. Furthermore, by restricting the subspace search
size, some essential features may be omitted from the analysis.

Both CLIQUE and PROCLUS were developed for datasets
with many more samples (n), often 2–3 orders of magnitude
larger than most datasets of human brain development. Although
those algorithms are accurate for large datasets with thousands
of samples, they are less well suited for discovering clusters in
small sample sizes. So we needed to test sparsity-based clustering
designed for small datasets, and this criteria led us to select
two more approaches to sparse hierarchical clustering, SPARCL
and robust and sparse k-means clustering (RSKC) (Kondo, 2016;
Witten and Tibshirani, 2018).

SPARCL was developed by Witten and Tibshirani (2010)
to adaptively select and reweigh the subset of features
during clustering thus eliminating the need for data reduction
preprocessing. The algorithm uses a lasso-type penalty to address
the challenge of clustering samples that differ on a small
number of features. The reweighted variables then become
the input to k-means hierarchical clustering. The adaptive
feature selection of SPARCL focuses on the subset of genes
or proteins that underlie differences among clusters, so this
process is similar to removing noise from the data. Thus,
SPARCL simultaneously clusters the samples and identifies the
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dominant features thereby making it easier to determine the
subset of proteins or genes responsible for partitioning samples
into different clusters.

SPARCL has many strengths for analyzing datasets with
p ≈ n or p > n; however, it can form clusters containing
just one observation (Witten and Tibshirani, 2010). A more
recent extension of the algorithm, RSKC, addresses small
clusters by assuming that outlier observations cause this
problem. RSKC uses the same clustering framework as SPARCL,
except that it is “robust” to outliers (Kondo et al., 2016).
RSKC iteratively identifies clusters in the data, then identifies
clusters with a small number of data points (e.g., n = 1)
and flags those data points as potential outliers. The outliers
are temporarily removed from the analysis, and clustering
proceeds as outlined above for SPARCL. Once all clusters
have been identified, the outliers are re-inserted in the high-
dimensional space and grouped with the nearest neighbor cluster.
Thus, RSKC identifies clusters in the data and includes all of
the data points.

MATERIALS AND METHODS

Datasets
Our lab has been studying development of human visual
cortex (V1) by quantifying expression of synaptic and other
neural proteins using a library of postmortem tissue samples
(n = 31, age range 21 days – 79 years, male/female = 18/13)
(Supplementary Table 1). In addition, genome-wide exon-
level transcriptomic data that was collected by Kang et al.
(2011) was used and the postnatal V1 data were extracted
(n = 48, age range 4 months – 82 years, male/female = 27/21)
(Supplementary Table 2). The transcriptomic data were used
to test the reproducibility and scalability of the sparsity-based
clustering. The preprocessed exon array data from Kang
et al. (2011) were downloaded from the Gene Expression
Omnibus (GSE25219). The exon-summarized expression
data for 17,656 probes were extracted, and probe identifiers
were matched to genes. If a gene was matched by two
or more probes and the probes were highly correlated
as determined by Kang et al. (2011) (Pearson correlation,
r ≥ 0.9), then the expression values were averaged for a total
of 17,237 genes.

The clustering methods were tested using three groups of
protein or gene data. The first group of protein data was
from a series of studies using the Murphy lab postmortem
samples to examine the development of molecular mechanisms
that regulate experience-dependent plasticity in human V1
(Murphy et al., 2005; Pinto et al., 2010, 2015; Williams et al.,
2010; Siu et al., 2015, 2017). Western blotting was run using
each sample (2–5 times) to probe for 23 different proteins
(Supplementary Table 3). The tissue preparation and Western
blotting methods have been described in detail previously (Siu
et al., 2017, 2018). The initial clustering tests used a subset of
seven proteins (GluN1, GluN2A, GluN2B, GluA2, GABAAα1,
GABAAα3, and Synapsin) to explore age-related clustering with
AGNES, PROCLUS, CLIQUE, SPARCL, and RSKC.

Next, the sparsity-based clustering using RSKC was explored
using all 23 proteins to determine how adding more features
changed the age-based clustering. Then the reliability of the age-
related clustering was explored by running 100 iterations of RSKC
with the 23 proteins. A heatmap illustrating the number of times
each sample was partitioned into a cluster was made to visualize
the reliability.

The scalability of RSKC was tested using a larger protein
database and the much larger gene database. These tests included
clustering a matrix with 95 proteins collected from the Murphy
lab postmortem tissue samples. This time the samples were
probed with a high density ELISA array (RayBiotech Quantibody
Human Cytokine Array 4000) and an additional 72 proteins were
measured for a total of 95 proteins (p = 95) (Supplementary
Table 4). Finally, RSKC clustering was done using the genes in the
Kang database by selecting those listed in the SynGO ontology
(n = 988) (Koopmans et al., 2019) and also the full set of genes
(n = 17,237).

The Basic Steps to Sparsity-Based
Clustering Using R
Here we describe four sparsity-based high-dimensional
clustering approaches (PROCLUS, CLIQUE, SPARCL, and
RSKC) for analyzing the development of human V1 using 7
or 23 proteins. Then we explore the scalability of the RSKC
method using two larger datasets with 95, 988, or 17,237
proteins or genes.

All of the analyses were done in the R programming language
using the integrated development environment RStudio (version
1.3.1093). The basic steps in the workflow used to examine each of
the clustering methods are illustrated in Figure 1. The text refers
to the R packages that were used and R Markdowns with code and
figures are included in Supplementary Material.

Figure 1 illustrates the steps that were used for testing
various sparsity-based clustering methods to examine if they
produce an age-related progression in the median age of clusters.
The data were prepared in an nxp matrix with each sample
forming a row and the features, either proteins or genes,
arranged in columns. Those data were used as the input to
the clustering algorithms. Here the sparsity-based algorithms
tested were PROCLUS and CLIQUE from the subspace package
(Hassani, 2015), SPARCL (Witten and Tibshirani, 2018), and
RSKC (Kondo, 2016). For the algorithms a range of k or
xi values from 2 to 9 were tested to explore the types of
clusters produced.

The results of a tSNE dimension reduction was used to
visualize clusters for all of the methods tested. However,
clustering was not done on the tSNE data itself even though
that is a commonly used approach. We used tSNE strictly as a
visualization tool because it does a good job of projecting points
from high dimensional space onto 2D so that neighboring points
reflect their similarity.

The Elbow method was used to determine the number of
clusters. Finally, the quality of the age-related clustering of the
samples was evaluated by making a boxplot to visualize the
progression of the median ages.
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FIGURE 1 | The workflow for studying age-related molecular development of the brain. First, arrange the data into an n × p matrix, where features (p) are
represented as columns and samples (n) as rows. Then, select the desired sparse clustering algorithm (e.g., CLIQUE, PROCLUS, SPARCL, and RSKC) and test its
performance along a range of clusters (k). Lastly, determine the optimal k value using the elbow method and compare the median age of clusters with boxplots.
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FIGURE 2 | Age-related organization of cases and initial clustering results. (A) A 2D tSNE scatter plot color-coded according to individual cases’ age. (B) tSNE 2D
scatter plots and box plots showing the results of agnes for k = 2, 4, 6, and 8 case clusters. The tSNE plots display individual samples as points. Points are
color-coded according to their designated cluster determined by agnes. Boxplots denote the median and interquartile range of ages in each cluster, and points
denote outliers.

This workflow was used for all of the clustering methods
described in the next section and an example R Markdown of the
analysis is included in Supplementary Material.

RESULTS

Evaluating Sparsity-Based Clustering for
Finding Age-Related Clusters
First, we evaluated the data by exploring if simply visualizing
the samples using tSNE produced an age-related organization.
The human V1 samples with seven proteins and all of the WB

runs were used as the input to the tsne package (Donaldson and
Donaldson, 2010; Figure 2A). Color-coding the samples by their
age showed a global progression in the ages with younger samples
mapped to the bottom right and older to the top left in the 2D
tSNE space. Next, we applied a commonly used agglomerative
hierarchical clustering algorithm, AGNES in the cluster package
(Maechler, 2019), to test if this clustering approach would
reveal age-related groupings of the samples. This algorithm
uses the dissimilarity matrix to merge nodes in the tree and it
partitioned these data into clusters that suggest an age-related
progression (Figure 2B). However, groups of 2 or 3 adjacent
clusters had very similar median ages indicating poor age-related
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separation of the samples. A major weakness of this hierarchical
clustering approach is that incorrect branching can never be
undone. Nevertheless, these findings show that even distance-
based hierarchical clustering of human V1 postnatal samples can
find some age-related progression of postnatal samples.

Next, we tested the two density projection sparsity-based
clustering methods that use either top-down (PROCLUS) or
bottom-up (CLIQUE) clustering with all of the observations
(n = 31) and seven of the proteins from the human visual
cortex development dataset. The outputs were visualized in 2D
using tSNE, and the data points were color-coded according
to the clusters identified by each method. Finally, to determine
if the clusters represented developmental changes in the
dataset, we plotted boxplots showing the median age of the
samples in the cluster.

PROCLUS
The PROCLUS clustering method was implemented in RStudio
using the ProClus function in the subspace package version 1.0.4
(Hassani, 2015). We explored clusters between k = 2–9, and
Figure 3 shows the results for 2, 4, 6, and 8 clusters for the human
V1 data with seven proteins and all runs included.

Visualizing the clusters found with PROCLUS (Figure 3A)
showed a mixing of the samples, but the boxplots illustrating
the ages of the samples in the clusters suggested an age-
related progression, especially for 4 or 6 clusters (Figure 3B).
The PROCLUS clusters’ age progression was somewhat better
than the hierarchical clusters but still had clusters with very
similar median ages. More importantly, some clusters had only
one or two data points, and many samples were tagged as
outliers (small gray dots) and excluded from the clusters. Thus,
PROCLUS’s iterative top-down feature identification and cluster
border adjustments performed poorly for identifying age-related
clusters of human V1 development.

CLIQUE
The bottom-up clustering method CLIQUE was tested to
determine how well this iterative approach to building clusters
performed using seven proteins to group the human V1 samples
into age-related clusters.

The CLIQUE function from the subspace package (Hassani,
2015) was used to test clustering. CLIQUE requires an input
value for the interval setting because the intervals divide each
dimension into equal-width bins that are searched for dense
regions of data points. Here we tested a range of input
interval values (xi = 2–8) and those resulted in 4–9 clusters
(Figures 3C,D).

CLIQUE allows data points to be in more than one cluster, so
to visualize the multi-cluster identities, we plotted the data points
using concentric color-coded rings. CLIQUE placed all of the data
into multiple overlapping clusters, which was true for all interval
settings (xi = 2–8). The poor partitioning of samples resulted in
no progression in the clusters’ median age (Figure 3D). Thus the
iterative bottom-up clustering of CLIQUE performed poorly for
clustering the samples into age-related groups.

Comparing these top-down PROCLUS and bottom-up
CLIQUE density methods for sparsity clustering showed that

neither algorithm was a good fit for producing age-related
clustering of the samples. PROCLUS performed somewhat better
because some of the parameters resulted in clusters with a
progression in the median cluster age; but, the number of data
points treated as outliers was unacceptably high.

SPARCL
Next, we tested a sparsity-based clustering algorithm, sparse
k-means clustering, optimized for small sample sizes (Witten and
Tibshirani, 2010). The SPARCL package (version 1.0.4) (Witten
and Tibshirani, 2018) was used to cluster the human V1 samples
with data from 7 proteins. This approach adaptively finds subsets
of variables that capture the different dimensions and includes
all samples in the clusters. SPARCL searches across multiple
dimensions in the data and adjusts each variable’s weight based
on the contribution to the clustering. Thus, the term “sparse”
in this method refers to selecting different subsets of proteins to
define each cluster.

To implement sparse k-means clustering, we used the
Kmeans.sparsecluster function in the SPARCL package (Witten
and Tibshirani, 2018). We explored a range of k clusters
between k = 2–9. The SPARCL package also includes a
function to help determine other input variables, such as the
boundaries for reweighting the variables (wbounds) to produce
optimal clustering.

Visualizing the clusters created by SPARCL showed useful
partitioning of the samples into clusters (Figure 3E) that moved
from the bottom right to the top left in the tSNE plot. Also,
the boxplots illustrate a good progression of the median cluster
age for 4 and 6 clusters. However, SPARCL is prone to making
clusters with only 1 sample, and that was the case in this example
for k = 4–9 clusters. To address that problem, we tested another
sparse k-means cluster algorithm that is robust to making clusters
of n = 1.

Robust Sparse k-Means Clustering
Finally, we tested a modified version of the SPARCL algorithm
called RSKC (Kondo et al., 2016). The RSKC algorithm was
designed to be robust to the influence of outliers that can drive
other algorithms to create clusters of n = 1. RSKC operates by
iteratively omitting outliers from cluster analysis, assigning all
remaining samples to clusters, and then reinserting outliers to the
analysis by grouping them into the nearest-neighboring cluster.

Using the RSKC package in R (Kondo, 2016) we explored
clustering for a range of k values (k = 2–9) using the human V1
dataset with 7 proteins and all runs (Figure 4). The visualization
of the clusters on the tSNE plot showed good grouping of the
samples into spatially separated clusters. The boxplots illustrate
good progression in the median ages of the clusters, especially for
4 or 6 clusters (Figure 4B). In addition, the algorithm adaptively
reweighted the proteins to identify the most robust clusters and
we plotted the weights for each of the 7 proteins (Figure 4C).
This component of RSKC identified the lifespan variations in
GluN2B, Synapsin, and GluN2A as having the greatest impact on
the clustering of the samples.

Next, the scalability of RSKC was explored using the full
dataset of 23 proteins measured for the human V1 samples
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FIGURE 3 | Comparison of various sparse clustering methods. Top-down PROCLUS subspace method across range of cluster numbers (2, 4, 6, and 8). The
clusters are visualized in tSNE 2D scatter plots of the data by color-coding each data point with its cluster identity (A) and in boxplots showing the median age of the
samples in each cluster (B). (C,D) Bottom-up CLIQUE subspace clustering method for a range of “intervals.” Different clusters are visualized as colored dots in a
tSNE representation of the data (C) and as box plots depicting the mean age of the samples (D). (E,F) Sparse clustering after varying the inputted k cluster number
(2, 4, 6, and 8). Different clusters are visualized as colored dots in a tSNE representation of the data (E) and as box plots depicting the mean age of the samples (F).
The colors in scatter plots and boxplots represent the cluster designation for all plots.
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FIGURE 4 | Age-related clustering of seven synaptic proteins for a single iteration. Expression data from seven synaptic proteins were input into RSKC and used to
identify k = 2, 4, 6, and 8 case clusters. For each k value, three plots were constructed: (A) 2D tSNE scatter plots showing samples color-coded by their cluster
designations, (B) box plots displaying the distribution of ages for each cluster, and (C) a bar graph representing the RSKC weights for all seven proteins.

(Murphy lab) (Figure 5). In this example, the average expression
value for each protein was used and the elbow plot method
identified six clusters. Figure 5 shows the results of three
separate runs of RSKC on the 23 protein dataset. All three
runs resulted in similar clustering (Figures 5A–C) with a
tight progression of age-related clustering from cluster A
with the youngest median age to cluster F with the oldest
age. The addition of more proteins to the RSKC clustering
provided greater precision for identifying the subtle changes that
represent the temporal dynamics of human V1 development.
The weights for the 23 proteins (Figures 5D–F) showed that all
of the proteins contributed to this high dimensional clustering.
Comparing the feature weights among the three runs showed
some reordering in the weight of individual proteins suggesting
that care is needed when using weights from a single run.
These weights were used to improve the visualization of the

clusters in a tSNE plot. The protein expression values for each
sample were transformed by multiplying with the corresponding
weight and those transformed data were visualized using tSNE
(Figures 5G–I). Those plots showed the separation of the clusters
in the 2D tSNE space.

Since the starting conditions for clustering can affect which
samples end up in a cluster, we tested how robust RSKC clusters
were by running the algorithm 100 times with different starting
conditions. We then plotted the results of 100 iterations in a
boxplot showing the age-related clusters and a heatmap showing
the number of times each sample fell into the different clusters
(Figures 6A,B). This analysis showed that the progression in
the age of the clusters was robust to the starting conditions
(Supplementary Table 5). Furthermore, the heatmap showed
that clusters B and C were the least stable, but the other clusters
had strong consistency for which samples were partitioned
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FIGURE 5 | Age-related clustering of 23 synaptic proteins for three single iterations. (A–C) Expression data from 23 synaptic proteins was used to identify six case
clusters. Boxplots of cluster age ordered from youngest (red) to oldest (dark blue) median age. (D–F) Bar plot visualizing RSKC feature weights for proteins. (G–I)
tSNE plot of the protein data scaled by RSKC weights and color-coded by RSKC cluster. In both (A–C) and (G–I), sample ages were reduced to sample averages to
reduce crowding.

into those clusters. The Jaccard similarity was calculated for
all cluster pairs to determine the proportion of samples shared
between the clusters. Cases were counted as shared when the
cases were partitioned to the cluster 10 or more times because
the metric is sensitive to small samples sizes. The similarity
indices ranged from 0 to 22% (adjacent pairs: A–B 12%, B–
C 22%, C–D 11%, and D–E 20%), with cluster C having the
most cases shared with other clusters. In addition, the average
feature weight for each of the 23 proteins was calculated from the
100 runs (Figure 6C) and illustrated the gradual progression of
feature weights.

Testing Robust Sparse k-Means
Clustering With Larger Numbers of
Proteins or Genes
So far, we have shown that RSKC does a good job of partitioning
samples into age-related clusters with datasets that have fewer
than 25 proteins. Here we examine if RSKC scales to larger
datasets with 2–3 orders of magnitude more features.

We ran the RSKC clustering using data collected from the
Murphy lab human V1 samples with measurements for 95
proteins (Supplementary Table 4; Figure 7A). Once again,
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FIGURE 6 | Robust, age-related clustering of 23 synaptic proteins for 100 iterations. (A) Expression data from 23 synaptic proteins was used to identify six case
clusters. The cluster designation of each case over 100 iterations of RSKC was used to visualize the distribution of case ages (in years). Boxplots denote the median
and interquartile range of ages in each cluster, and points denote outliers. (B) Heatmap visualizing the number of times each case was assigned to each cluster over
100 iterations of RSKC. (C) The average RSKC feature weight for each of the proteins from the 100 iterations.

100 iterations of RSKC clustering was used to ensure that the
clusters were robust to the starting condition. This analysis found
strong age-related clustering of the samples showing six well-
defined clusters that stepped across the lifespan. We tested if the
progression of cluster ages could arise by chance by rerunning
the clustering but on each iteration the age of the sample

was randomized. As expected, randomizing the ages resulted in
clusters with a very broad range of ages and no progression in the
mean cluster age (Supplementary Figure 1).

Next, RSKC clustering was extended to the transcriptomic
dataset from Kang et al. (2011; Supplementary Table 2). First,
RSKC was run using the 88 genes that matched the proteins in

Frontiers in Neuroscience | www.frontiersin.org 11 November 2021 | Volume 15 | Article 668293

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-668293 April 13, 2022 Time: 14:32 # 12

Balsor et al. Guide to Sparse Clustering

Figure 7A. Even though the two datasets used different samples it
was possible to compare the ages of the clusters because the range
of ages and number of samples were similar. The progression of
age-related clusters for the gene data (Figure 7B) was similar to
the protein clusters and there was a strong correlation (r = 0.81)
between the median ages of the six cluster pairs.

The strong correlation between the protein- and gene-cluster
ages was particularly interesting because previous studies have
shown that the correlation between large sets of protein and
gene expression values is notoriously low (e.g., r ∼ 0.2) (Gry
et al., 2009). To assess if the datasets used here simply had an
unusually strong similarity between the lifespan changes in the
expression values for each protein and gene pair we calculated
those correlations. To facilitate this analysis the protein and gene
expression values were normalized by calculating z-scores and
the normalized values were partitioned into six age-bins (<1, 1–5,
5–12, 12–20, 20–55, and >55 years) (Supplementary Figure 2).
The correlation coefficient was then calculated for the 88 protein-
gene pairs using the mean gene and protein expression values
from the six age bins (Supplementary Figure 3A). The mean
correlation between the 88 protein-gene pairs was r = 0.15 and
the median correlation was only slightly higher (median r = 0.21,
95% CI 0.04–0.25) (Supplementary Figure 3B). Thus, it is
unlikely that the strong correlation found between the ages of the
protein- and gene-clusters arose from a simple linear relationship
between those two types of molecular measurements. Instead, the
common cluster ages for these different omics datasets suggest
similar high dimensional patterns that RSKC uses to partition the
samples into the series of age-related clusters.

Finally, we examined how well RSKC performed on datasets
with measurements of hundreds to thousands of genes using 988
genes that overlap with the SynGO database of synaptic genes
(Koopmans et al., 2019) and then with all 17,237 genes in the
Kang dataset. The SynGO genes were analyzed to assess if a
large set of functionally genes might reveal a different pattern
of clusters from the full set of genes. The analysis of synaptic
genes showed an age-related progression of the median age of
the clusters (Figure 7C). Compared with the protein clusters
(Figure 7A), the median age of the SynGO clusters jumped
between clusters B and C (Figure 7C) and a very similar pattern of
age-related clusters was found when all 17,237 genes in the Kang
dataset were used (Figure 7D). Thus, RSKC cluster analysis of
95 proteins revealed the tightest age-related clusters, but the gene
data also resulted in the partitioning of samples into age-related
clusters. This finding contrasts with hierarchical clustering used
by Kang et al. (2011), (Supplementary Figure 8) that did not
partition postnatal samples into age-related clusters. Thus, the
optimization of sparse k-means cluster analysis (RSKC) for small
sample sizes provides another approach for analyzing the human
brain’s molecular development that is sensitive to the subtle
molecular changes that occur across the postnatal lifespan.

A Note About Selecting the Number of
Clusters
An essential step in k-means clustering is selecting k, which
denotes the number of groups to classify observation into. The

correct choice of k is often ambiguous, as there are many different
approaches for making this decision. Intuitively, an optimal k lies
in between maximum generalization of the data using a single
cluster and maximum accuracy by assigning each observation
to its own cluster. One of the most common heuristics for
determining k is the elbow plot method, where the sum of squared
distances of observations to the nearest cluster center is plotted
for various values of k. As k increases, the sum of squared
distances tends toward zero. The “elbow” occurs at the point of
diminishing returns for minimizing the sum of squared distances,
and the k value at this point is selected as the optimal number
of clusters.

To tailor the selection of k to RSKC, we applied the elbow
method to the Weighted Within Sum of Squares (WWSS), the
objective function maximized by the algorithm. WWSS was
calculated for various values of k and averaged over 100 iterations.
The elbow can be identified using the elbowPoint function in the
akmedoids package (version 0.1.5) (Adepeju et al., 2020), which
uses a Savitzky–Golay filter to smooth the curve and identify the
x where the curvature is maximized. This method found that k = 6
was the optimal number of clusters for all of the applications of
RSKC used in this paper.

There are more than 30 methods to determine the optimal
values for k and a large number of journal papers (e.g., Tibshirani
et al., 2001) and web resources (e.g., Cluster Validation Essentials)
that can be used to learn more. The R packages NbClust (Charrad
et al., 2015) and optCluster (Sekula, 2020) are particularly helpful
tools for choosing the number of clusters because they test
various methods for selecting k (Charrad et al., 2014).

APPLICATION OF ROBUST SPARSE
k-MEANS CLUSTERING CLUSTERS TO
STUDY HUMAN VISUAL CORTEX
DEVELOPMENT

Previous studies using the datasets analyzed here (Murphy
et al., 2005; Pinto et al., 2010, 2015; Williams et al., 2010;
Kang et al., 2011; Siu et al., 2015, 2017) have examined
molecular development by assigning samples into age-bins that
approximate the lifespan stages defined by developmentalists.
In contrast, the previous section describes a data-driven
approach to partitioning samples into age-related clusters using
sparse k-means clustering (RSKC). This use of unsupervised
clustering raises the possibility that it might reveal aspects
of human visual cortex molecular development that have
escaped previous analyses. This section explores some of
the information about human visual cortex development
that can be revealed by examining the content of age-
related clusters.

First, we compare partitioning of the samples into pre-
defined age-bins versus data-driven clustering of the 23
proteins for post-mortem intervals (PMIs), the proportion of
cases, and the biological sex of the cases (Supplementary
Figure 4). The distribution of PMIs was similar between
the two methods of partitioning the lifespan as was the
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FIGURE 7 | Age-related clusters for large numbers of proteins and genes. Expression data from (A) 95 synaptic and immune-related proteins, (B) 88 genes that
correspond with the protein in (A), (C) 988 synaptic genes that correspond with the SynGO gene list, and (D) 17,237 protein-coding genes was used to identify six
age-related clusters. The cluster designation of each sample over 100 iterations of RSKC was used to visualize the distribution of sample ages. Boxplots denote the
median and interquartile range of ages in each cluster, and points denote outliers.

proportion of samples and the balance of females and males
in the bins. The progression of cluster ages was apparent
when the age bins were color-coded to reflect the cluster
identity (Supplementary Figure 4G). That histogram illustrated
an interesting aspect of cortical development during young
childhood (1–4 years) where samples in that age-bin were
partitioned into five different clusters. Similar to previous studies
that observed heightened childhood heterogeneity with waves

of inter-individual variability that peak between 1 and 3 years
(Pinto et al., 2015; Siu et al., 2017). The findings here suggest
that the relationship between chronological and brain age varies
across the lifespan.

The developmental trajectories of the 23 proteins were
plotted using LOESS fits (95% CI) to the expression values
(normalized to control), and each sample was color-coded by
their cluster assignment. The LOESS curves were ordered based
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on similar trajectories to illustrate the range of developmental
patterns with some increasing (e.g., GABAAα1) or decreasing
(e.g., GABAAα2) monotonically across the lifespan while others
followed an inverted-U (e.g., gephyrin), an undulating pattern
(e.g., VGAT), or remained relatively unchanged (e.g., GABAAα3)
(Figure 8A). The range of trajectories highlights the need
for high-dimensional analyses to capture the complexity of
this development. To help describe when the expression
level of a protein in a cluster was above or below the
overall mean, we implemented the over-representation analysis
(ORA_phenotype function) described previously (Balsor et al.,
2020; Figure 8B). Briefly, for each protein, a normal distribution
was simulated using the mean and standard deviation of the
expression values for all samples. Then the boxplots were
color-coded by comparing the expression values for each
cluster with the simulated distribution. Here, the box for
a cluster was coded as over-represented (red) if the 25th
percentile was above 95% of the simulated distribution and
under-represented if the 75th percentile was below 5% of
the simulated distribution. Of course, other cutoff values
for the ORA can be implemented to be more stringent or
lenient for the color-coding (e.g., Supplementary Figure 5),
or other methods such as estimation statistics (Bernard,
2019) can be used for this step depending on the nature
of the question.

Here, the ORA identified a range of over- or under-
represented proteins in each cluster from a high of 12 proteins
in clusters C to 5 proteins in cluster F (A – 6 proteins, B –
11 proteins, C – 12 proteins, D – 8 proteins, E – 7 protein,
and F – 5 proteins). These LOESS curves and boxplots for the
expression of each protein help to describe development, but
it is challenging to synthesize an overall pattern for human V1
development when confronted with making hundreds of pairwise
comparisons. To address that problem we implemented a series
of visualizations and analyses aimed at representing the high-
dimensional nature of these data.

The first step in addressing the high-dimensional patterns
of protein expression captured by the age-related clusters was
to plot a bubble chart illustrating the expression levels of all
23 proteins for the 6 clusters. That visualization ordered the
proteins by their RSKC weight and color-coded each bubble with
the normalized mean protein expression with blue representing
low and red high expression levels (Figure 9). The visualization
helped identify that cluster D has high expression levels for
many proteins. That cluster represents older children and the
transition to adolescence (mean cluster age = 10.3 years, CI
9.6–11.1 years) when rapid changes in cortical microstructure
have been found (Norbom et al., 2021). In addition, groups of
proteins with either high or low expression can be identified
in a cluster, such as the higher expression of Golli-MBP, GFAP,
CB1, and NR2B in cluster B. Thus, this visualization shows
the mean expression for the 23 proteins in the 6 clusters, but
it is still challenging to derive what differentiates the clusters.
To address this, we applied our recently developed workflow
(Balsor et al., 2019, 2020) that includes dimension reduction,
identification of features and the construct of a plasticity
phenotype visualization to characterize the development of the

human visual cortex. This workflow is described in detail in a
previous publication (Balsor et al., 2020).

Adding Principal Component Analysis for
Dimension Reduction
This part of the workflow aims to reduce the dimensionality
of the data by identifying combinations of functionally related
proteins that we call features and using those features to capture
the high dimensional pattern of brain development. The first
step involves using PCA, a standard approach for reducing
dimensionality when studying brain development (Jones et al.,
2007; Beston et al., 2010; Bray, 2017). The scree plot showed
that the first three dimensions capture ∼60% of the variance in
the data (Supplementary Figure 6), and the correlation matrix
identified the strength of the relationship between each protein
and the 23 dimensions. For example, the expression of Gephyrin
and PSD95 was strongly correlated with Dim 1 while VGAT,
GABAAα2, CB1, and GluN1 were strongly correlated with Dim
2. In addition, the quality of the representation for each protein
on the first three dimensions was assessed using the cos2 metric.
The cos2 (cosine square, coordinates square) conveys the quality
of the representation of that variable using the projection angle
onto each PC dimension. The closer that cos2 is to 1, the better
the quality of that variable’s projection onto the dimension. The
biplots illustrate the quality of the representation of each protein
on Dim 1, 2, and 3 (Figures 10A,B) and show that some aspects
of the RSKC-defined clusters are apparent when the samples are
plotted in the PC space (Figures 10C,D). However, clustering
of the samples in PC space was less distinct than illustrated in
Figure 5 where tSNE plots were used to visualize clusters in the
RSKC-weight transformed data.

We examined which proteins were well represented by the
first three dimensions by plotting the cos2 values for Dim 1,
2, and 3 (Figures 10E–G) and the sum of the cos2 for those
dimensions (Figure 10H). The matrix of cos2 values illustrated
that only two of the proteins (GABAAα3 and Drebrin) were
weakly represented by the first three dimensions (Figure 10I).
The remaining steps focus on Dim 1, 2, and 3 because they
captured a large amount of the variance and had high-quality
representations for most proteins.

Comparing Principal Component
Analysis and Robust Sparse k-Means
Clustering
We compared RSKC and PCA by assessing the similarity of
RSKC weights and PCA cos2 values for each protein (sum of
Dim 1, 2, and 3) for the 23 proteins (Figure 11A). There was
a strong correlation (ρ = 0.72) between the two approaches;
however, some proteins fell away from the line of best fit.
Next, the differences between RSKC weights and PCA cos2

of the proteins were assessed using a Bland–Altman analysis
(Giavarina, 2015). This used the calculated differences between
the normalized measures and plotted those as the difference score
for each protein. Also, interval bands were plotted to represent
no difference between the RSKC and PCA measurements (blue
band), when RSKC measurements were greater (positive red
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FIGURE 8 | Development of proteins by age and by cluster. Expression profiles for each of the 23 proteins (A). Individual samples are represented by a single dot,
and colored according to the corresponding RSKC cluster assignment. LOESS curves for each profile are shown in black, with 95% upper and lower confidence
intervals shown bounding gray outline. Protein profiles are ordered according to similar developmental trajectories. (B) Overrepresentation analysis showing protein
expression as boxplots representing each cluster. Over-represented clusters were colored red if the 25th percentile of the RSKC cluster was greater than the 95th
percentile of a simulated normal distribution. Under-represented clusters were colored blue if the 75th percentile of the RSKC cluster was less than the 5th percentile
of a simulated normal distribution. Boxes that fell within the middle 90% of the simulated normal distribution were left gray.

band) and when PCA measurements were greater (negative red
band) (Figure 11B). The blue band was slightly offset from zero,
indicating a bias for the normalized PCA cos2 values to be greater

than the RSKC weights. The plot identified key proteins, such as
the Gephyrin and PSD95 homogenates, and Ube3A which were
more strongly represented by the RSKC weights. All three of
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FIGURE 9 | Bubble plot of mean protein expression across each cluster. Proteins are ordered by their corresponding RSKC weight with the highest weighted protein
arranged at the top, and the lowest weighted protein at the bottom and ordered by developmental cluster from left to right. The color of the dot represents
standardized protein expression for each cluster, while the size of the dot represents the RSKC weight (see legend).

those proteins are essential molecular components that regulate
the experience-dependent development of the visual cortex. For
example, Ube3A is involved in the experience-dependent cycling
of AMPA receptors (Greer et al., 2010), is required for ocular
dominance plasticity (Yashiro et al., 2009; Sato and Stryker, 2010)
and is selectively lost during aging of the human visual cortex
(Williams et al., 2010).

Using Principal Component Analysis
Basis Vectors to Identify Candidate
Plasticity Features
The proteins in the dataset are known to regulate experience-
dependent plasticity in the visual cortex (e.g. Quinlan et al.,
1999a,b; Fagiolini et al., 2003, 2004; Hensch, 2004, 2005; Hensch
and Fagiolini, 2005; McGee et al., 2005; Philpot et al., 2007;
Yashiro and Philpot, 2008; Cho et al., 2009; Gainey et al., 2009;
Smith et al., 2009; Kubota and Kitajima, 2010; Larsen et al., 2010;
Levelt and Hübener, 2012; Lambo and Turrigiano, 2013; Cooke
and Bear, 2014; Guo et al., 2017; Turrigiano, 2017; Hensch and

Quinlan, 2018). We took advantage of that a priori knowledge
and the output from PCA to identify a new set of features that
could be used to probe the neurobiology of the RSKC clusters.
Although the RSKC weights reflect the contribution of individual
proteins for partitioning the samples into clusters, the weights do
not provide insights into combinations and balances of proteins
that regulate plasticity. Thus, it is necessary to add another
analysis that can help to identify those networks and balances of
proteins that regulate experience-dependent plasticity.

This step is a semi-supervised approach to select combinations
of proteins using the PCA output (cos2 values and the basis
vectors) and the known functions of the proteins. These steps
generate a list of candidate plasticity features that are combined
to construct an extended phenotype (Dawkins, 1982). We call the
collection of features a plasticity phenotype and it can be used
to infer the plasticity state of the visual cortex. The approach is
described in detail in Balsor et al. (2020) and briefly outlined here.

Two heuristics were applied to identify combinations and
balances among the proteins, using proteins that met the cos2

cutoff shown in Figure 10H. First, the a priori knowledge
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FIGURE 10 | Examination of relevant PCA identified dimensions. PCA biplots (A–D) show protein features as vectors (arrows) and individual samples as dots on
pairings of PCA dimensions 1 and 2 (A,C) and dimensions 1 and 3 (B,D). The strength of the representation (cos2) for a protein on the given set of dimensions is
reflected by the length of the vector, and only proteins with cos2 > 0.5 are shown. The color of each point corresponds to their cluster, matching the original cluster
colors in Figure 6. Bar plots represent the quality of representation of each protein with each dimension (E–G), as well as the summed quality of representation
across all three dimensions (H). The dashed line represents cos2 cutoff value for representation of 0.5. (I) Matrix illustrating the quality of representation for each
protein with each PCA dimension, representing the strength (circle size) and direction (zero = white, positive = red) of cos2.
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FIGURE 11 | Exploring the relationship between PCA and RSKC feature identification. (A) Scatter plot showing the PCA quality of representation (cos2) for the first
three dimensions and the RSKC weights. The dashed line represents the line of best fit, and rho is Spearman’s rank correlation coefficient. (B) Bland–Altman plot
comparing PCA cos2 for the first three dimensions and RSKC weights for 23 proteins. The cos2 and RSKC weights were each computed as proportions of their
respective maximum values. The dashed blue line represents the mean difference, with the 95% confidence intervals shown as the blue shaded area. The top
dashed red line represents the upper limit of agreement (+1.96 SD) and the bottom dashed red line is the lower limit of agreement (–1.96 SD), with corresponding
95% confidence intervals shown as red shaded areas.

about the function of the proteins in plasticity and development
of the visual cortex was used to guide the inspection of the
three basis vectors (Figures 12A–C). Second, the amplitude
and direction of each protein on the basis vector were used
to select candidate features to sum or use in a relative
difference index. For example, on PC1, we noted that four
highly conserved synaptic markers (Pinto et al., 2015), the

pre-synaptic proteins synapsin and synaptophysin and the
post-synaptic proteins PSD95 and gephyrin had large positive
amplitudes, so they were summed to create one of the candidate
features (PGSS). On PC2, the receptor subunits GABAAα1 and
GABAAα2 had opposite directions, so these were used for an
index (GABAAα1:GABAAα2) because the balance between those
subunits is developmentally regulated and governs the kinetics of
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FIGURE 12 | Candidate feature identification using principal component analysis. Histograms showing the amplitude of the basis vector for each protein across (A)
dimension 1, (B) dimension 2, and (C) dimension 3. (D) The correlations between the protein sums or indices and the first three PCA dimensions. Non-gray cells
represent significant correlations after Bonferroni correction, with the color indicating the magnitude and direction of the correlation (negative = blue, zero = white,
positive = red).
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FIGURE 13 | Expression of extracted features with respect to age and by cluster. (A) LOESS trajectories illustrating the expression of protein sums and indices.
Points are colored corresponding to the clusters in Figure 8, and the 95% confidence intervals around each curve are colored in gray. (B) Boxplots show the
expression of each feature for the six clusters. A simulated normal distribution was sampled to obtain 5th and 95th percentile values. Boxes were colored red (i.e.,
over-represented) if the 25th percentile of the feature cluster was greater than the 95th percentile of the normal distribution. Boxes were colored blue (i.e.,
under-represented) if the 75th percentile of the feature cluster was less than the 5th percentile of the simulated distribution. Otherwise, boxes were colored gray.

the GABAA receptor (Gingrich et al., 1995; Bosman et al., 2002;
Heinen et al., 2004; Hashimoto et al., 2009). Finally, on PC3,
we noted that GFAP and integrin had the largest amplitudes,

and they were in opposite directions. Those two proteins are
expressed by astrocytes, and the expression of integrin receptors
is increased on reactive astrocytes (Lagos-Cabré et al., 2020), so
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FIGURE 14 | Associations between selected features and feature phenotype by cluster. (A) Correlation heat map between protein sums and indices, with strength
and direction of Pearson’s R correlation represented by the color (negative = blue, zero = white, positive = red), and arranged by similar pairwise correlations using a
wrapped dendrogram. Features were selected if they were significantly correlated with any of the first three PCA dimensions. (B) The plasticity phenotype was
visualized using color-coded horizontal bars representing the median expression of selected features across clusters. For protein sums, the color ranges from white
(zero) to gray (midpoint) to black (maximum protein sum across all features). For the protein indices, the color ranges from green (favoring the first protein in the
index) to yellow (balance of the two proteins) to red (favoring the second protein in the index). Asterisks indicate features that were found to be either over- or
under-represented. The features are arranged according to the same dendrogram generated in (A).
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FIGURE 15 | Raincloud plot showing the distribution of sample ages by
cluster. Vertical lines correspond to the bounds of pre-defined age bins.
Samples corresponding to the youngest age (i.e., 20 days) are not shown.

an index was calculated (GFAP:Integrin). Applying the heuristics
resulted in 13 candidate features, including 5 protein sums
identified using the basis vector for PC1 and 8 indices from
PC2 and PC3 (Figure 12D). The features were validated by
calculating each feature using the expression values for the 23
proteins (Supplementary Table 6) and correlating those with the
eigenvalues for the three PC dimensions (Figure 12D).

LOESS curves and boxplots were made for all of the candidate
features to illustrate how they changed across the lifespan
and identify if features were over- or under-represented in a
cluster (Figures 13A,B and Supplementary Figure 7). One
aspect of development apparent in the boxplots was the over-
representation of the protein sums in cluster D. That cluster has a
mean age of 10.3 years (SD 8.4 years), which corresponds with the
end of the critical period for developing amblyopia in children
(Lewis and Maurer, 2005; Birch, 2013) and a stage of human
cortex development often described by synaptic exuberance,
growth, and changing state of plasticity. Furthermore, animal
research has shown that excess excitation (Fagiolini and Hensch,
2000; Fagiolini et al., 2004) and expression of proteins regulating
that activity, especially PSD95 (Huang et al., 2015), can close the
critical period.

Analyzing Plasticity Phenotypes for the
Robust Sparse k-Means Clusters
Finally, the 11 features with significant correlations were used
to construct a plasticity phenotype that was combined with the
six clusters. A correlation matrix was made using the values
for the features calculated from the protein expression for each
sample (Supplementary Table 1). The matrix and surrounding
dendrogram showed that the protein sum and indices were
separated into different tree branches. The order of the features
in the correlation matrix was used for the bands in the plasticity
phenotype visualization. In the phenotype, the median of each
feature was represented as a color-coded band for the six
clusters (Figure 14B). Together, the 66 color-coded feature
bands captured the high dimensional pattern of neurobiological
changes across the lifespan. The protein sums represented by
gray levels convey a pattern with specific groups of proteins

that are highly expressed early in development (clusters A and
B) and a broad wave of expression in older childhood (cluster
D). The indices reflect the multiple timescales of molecular
development that are the hallmarks of the human visual cortex
(Siu and Murphy, 2018). However, even with undulating features
and different timescales, all appear to arrive at a similar level of
maturation in cluster E.

Combining the features and clusters into a visualization
simplified this complex dataset and facilitated linking the clusters
with sets of neurobiologically meaningful features. The asterisks
on the feature bands indicate the ones identified as over- or
under-represented in Figure 13B. Each cluster had a unique
group of features that deviate from the average, and those
represent the neurobiological mechanisms that differentiate the
age-related clusters. For example, the set of 4 red bands for the
young visual cortex (cluster A) was unique and showed that the
indices were dominated by the NMDA receptor subunits NR2B
and GluN1, the Golli family of myelin basic protein (MBP) and
the GABAAα2 receptor subunit. In contrast, the older visual
cortex (cluster F) was distinguished by a set of 3 light gray protein
sum bands, a red band indicating more GFAP and a green band
indicating more GABAAα1. Finally, the overall appearance of
the protein sums and indices for cluster D gives the impression
of a transition stage in the development of the visual cortex
when exuberant protein expression (dark gray bands) (Huang
et al., 2015) and the shift in protein balances (green bands) (e.g.,
Quinlan et al., 1999a,b; Fagiolini and Hensch, 2000; Chen et al.,
2001; Philpot et al., 2001; Fagiolini et al., 2003, 2004; Hensch,
2005; Hall and Ghosh, 2008) signals the end of the critical period.

A raincloud plot of the samples in the 6 clusters shows the
range of ages that correspond with the plasticity phenotypes
(Figure 15). The distribution of sample ages in the clusters
appears like a series of overlapping waves extending beyond the
ages of the traditional pre-defined age-bins included in Figure 15
as vertical lines. For example, for cluster D, the wave’s peak
falls into the age-bin associated with the end of the period
for developing amblyopia (5–12 years). However, cluster D also
includes younger and older samples suggesting that the end of
the sensitive period may not occur uniformly among individuals.
Furthermore, other clusters overlap the 5- to 12-year-old age-bin
suggesting that multiple phenotypes can be found during certain
age-bins. Thus, the cluster analysis helped reveal aspects of visual
cortex development that are obscured by using pre-defined age
bins, which is that chronological- and brain-age often diverge
(Cole et al., 2019).

DISCUSSION

The current study shows that the application of sparse clustering
leverages the high dimensional nature of proteomic and
transcriptomic data from human brain development to find age-
related clusters that are spread across the lifespan. In particular,
RSKC using measurements of proteins or genes from the human
visual cortex partitioned samples into clusters that progressed
from neonates to older adults. The iterative reweighting of the
measurements to focus on the proteins or genes that carry the
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most information about lifespan changes led to robust age-related
clustering of the data. Furthermore, especially for the datasets
focusing on 95 proteins or genes, the clusters represented early
development, young childhood, older childhood, adolescence,
and adulthood. Thus, sparse clustering provides a robust
approach for identifying proteomic or transcriptomic defined
brain ages that overlap with behavioral and brain imaging
findings of gradual and prolonged human brain maturation.

Many factors come into play when selecting an appropriate
clustering algorithm for a study. Here, we considered the goal
of the study (to resolve sometimes subtle age-related changes in
molecular mechanism), the structure of the dataset (p ∼ n to
p >> n), and the output of the algorithm (is it just the clusters
or is feature selection included). Sparse K-means clustering was
selected because it fit all of those considerations. We know from
previous studies of the molecular development of the human
brain that there can be subtle differences between age groups
(Murphy et al., 2005; Pinto et al., 2010, 2015; Williams et al.,
2010; Siu et al., 2015, 2017), and yet even small changes in
protein or gene expression will alter neural function. Therefore,
we looked for algorithms designed for omics datasets where
subtle changes in a subset of the genes or proteins would
identify important characteristics of the data. The development
of sparse K-means clustering by Witten and Tibshirani (2010)
was partially inspired by the need to better cluster a breast cancer
dataset. In that dataset, subtle differences in gene expression
significantly impacted patient outcomes, but standard clustering
approaches did not pick those up. In addition, sparse clustering
was developed to address datasets, like ours and the breast cancer
data where the structure is p ∼ n to p >> n. Sparse K-means
clustering is a good fit for those high dimensional structures
because it minimizes the within-cluster sum of squares with a
dissimilarity measure while maximizing the between-cluster sum
of squares by iteratively reweighting the measures. Finally, and
most importantly, sparse K-means clustering performs feature
selection. The examples in this paper show the reweighted
proteins and those distributions identifying how much each
protein contributes to partitioning the samples into clusters. That
matrix is sparse, with unimportant proteins having near-zero
weights and important ones having non-zero weights. Those
weights are essential for cluster analysis to help with making
neurobiologically relevant interpretations of brain development
from the cluster analysis.

Various other algorithms, including linear and non-linear
dimension reduction [e.g., tSNE, multidimensional scaling
(MDS), and PCA], can separate developmental samples. In this
paper, we found that both tSNE and PCA show some age-related
progress in the arrangement of the samples. Also, Kang et al.
(2011) used MDS to separate the samples across MDS 1 and
2. Then the points were color-coded by pre-defined age bins to
show a left to right flow from early prenatal to older adults.
However, it was not apparent which genes mapped on to those
dimensions. The selection of features in the form of the weights is
a key difference between sparse k-means clustering and standard
clustering approach that was critical for the current study.

The current study is not exhaustive of clustering approaches,
as the number of unsupervised clustering algorithms for
analyzing high dimensional data is rapidly expanding. For

example, new sparse clustering algorithms include innovation
at the level of the lasso-type penalty used to adjust observation
weights (Brodinová et al., 2019). Accordingly, the “best”
algorithm for understanding molecular brain development will
continue to change as new approaches are developed. Rather
than acting as a prescriptive guide for which algorithm to use,
the current study highlights the challenges raised when applying
high dimensional clustering to studies using postmortem
brain samples. In particular, developmental studies that use
postmortem human brain tissue often have more measurements
than samples (p> n) and require clustering algorithms optimized
for high dimensional data structures. The examples showed that
the RSKC algorithm worked well for a wide range of observations
(p) from 7 to 17,237. However, the age-related progression of
the 95 proteins and 88 gene datasets (Figures 7A,B) were more
distinct than the clustering using 988 SynGO or the full 17,237
gene dataset (Figures 7C,D).

The succession of age-related clusters found for the visual
cortex aligns with some critical milestones in visual development.
Using measurements of molecular mechanisms that regulate
experience-dependent plasticity, the clusters illustrated in
Figure 5 show that cluster A overlaps the start of the sensitive
period for binocular vision at 4–6 months and cluster B
the peak of that sensitive period at 1–3 years (Banks et al.,
1975). Furthermore, cluster D aligns with the maturation of
contrast sensitivity (Ellemberg et al., 1999), motion perception
(Ellemberg et al., 2002), and the end of the period for the
susceptibility of developing amblyopia (6–12 years) (Epelbaum
et al., 1993; Keech and Kutschke, 1995; Lewis and Maurer,
2005). The oldest cluster, cluster F, highlights ages when
cortical changes reduce performance on several visual tasks
(Owsley, 2011). The alignment with visual milestones suggests
that the clusters might provide insights into the molecular
mechanisms that regulate various aspects of visual development
and visual function dynamics across the lifespan. Notably,
the molecular mechanisms are well studied in animal models.
Thus, this information for the human cortex may be seen
as a bridge linking results from animal studies with human
neurobiology that can help interpret brain imaging and visual
perception findings.

By combining the RSKC clustering with PCA, we identified
plasticity-related features and constructed a plasticity phenotype
that was applied to each cluster (Figure 14). The term plasticity
phenotype has been used before to describe the waxing and
waning of gene expression in the developing brain (Smith et al.,
2019). Here we used the term to describe an extended phenotype
(Dawkins, 1982) because the proteins in the dataset have known
functions in regulating experience-dependent plasticity in the
visual cortex (e.g., Quinlan et al., 1999a,b; Fagiolini et al., 2003,
2004; Hensch, 2004, 2005; McGee et al., 2005; Philpot et al.,
2007; Yashiro and Philpot, 2008; Cho et al., 2009; Gainey et al.,
2009; Smith et al., 2009; Kubota and Kitajima, 2010; Larsen
et al., 2010; Levelt and Hübener, 2012; Lambo and Turrigiano,
2013; Cooke and Bear, 2014; Guo et al., 2017; Turrigiano,
2017). Thus, the plasticity phenotype can be used to infer the
potential for experience-dependent plasticity in the different
clusters and provide a new perspective on the maturation of the
human visual cortex.
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Each cluster had a unique set of features that were over-
or under-represented in the plasticity phenotype, and those
features were apparent in the phenotype visualization. Notably,
the features were selected using a semi-supervised approach
with a series of heuristics that included protein combinations
and balances known to regulate experience-dependent plasticity.
As a result, the unique sets of features can be compared with
the literature to infer the likely state of experience-dependent
plasticity for a cluster. For example, balances in the youngest
cluster (A) were dominated by receptors that are known to
facilitate experience-dependent plasticity in the visual cortex
(Kleinschmidt et al., 1987; Quinlan et al., 1999a,b; Philpot et al.,
2001; Fagiolini et al., 2003, 2004; Iwai et al., 2003; Hensch, 2004;
Cho et al., 2009; Jiang et al., 2010). In contrast, cluster D overlaps
the end of the period of susceptibility to develop amblyopia, and
has peaks in protein expression, especially PSD95 that are known
to close the critical period in animal models (Huang et al., 2015).
The features in cluster D also appeared to mark the transition
from juvenile features found in clusters A, B, and C to the mature
and aging patterns in clusters E and F. Moreover, the range of
ages in a cluster appeared as a series of overlapping waves in
the raincloud plot, thereby illustrating that chronological- and
brain-age have a complex relationship.

Clustering the data collected from human postmortem tissue
samples to reveal the age-related progression in the brain’s
molecular complexity is just the start of using high dimensional
analyses. The application of modern exploratory data-driven
approaches reveals novel aspects of human brain development,
such as the risk for mental illness (Li et al., 2018) or divergence
from other primates (Zhu et al., 2018). Identifying an appropriate
high dimensional clustering technique opens the door to many
other downstream analyses to interrogate different clusters’
molecular makeup. A critical benefit of clustering with RSKC
is that it outputs the feature weights. Those weights reveal
the impact of specific proteins or genes on differentiating the
brain’s molecular environment during the progression of lifespan
stages. Those proteins and genes can be used as the input to
Gene Ontology (GO) analysis to catalog the molecular processes,
cellular components, and biological processes that dominate the
stages. Or the opposite can be done as shown in the paper where
the 988 genes corresponding to the SynGO database were used to
cluster the samples. The clusters can also be used for differential
gene expression analysis to highlight which features are enriched
during various lifespan stages. For example, the top-weighted
molecular features from the RSKC analysis may be useful for
creating a phenotype that provides a biologically meaningful
characterization of the high dimensional changes that occur in
different stages of the lifespan (Balsor et al., 2020).

An interesting finding of the current study is the overlapping
ages among the clusters. While this may be viewed as imperfect
partitioning of samples by the clustering algorithms, it may
also reflect the human brain development’s true heterogeneity.
In other words, developmental periods may not necessarily be
described by a single omic phenotype. Instead, the classically
defined developmental stages may be characterized by two
or more distinct patterns of gene or protein expression
in the brain. This molecular heterogeneity may shed light

on findings such as the substantial inter-individual variation
in cortical responses measured by fMRI studies in infants
(Born et al., 2000). Also, the overlapping ages among clusters
may reflect periods of stationary fluctuations in the brain’s
developmental trajectory, representing transitions from one
molecular state to the next, similar to language development
models (Sanchez-Alonso and Aslin, 2020).

Addressing how human brain development proceeds is an
important question that will require large amounts of new data
and algorithms that capture the local and global structure of
high dimensional trajectories, including ones with gradual noisy
changes and non-linear transitions. One approach could include
repeated MRI measurements during the ages that overlap among
molecular clusters to assess if those ages have heightened intra-
or inter-individual variation in brain responses. Those studies
will help identify ages during development with gradual but
noisy change from ages with non-linear transitions in the gene
and protein expression pattern in the developing human brain.
Ultimately, the models will need to include multi-omics data
and link with brain imaging to understand how the human
brain develops fully.

CONCLUSION

The last decade has seen remarkable growth in the number
of studies examining the human brain’s molecular features. In
parallel, high throughput tools have dramatically increased the
amount of data collected for every sample. The complexity
and high dimensional nature of those datasets have spurred
the need for more guidance in selecting appropriate tools to
analyze those big data. Some studies are now collecting data
from 100 or 1000 s of human brain postmortem samples (e.g.,
PsychENCODE), but studies of development still have many
fewer tissue samples, and the ages of the cases are spread across
the lifespan. The small sample sizes of the developmental datasets
make it difficult to apply many commonly used high dimensional
clustering methods. Those methods lack the sensitivity needed
to reveal robust clusters defined by the subtle differences in
genes or proteins that occur across the postnatal lifespan. At
the same time, sparsity-based clustering algorithms designed for
small sample size have emerged. In this guide, we explored the
application of sparsity-based clustering and showed that one
algorithm, RSKC, is a good fit for revealing the subtle and gradual
changes of human brain development that occurs from birth to
aging. In the next decade, the amount of data collected from
each postmortem brain sample will only continue to grow as
single-cell RNA sequencing methods are applied to studying
human brain development. Furthermore, the push to integrate
multimodal measurements, from molecules to imaging of human
brain development will heighten the demand for robust high
dimensional analysis tools. Neuroscientists will continue to face
many challenges identifying rigorous methods to analyze those
sparse and very high dimensional datasets. Nevertheless, careful
selection of high dimensional analytical techniques that are
designed for small sample sizes can be expected to have an impact
on the discovery of novel aspects of human brain development.
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