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Biomarker assisted preclinical/early detection and intervention in Alzheimer’s disease
(AD) may be the key to therapeutic breakthroughs. One of the presymptomatic
hallmarks of AD is the accumulation of beta-amyloid (Aβ) plaques in the human
brain. However, current methods to detect Aβ pathology are either invasive (lumbar
puncture) or quite costly and not widely available (amyloid PET). Our prior studies show
that magnetic resonance imaging (MRI)-based hippocampal multivariate morphometry
statistics (MMS) are an effective neurodegenerative biomarker for preclinical AD. Here
we attempt to use MRI-MMS to make inferences regarding brain Aβ burden at the
individual subject level. As MMS data has a larger dimension than the sample size,
we propose a sparse coding algorithm, Patch Analysis-based Surface Correntropy-
induced Sparse-coding and Max-Pooling (PASCS-MP), to generate a low-dimensional
representation of hippocampal morphometry for each individual subject. Then we apply
these individual representations and a binary random forest classifier to predict brain
Aβ positivity for each person. We test our method in two independent cohorts, 841
subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 260 subjects
from the Open Access Series of Imaging Studies (OASIS). Experimental results suggest
that our proposed PASCS-MP method and MMS can discriminate Aβ positivity in people
with mild cognitive impairment (MCI) [Accuracy (ACC) = 0.89 (ADNI)] and in cognitively
unimpaired (CU) individuals [ACC = 0.79 (ADNI) and ACC = 0.81 (OASIS)]. These results
compare favorably relative to measures derived from traditional algorithms, including
hippocampal volume and surface area, shape measures based on spherical harmonics
(SPHARM) and our prior Patch Analysis-based Surface Sparse-coding and Max-Pooling
(PASS-MP) methods.

Keywords: Alzheimer’s disease, hippocampal multivariate morphometry statistics, Dictionary and Correntropy-
induced Sparse Coding, beta-amyloid burden, ADNI and OASIS database
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INTRODUCTION

Alzheimer’s disease (AD) is a major public health concern with
the number of affected individuals expected to triple, reaching
13.8 million by the year 2050 in the United States alone
(Brookmeyer et al., 2007). Current therapeutic failures in patients
with dementia due to AD may be due to interventions that are
too late, or targets that are secondary effects and less relevant
to disease initiation and early progression (Hyman, 2011).
Preclinical AD is now viewed as a gradual process that begins
many years before the onset of clinical symptoms. Measuring
brain biomarkers and intervening at preclinical AD stages
are believed to improve the probability of therapeutic success
(Brookmeyer et al., 2007; Sperling et al., 2011a; Jack et al., 2016).
In the A/T/N system – a recently proposed research framework
for understanding the biology of AD – the presence of abnormal
levels of beta-amyloid (Aβ) in the brain or cerebrospinal fluid
(CSF) is used to define the presence of biological AD (Jack et al.,
2016). An imbalance between production and clearance of Aβ

occurs early in AD and is typically followed by the accumulation
of tau protein tangles (another key pathological hallmark of AD)
and neurodegeneration detectable on brain magnetic resonance
imaging (MRI) scans (Hardy and Selkoe, 2002; Sperling et al.,
2011a; Jack et al., 2016). Brain Aβ pathology can be measured
using positron emission tomography (PET) with Aβ-sensitive
radiotracers, or in CSF. Meanwhile, ongoing research has been
focused on the harmonization over different tracers (Klunk
et al., 2015), and the standardization of data acquisition and
preprocessing (Su et al., 2015, 2018) for amyloid PET before
they can be eventually implemented for clinical use. Even so,
these invasive and expensive measurements are less attractive to
subjects in preclinical stage and PET scanning is also not as widely
available as MRI.

Blood-based biomarkers (BBBs) are somewhat effective for
inferring Aβ burden in the brain and CSF, and are less expensive
than imaging (Bateman et al., 2019; Janelidze et al., 2020;
Palmqvist et al., 2020). Even so, structural MRI biomarkers are
largely accessible, cost-effective, and widely used in AD imaging
research as well as for clinical diagnosis. Consequently, there
is great research interest in using MRI biomarkers to predict
brain Aβ burden (Sperling et al., 2011a; Tosun et al., 2014,
2016; Pekkala et al., 2020). Tosun et al. (2014) combine MRI-
based measures of cortical shape and cerebral blood flow to
predict Aβ status for early-MCI individuals and achieve an 83%
accuracy with the LASSO approach (least absolute shrinkage
and selection operator). Pekkala et al. (2020) use brain MRI
measures (volumes of the cortical gray matter, hippocampus,
accumbens, thalamus, and putamen) to infer Aβ positivity in
cognitively unimpaired (CU) subjects; they achieve a 0.70 area
under the receiver operator curve (AUC) with their Disease State
Index (DSI) algorithm. Although brain structural volumes are
perhaps the most commonly used neuroimaging measures in
AD research (Crivello et al., 2010; Reiter et al., 2017; Cacciaglia
et al., 2018), surface-based subregional structure measures can
offer advantages over volume measures as they contain more
detailed and patient-specific shape information (Styner et al.,
2004; Thompson et al., 2004; Morra et al., 2009; Qiu et al., 2009;

Shen et al., 2009; Apostolova et al., 2010; Costafreda et al., 2011;
Younes et al., 2014; Dong et al., 2019, 2020b; Ching et al., 2020).

Our prior studies (Wang et al., 2010, 2011; Shi et al., 2014)
propose novel multivariate morphometry statistics (MMS) and
apply them to analyze APOE4 dose effects on brain structures
of non-demented and CU groups from the ADNI cohort (Shi
et al., 2014; Li et al., 2016; Dong et al., 2019). Our proposed MMS
approach uses multivariate tensor-based morphometry (mTBM)
to encode morphometry along the surface tangent direction and
radial distance (RD) to encode morphometry along the surface
normal direction. This approach performs better for detecting
clinically relevant group differences, relative to other TBM-based
methods including those using the Jacobian determinant, the
largest and smallest eigenvalues of the surface metric and the
pair of eigenvalues of the Jacobian matrix (Wang et al., 2010,
2011). Our recent studies (Dong et al., 2019, 2020b) show that
MMS outperforms volume measures for detecting hippocampal
and ventricular deformations in groups at high risk for AD at the
preclinical stage. Our other related work (Wu et al., 2018) has
studied hippocampal morphometry in cohorts consisting of Aβ

positive AD patients (Aβ+ AD) and Aβ negative CU subjects
(Aβ− CU) using the MMS measure. We find significant Aβ+

AD vs. Aβ− CU group differences, using Hotelling’s T2 tests. As
MMS have a high dimension, it is not suitable for classification
research directly. Therefore, we apply a Patch Analysis-based
Surface Sparse-coding and Max-Pooling (PASS-MP) system for
a low-dimensional representation of hippocampal MMS, and the
binary group random forest classification of Aβ+ AD and Aβ−

CU, achieving an accuracy rate of 90.48%. These studies show
that MMS can distinguish clinical groups with different Aβ status.
We have also successfully applied PASS-MP for MMS-based AD
cognitive scores and autism spectrum disorder predictions (Dong
et al., 2020a; Fu et al., 2021).

In this work, we optimize the objective function of the PASS-
MP system by introducing correntropy measure (Gui et al.,
2017) and propose an improved sparse coding, dubbed as
the Patch Analysis-based Surface Correntropy-induced Sparse-
coding and Max-Pooling (PASCS-MP) method. PASCS-MP
does not only take the advantage of the computational
efficiency of PASS-MP in its new optimization strategy, but
also effectively reduces the negative influence of non-Gaussian
noise in the data, which tremendously improves the prediction
accuracy. PASCS-MP is an unsupervised learning method to
generate a low-dimensional representation for each sample. We
leverage the novel PASCS-MP method on MMS to further
explore hippocampal morphometry differences for the following
contrasts at the individual subject level: (1) Aβ positive
individuals with mild cognitive impairment (Aβ+ MCI) vs.
Aβ negative individuals with mild cognitive impairment (Aβ−

MCI) from ADNI, and (2) Aβ positive CU subjects (Aβ+ CU
from ADNI and OASIS) vs. Aβ negative CU subjects (Aβ−

CU from ADNI and OASIS). We apply the proposed PASCS-
MP and a binary random forest classifier to classify individuals
with different Aβ status. We hypothesize that our MMS-based
PASCS-MP may provide stronger statistical power relative to
traditional hippocampal volume, surface area and spherical
harmonics (SPHARM) based hippocampal shape measurements,
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in predicting subjects’ Aβ status. We expect that the knowledge
gained from this type of research will enrich our understanding
of the relationship between hippocampal atrophy and AD
pathology, and thus help in assessing disease burden, progression,
and treatment effects.

SUBJECTS AND METHODS

Subjects
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1

and the Open Access Series of Imaging Studies (OASIS) database
(Marcus et al., 2010). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early
AD. For up-to-date information, see www.adni-info.org.

Table 1 shows demographic information we analyze from the
ADNI and OASIS cohorts. From the ADNI cohort, we analyze
841 age and sex-matched subjects with florbetapir PET data and
T1-weighted MR images, including 151 AD patients, 342 MCI,
and 348 asymptomatic CU individuals. Among them, all the 151
AD patients, 171 people with MCI, and 116 CU individuals were
Aβ positive. The remaining 171 MCI and 232 CU individuals
were Aβ negative. From OASIS database, we analyze age-and-sex-
matched 260 subjects with florbetapir PET data and T1-weighted
MR images, including 52 Aβ positive CU and 208 Aβ negative
CU. To match the age and sex to the control group, we randomly
select subjects from the majority group millions of times. For
each selected group and control group, we analyze the age with
t-test and sex with Chi-square test. We first select the groups, of
which the p-value of Chi-squared test is 1. Among these groups,
we select the one with the largest p-value of age. In this way, we try
to minimize the statistical difference in age and sex. The p-values
of Chi-squared test for sex and the p-values of t-test for age are
shown in the columns after sex and age in Table 1.

In addition to each MRI scan, we also analyze centiloid
measures (Navitsky et al., 2018) from florbetapir PET data in
ADNI and OASIS. Operationally, the positivity of Aβ biomarkers

1adni.loni.usc.edu

is defined using standard cut-offs, with some efforts to reconcile
differences among different Aβ radiotracers using a norming
approach called the centiloid scale (Klunk et al., 2015; Rowe et al.,
2017). ADNI florbetapir PET data are processed using AVID
pipeline (Navitsky et al., 2018), and OASIS florbetapir PET data
are processed using PUP (Lee et al., 2013; Su et al., 2015). Both
are converted to the centiloid scales according to their respective
conversion equations (Navitsky et al., 2018; Su et al., 2019).
A centiloid cutoff of 37.1 is used to determine Aβ positivity, this
threshold corresponds to pathologically determined moderate to
frequent plaques (Fleisher et al., 2011).

Proposed Pipeline
This work develops the PASCS-MP framework to predict
individual Aβ burden (see Figure 1 for the processing pipeline).
In panel (1), hippocampal structures are segmented from
registered brain MR images with FMRIB’s Integrated Registration
and Segmentation Tool (FIRST) from the FMRIB Software
Library (FSL) (Patenaude et al., 2011; Paquette et al., 2017).
Hippocampal surface meshes are constructed with the marching
cubes algorithm (Lorensen and Cline, 1987). In panel (2),
hippocampal surfaces are parameterized with the holomorphic
flow segmentation method (Wang et al., 2007). After the surface
fluid registration algorithm, the hippocampal MMS features
are calculated at each surface point. We propose a PASCS-MP
and classification system to refine and classify MMS patches in
individuals with different Aβ status. We randomly select patches
on each hippocampal surface and generate a sparse code for
each patch with our novel PASCS. Next, we adopt a Max-pooling
operation on the learned sparse codes of these patches to generate
a new representation (a vector) for each subject. Finally, we train
binary random forest classifiers on individual sparse codes in
people with different Aβ status; we validate them with 10-fold
cross-validation. The whole system is publicly available.2

Image Processing
Firstly, we use FIRST (Patenaude et al., 2011) to segment the
original MRI data and map the hippocampus substructure.
After obtaining a binary segmentation of the hippocampus, we
use a topology-preserving level set method (Han et al., 2003)
to build surface models. Based on that, the marching cubes
algorithm (Lorensen and Cline, 1987) is applied to construct

2http://gsl.lab.asu.edu/software/pass-mp/

TABLE 1 | Demographic information for the subjects we study from the ADNI and OASIS cohorts.

Database Group Sex (M/F) p-Value Age p-Value MMSE Centiloid

ADNI (n = 841) Aβ+ AD (n = 151) 79/72 74.6 ± 7.8 22.6 ± 3.1 86.3 ± 27.4

Aβ+MCI (n = 171) 92/79 1.00 74.1 ± 7.4 0.90 27.7 ± 1.7 76.8 ± 26.4

Aβ−MCI (n = 171) 92/79 74.0 ± 7.4 28.3 ± 1.6 8.9 ± 14.9

Aβ+ CU (n = 116) 45/71 1.00 75.9 ± 6.1 0.78 28.9 ± 1.1 71.1 ± 26.4

Aβ− CU (n = 232) 90/142 75.7 ± 6.3 29.0 ± 1.3 7.5 ± 14.5

OASIS (n = 260) Aβ+ CU (n = 52) 22/30 1.00 70.5 ± 7.5 0.08 29.0 ± 1.3 71.4 ± 20.9

Aβ− CU (n = 208) 88/120 68.5 ± 6.8 29.0 ± 1.3 8.5 ± 9.5

Values are mean ± SD where applicable.
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FIGURE 1 | Panel (1) shows hippocampal surfaces generated from brain MRI scans. In subfigure (A) of panel (2), surface-based multivariate morphometry statistics
(MMS) are calculated after fluid registration of surface coordinates across subjects. MMS is a 4 × 1 vector on each vertex, including radial distance (scalar) and
multivariate tensor-based morphometry (3 × 1 vector). In subfigures (B,C), we randomly select patches on each hippocampal surface and generate a sparse code
for each patch with our novel Patch Analysis-based Surface Correntropy-induced Sparse-coding (PASCS) method. In subfigures (D,E), we apply the max pooling
operation to the learned sparse codes to generate a new representation (a vector) for each subject. In subfigure (F), we train binary random forest classifiers on
these representations and validate them with 10-fold cross-validation.
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triangular surface meshes. Then, to reduce the noise from
MR image scanning and to overcome partial volume effects,
surface smoothing is applied consistently to all surfaces. Our
surface smoothing process consists of mesh simplification using
progressive meshes (Hoppe, 1996) and mesh refinement by
the Loop subdivision surface method (Loop, 1987). Similar
procedures adopted in a number of our prior studies (Wang et al.,
2010, 2012; Colom et al., 2013; Luders et al., 2013; Monje et al.,
2013; Shi et al., 2013a,b, 2015) have shown that the smoothed
meshes are accurate approximations to the original surfaces, with
a higher signal-to-noise ratio (SNR).

To facilitate hippocampal shape analysis, we generate a
conformal grid (150× 100) on each surface, which is used as a
canonical space for surface registration. On each hippocampal
surface, we compute its conformal grid with a holomorphic
1-form basis (Wang et al., 2007, 2010). We adopt surface
conformal representation (Shi et al., 2013a, 2015) to obtain
surface geometric features for automatic surface registration.
This consists of the conformal factor and mean curvature,
encoding both intrinsic surface structure and information on
its three-dimensional embedding. After we compute these two
local features at each surface point, we compute their summation
and then linearly scale the dynamic range of the summation
into the range 0–255, to obtain a feature image for the surface.
We further register each hippocampal surface to a common
template surface. With surface conformal parameterization and
conformal representation, we generalize the well-studied image
fluid registration algorithm (Bro-Nielsen and Gramkow, 1996;
D’Agostino et al., 2003) to general surfaces. Furthermore, most
of the image registration algorithms in the literature are not
symmetric, i.e., the correspondences between the two images
depending on which image is assigned as the deforming image
and which is the non-deforming target image. An asymmetric
algorithm can be problematic as it tends to penalize the expansion
of image regions more than shrinkage (Rey et al., 2002). Thus,
in our system, we further extend the surface fluid registration
method to an inverse-consistent framework (Leow et al., 2005).
The obtained surface registration is diffeomorphic. For details of
our inverse-consistent surface fluid registration method, we refer
to (Shi et al., 2013a).

Surface-Based Morphometry Feature Extraction
After parameterization and registration, we establish a one-to-
one correspondence map between hippocampal surfaces. This
makes it effective for us to compare and analyze surface data.
Besides, each surface has the same number of vertices (150×
100) as shown in panel (2) of Figure 1. The intersection of
the red curve and the blue curve is a surface vertex, and at
each vertex, we adopt two features, the RD and the surface
metric tensor used in mTBM. The RD (a scalar at each
vertex) represents the thickness of the shape at each vertex to
the medical axis (Pizer et al., 1999; Thompson et al., 2004),
this reflects the surface differences along the surface normal
directions. The medial axis is determined by the geometric
center of the isoparametric curve on the computed conformal
grid (Wang et al., 2011). The axis is perpendicular to the
isoparametric curve, so the thickness can be easily calculated

as the Euclidean distance between the core and the vertex on
the curve. The mTBM statistics (a 3× 1 vector at each vertex)
have been frequently studied in our prior work (Shi et al.,
2013b, 2015; Wang et al., 2009, 2010). They measure local
surface deformation along the surface tangent plane and show
improved signal detection sensitivity relative to more standard
tensor-based morphometry (TBM) measures computed as the
determinant of the Jacobian matrix (Wang et al., 2013). RD and
mTBM jointly form a new feature, known as the surface MMS.
Therefore, MMS is a 4× 1 vector at each vertex. The surface of
the hippocampus in each brain hemisphere has 15, 000 vertices,
so the feature dimensionality for each hippocampus in each
subject is 60,000.

Surface Feature Dimensionality Reduction
The above mentioned vertex-wise surface morphometry feature,
MMS, is a high-fidelity measure to describe the local deformation
of the surface and can provide detailed localization and
visualization of regional atrophy or expansion (Yao et al.,
2018) and development (Thompson et al., 2000). However,
the high dimensionality of such features is likely to cause
problems for classification. Feature reduction methods proposed
by Davatzikos et al. (2008) and Sun et al. (2009) may ignore
the intrinsic properties of a structure’s regional morphometry.
Therefore, we introduce the following feature reduction method
for the vertex-wise surface morphometry features.

The surface MMS feature dimension is typically much larger
than the number of subjects, i.e., the so-called high dimension-
small sample problem. To extract useful surface features and
reduce the dimension before making predictions, this work
first randomly generates square windows on each surface to
obtain a collection of small image patches with different amounts
of overlap. In our prior AD studies (Zhang et al., 2016a,b;
Wu et al., 2018), we discuss the most suitable patch size and
number. Therefore, in this work, we adopt the same optimal
experimental settings, as 1, 008 patches (patch size = 10× 10
vertices) for each subject (504 patches for each side of the
hippocampal surface). As these patches are allowed to overlap,
a vertex may be contained in several patches. The zoomed-
in window in subfigure B of panel (2) in Figure 1 [panel (2),
B] shows overlapping areas on selected patches. After that,
we use the technique of sparse coding and dictionary learning
(Mairal et al., 2009) to learn meaningful features. Dictionary
learning has been successful in many image processing tasks
as it can concisely model natural image patches. In this work,
we propose a novel sparse coding and dictionary learning
method with an l1-regularized correntropy loss function named
Correntropy-induced Sparse-coding (CS), which is expected to
improve the computational efficiency compared to Stochastic
Coordinate Coding (SCC) (Lin et al., 2014). Formally speaking,
correntropy is a generalized similarity measure between two
scalar random variables U and V, which is defined by
Vσ (U, V) = EKσ(U, V). Here, Kσ is a Gaussian kernel given
by Kσ (U, V) = exp{−(u − v)2/σ2

} with the scale parameter
σ > 0, (u-v) being a realization of (U, V) (Feng et al., 2015;
Gui et al., 2017). Utilizing the correntropy measure as a loss
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function will reduce the negative influence of non-Gaussian
noise in the data.

Classical dictionary learning techniques (Olshausen and Field,
1997; Lee et al., 2007) consider a finite training set of feature
maps, X = (x1, x2, xn) in Rp×n. In our study, X is the set of
MMS features from n surface patches of all the samples. All
the MMS features on each surface patch, xi, is reshaped to a p-
dimensional vector. And we desire to generate a new set of sparse
codes, Z = (z1, z2, zn) in Rm×n for these features. Therefore, we
aim to optimize the empirical cost function as Eq. 1.

f (D, zi) ,
n∑

i=1

l (xi, D, zi) (1)

where D ∈ Rp×m is the dictionary and zi ∈ Rm is the sparse
code of each feature vector. l (xi, D, zi) is the loss function that
measures how well the dictionary D and the sparse code zi can
represent the feature vector xi. Then, xi can be approximated
by xi = Dzi. In this way, we convert the p-dimensional feature
vector, xi, to a m-dimensional sparse code, zi, where m is the
dimensionality of the sparse code and the dimensionality could
be arbitrary. In this work, we introduce the correntropy measure
(Gui et al., 2017) to the loss function and define the l1-sparse
coding optimization problem as Eq. 2

min
D,zi

1
2

n∑
i=1

exp
(
−
‖ Dzi − xi ‖

2
2

σ2

)
+ λ

n∑
i=1

‖ zi ‖1 (2)

where λ is the regularization parameter, σ is the kernel size
that controls all properties of correntropy. ‖ · ‖2 and ‖ · ‖1are
the l2-norm and l1-norm and exp() represents the exponential
function. The first part of the loss function measures the degree
of the image patches’ goodness and the correntropy may help
remove outliers. Meanwhile, the second part is well known as
the l1 penalty (Fu, 1998) that can yield a sparse solution for
zi and select robust and informative features. Specifically, there
are m columns (atoms) in the dictionary D and each atom is
dj ∈ Rp, j = 1, 2, ..., m. To avoid D from being arbitrarily large
and leading to arbitrary scaling of the sparse codes, we constrain
each l2-norm of each atom in the dictionary no larger than one.
We will let C become the convex set of matrices verifying the
constraint as Eq. 3.

C ,
{

D ∈ Rp×ms.t.∀j = 1, 2,, m, dT
j dj ≤ 1

}
(3)

Note that, the empirical problem cost f (D, zi) is not convex
when we jointly consider the dictionary D and the coefficients
Z. But the function is convex concerning each of the two
variables, D, and Z, when the other one is fixed. Since
it takes much time to solve D and Z when dealing with
large-scale data sets and a large-size dictionary, we adopt
the framework in the stochastic coordinate coding (SCC)
algorithm (Lin et al., 2014), which can dramatically reduce
the computational cost of the sparse coding, while keeping a
comparable performance.

To solve this optimization problem, we reformulate the
first part of the equation by the half-quadratic technique

(Nikolova and Ng, 2006) and then the objective can be solved as
the minimization problem Eq. 4:

min
1
2

D,zi

n∑
i=1

hi ‖ Dzi − xi ‖
2
2 + λ

n∑
i=1

‖ zi ‖1,

hi = exp
(
−
‖ Dzi − xi ‖

2
2

σ2

)
. (4)

Here the auxiliary variable, hi, will be updated in each update
iteration. At each iteration, we update D and Z alternately,
which means we firstly fix D and update the sparse code Z with
coordinated descent (CD) and then fix Z to update the dictionary
D via stochastic gradient descent (SGD).

As our optimization method is stochastic, we only update
the sparse code and dictionary with only one signal for
each iteration. In the following paragraphs, we will discuss
the optimization in one iteration with only one signal. If
a signal, x = (x1, x2, xp)

T
∈ Rp, is given, we first update its

corresponding sparse code, z = (z1, z2, ..., zm), via CD. Let zl
denote the l-th entry of z and dkl represents the k-th item of dl.
dl is the l-th atom/column of the dictionary D. Then, we can
calculate the partial derivative of zl in the first part of the function,
f (D, zi), as Eq. 5

∂

∂zl
c (D, z) =

∂

∂zl

1
2

h‖ Dz − x ‖2
2 = −h

p∑
k=1

dkl

(
xk −

m∑
r=1

dkrzr

)

= −h
p∑

k=1

dkl

xk −

m∑
r 6=l

dkrzr − dklzl


= −h

p∑
k=1

dkl

xk −

m∑
r 6=l

dkrzr

+ hzl

p∑
k=1

(
dkl
)2

= −ρl + hzlυl (5)

where ρl = h
∑p

k=1 dkl

(
xk −

∑m
r 6=l dkrzr

)
, υl =

∑p
k=1

(
dkl
)2 and

h is the auxiliary variable for the signal. Since we normalize the
atom, dl, in each iteration, υl can be ignored. Then, we compute
the subdifferential of the lasso loss function and equate it to zero
to find the optimal solution as follows:

∂

∂zl
f (D, z) =

∂

∂zl
c (D, z)+

∂

∂zl
λ‖ z ‖1

= −ρl + hzlυl +
∂

∂zl
λ‖ z ‖1 = 0 (6)

Then, according to the derivative of the l1-norm, we can have the
following equations.

−ρl+ hzlυl − λ = 0 if Zl < 0
−ρl− λ ≤ 0 ≤ −ρl + λ if Zl = 0
−ρl+ hzlυl + λ = 0 if Zl > 0

(7)

Frontiers in Neuroscience | www.frontiersin.org 6 August 2021 | Volume 15 | Article 669595

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-669595 August 2, 2021 Time: 13:42 # 7

Wu et al. Predicting Brain Amyloid Using sMRI

Finally, we can get the soft thresholding function as:

zl =


ρl + λ

hυl
for ρl < −λ

0 for − λ ≤ ρl ≤ λ
ρl − λ

hυl
for ρl > λ

(8)

After we update the sparse code, we propose the following
strategy to accelerate the convergence for updating the dictionary
D. The atom, dl will stay unchanged if zl is zero since
∇dl = h (Dz − x) zl = 0. Otherwise, as shown in Figure 2,
we can update the l-th atom of the dictionary D as dl ←

dl − γlh (Dz − x) zl. γl is the learning rate provided by an
approximation of the Hessian: R← R+ zzT and γl is given by
1/rll, where rll is the item at the l-th row and l-th column of the
Hessian matrix R. The pseudo-code of the model was shown in
Algorithm 1, dubbed as PASCS.

Algorithm 1: Patch analysis-based surface correntropy-induced sparse-coding.

Require: Data set X=(x1, x2, ..., xn) in Rp×n

Ensure: Dictionary D ∈ Rp×m and sparse codes Z = (z1, z2, zn) ∈ Rm×n

Initialize: D1,1,R = 0, z0
i = 0, h0

i = 1, i = 1, ..., n

1: for t = 1 to τ do

2: for i = 1 to n do

3: Get an image patch xi from X.

4: Update zti via coordinate descent:

zti ← CD
(
xi,Di,t , zt−1

i

)
.

5: Update Hessian matrix and the learning rate:

R← Rzti (z
t
i )
T
, γi,l = 1/rll.

6: Update the support of the dictionary via SGD for non-zero entry

zti,l (and normalize it):

di+1,t
l ← di,tl − γi,lhi

(
Di,tzti − xi

)
zti,l.

7: Update auxiliary variable hi:

hi = exp
(
−‖ Di,tzti − xi ‖

2
2/σ

2
)
.

8: If i = n, Then D1,t+1
= Dn,t .

9: end for

10: end for

Output: D = Dn,τ and zi = zτ
i for i = 1, ..., n

Pooling and Classification
After we get the sparse code (the dimension is m) for each
patch, the dimensionality of sparse codes for each subject is
still too large for classification, which is m× 1, 008. Therefore,
we apply Max-pooling to reduce the feature dimensionality for
each subject. Max-pooling (Boureau et al., 2010) is a way of
taking the most responsive node of a given region of interest
and serves as an important layer in the convolutional neural
network architecture. In this work, we compute the maximum
value of a particular feature over all sparse codes of a subject
and generate a new representation for each subject, which is
an m-dimensional vector. These summary representations are
much lower in dimension, compared to using all the extracted
surface patch features; this can improve results generalizability
via less over-fitting.

With these dimension-reduced features, we choose the
random forest algorithm (Liaw and Wiener, 2002) for the
binary classification. Random forests are a combination of tree
predictors such that each tree depends on the values of a random
vector sampled independently and with the same distribution for
all trees in the forest. This algorithm adopts a learning process
called feature bagging. In this process, we select a random subset
of the features several times and then train a decision tree for
each subset. If some features are strong predictors of the response,
they will be selected in many decision trees and this makes them
correlated. In comparison with decision trees, random forests
have the same bias but lower variance, which means they can
overcome the drawback of overfitting caused by a small data set.
For our sparse surface features, when the size of the training
set becomes small, diversification becomes more subtle, and the
method can better detect these subtle differences. In this project,
we use the random forest classifier in the scikit-learn package3

with the default settings. Besides, under the imbalanced-data
condition (such as 116 Aβ+ CU and 232 Aβ− CU in the ADNI
data set), the classifier tends to classify all the training data
into the major class, as it aims to maximize training accuracy.
Therefore, we adopt random undersampling (Dubey et al., 2014)
to balance the numbers of training subjects in the two classes. All
the experiments in this work use the same setups for the random
forest classifier and random undersampling.

Performance Evaluation Protocol
Before using hippocampal MMS features for Aβ status
classification, we need to apply PASCS-MP to extract sparse codes
from these high dimensional MMS features. The performance
of PASCS-MP has a close relationship to four key parameters:
the patch size, the dimensionality of the learned sparse coding,
the regularization parameter for the l1-norm (λ), and the kernel
size (σ) in the exponential function (see Eq. 2). Patch-based
analysis has been widely used for image segmentation and
classification (Kao et al., 2020). Leveraging patches in our MMS
can preserve well the properties of the regional morphometry
of the hippocampal surface since the vertices that carry strong
classification power are always clustered on the surface and a
set of such vertices typically has a stronger classification ability
compared to using just a single vertex. However, the size of
the set of such vertices is unknown. Therefore, we select the
vertices by randomly selecting the same number of square
patches with different sizes and compared the performance of
the final classification accuracy for the different patch sizes.
The dimensionality of the learned sparse coding (m) is also the
dimensionality of the representation for each subject. The model
might miss some significant information if the dimensionality
is too low. Also, the representations will contain too much
redundant information when the dimensionality is too large.
The regularization parameter for the l1-norm (λ) will control
the sparsity of the learned sparse codes. A suitable regularization
parameter will select significant features meanwhile reducing
noise. The kernel size in the exponential function controls all
properties of correntropy. Correntropy is directly related to
the probability of how similar two random variables are in

3https://scikit-learn.org/
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FIGURE 2 | Illustration of one iteration of the proposed Patch Analysis-based Surface Correntropy-induced Sparse-coding (PASCS) algorithm. The input is many
10 × 10 patches on each surface based on our multivariate morphometry statistics (MMS). With an image patch xi , PASCS performs one step of coordinate descent
(CD) to find the support and the sparse code. Meanwhile, PASCS performs a few steps of CD on supports (non-zero entries) to obtain a new sparse code zk

i . Then,
PASCS updates the supports (green boxes in the figure) of the dictionary by stochastic gradient descent (SGD) to obtain a new dictionary Di1,t. Here, t represents
the t-th epoch; i represents the i-th patch.

a neighborhood of the joint space controlled by the kernel
bandwidth, i.e., the kernel bandwidth acts as a zoom lens,
controlling the observation window over which similarity
is assessed. This adjustable window provides an effective
mechanism to eliminate the detrimental effect of outliers
(Liu et al., 2007).

Thus, we adopt 10-fold cross-validation to evaluate the
classification accuracy on another dataset from ADNI 2 with
a series of key parameter candidates and select the optimal
parameter setups. The detailed information about the dataset and
the key parameter candidates will be introduced in next section.
For the 10-fold cross-validation, we randomly shuffle and split the
dataset into ten groups. We take one group as the test data set and
use the remaining groups to train a model. Then, the candidate
model is evaluated using the test data. In this way, we can get
a predicted class label for all the samples. Then, the output of
each classification experiment is compared to the ground truth,
and the accuracy is computed to indicate how many class labels
are correctly identified. The key parameters with the highest
classification accuracies are selected.

Once we get an optimized PASCS-MP model, we can
compare the performances of MMS, volume, and surface area
measurements for classifying individuals of different Aβ status.
We use the volume from the left and right hippocampi (i.e.,
hippocampi in each brain hemisphere) as two features to
train the classifier instead of adding them together. The same
classification strategy is applied to surface areas from both
sides. Moreover, we will compare the classification performances
based on PASCS-MP, PASS-MP (Zhang et al., 2016b, 2017b),
and SPHARM (Chung et al., 2007, 2008; Shi et al., 2013a).

We evaluate these classification performances with the same
10-fold cross-validation method. Four performance measures:
the Accuracy (ACC), Balanced Accuracy (B-ACC), Specificity
(SPE), and Sensitivity (SEN) are computed (Hinrichs et al., 2011;
Ritter et al., 2015; Zhang et al., 2017b; Bhagwat et al., 2018;
Salvatore et al., 2018). We also compute the area-under-the-
curve (AUC) of the receiver operating characteristic (ROC) (Fan
et al., 2008; La Joie et al., 2013; Bhagwat et al., 2018; Nakamura
et al., 2018). By considering these performance measures, we
expect the proposed system integrating MMS, PASCS-MP and
the binary random forest classifier to perform better than similar
classification strategies for identifying individuals with different
Aβ status.

RESULTS

Key Parameter Estimations for the
PASCS-MP Method
To apply PASCS-MP method on hippocampal MMS, four
parameters need to be empirically assigned, namely: the patch
size, the dimensionality of the learned sparse coding, the
regularization parameter for the l1-norm (λ) and the kernel size
(σ) in the exponential function. Selecting suitable parameters will
lead to superior performance in refining lower dimensional MMS
representations related to AD pathology. With 10-fold cross-
validation, these key parameters are evaluated from PASCS-MP
based classification performance on 109 AD patients and 180 CU
subjects of ADNI-2 cohort. To avoid data leakage, these subjects
are not used in the following study of Aβ burden classification.

Frontiers in Neuroscience | www.frontiersin.org 8 August 2021 | Volume 15 | Article 669595

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-669595 August 2, 2021 Time: 13:42 # 9

Wu et al. Predicting Brain Amyloid Using sMRI

0.937
0.941

0.851
0.832

0.825

0.780 0.830 0.880 0.930 0.980

5*5
10*10
15*15
20*20
30*30

Patch size

0.886
0.893

0.941
0.850

0.871

0.780 0.830 0.880 0.930 0.980

1500
1700
1800
1900
2000

Sparse code dimensionality

0.909
0.910

0.869
0.941

0.864

0.780 0.830 0.880 0.930 0.980

0.13
0.16
0.19
0.22
0.25

Regulariza�on parameter 

0.837
0.905

0.905
0.941

0.848

0.780 0.830 0.880 0.930 0.980

1.8
2.4
3.4
3.6
3.8

Kernel size σ

FIGURE 3 | The relationship of each parameter to classification accuracy. The y-axis represents the value for each parameter. The orange bars represent the
classification performances using the optimal parameters. Each bar represents the average and 95% confidence interval of classification accuracy.

We perform grid search on the data set to explore the optimal
parameter settings. In Figure 3, we only illustrate part of the
classification accuracy for different values of each parameter in
grid search since the combinations of four different parameters
will lead to 54 results. For each parameter setting, we also
repeat 10-fold cross-validation five times, and the average and
95% confidence interval of the accuracy are shown in Figure 3.
When we evaluate one parameter, we fix the rest parameters. For
example, in the first bar chart in Figure 3, we try different patch
sizes including 5 × 5, 10 × 10, 15 × 15, 20 × 20. and 30 × 30
while we fix the sparse code dimensionality as to 1,800, and set λ

to 0.22, and σ to 3.6. By testing varied sets of parameters, we find
that the optimal patch size is 10 × 10, the optimal sparse code
dimensionality is 1,800, the optimal λ is 0.22 and the optimal σ is
3.6 and these optimal parameters will be adopted in the study of
Aβ burden classification.

Classification of Aβ Burden
To explore whether there is a significant gain in classification
power with our new system, based on our surface MMS, we
generate two different kinds of sparse codes with our previous
framework (PASS-MP) (Zhang et al., 2016b, 2017a; Fu et al.,
2021) and the new framework (PASCS-MP). The parameter
settings for the two sparse coding methods are the same.
Additionally, we apply the popular SPHARM method (Chung
et al., 2008; Shi et al., 2013a) to calculate hippocampal shape
features. Based on these three kinds of feature sets, we apply the
random forest classifier to detect individuals with different Aβ

status. Moreover, we also examine the classification performances
using hippocampal MMS, surface area and volume measures.
These classification performances are evaluated using ACC,
B-ACC, SPE, and SEN. For each binary classification of ADNI
cohort, we repeat the 10-fold cross-validation five times; the
mean and 95% confident interval of the evaluation measures are

calculated as (Vanwinckelen and Blockeel, 2012) and shown in
the middle three columns of Table 2.

TABLE 2 | Classification results for four contrasts.

Aβ+ AD vs.
Aβ− CU

Aβ+ MCI vs.
Aβ− MCI

Aβ+ CU vs. Aβ−

CU (ADNI)
Aβ+ CU vs. Aβ−

CU (OASIS)

Area

ACC 0.68 ± 0.01 0.55 ± 0.02 0.54 ± 0.01 0.47

B-ACC 0.69 ± 0.02 0.55 ± 0.02 0.54 ± 0.02 0.43

SPE 0.66 ± 0.02 0.54 ± 0.02 0.55 ± 0.02 0.49

SEN 0.71 ± 0.03 0.56 ± 0.03 0.53 ± 0.04 0.37

Volume

ACC 0.71 ± 0.01 0.53 ± 0.02 0.50 ± 0.03 0.51

B-ACC 0.72 ± 0.01 0.53 ± 0.01 0.50 ± 0.03 0.52

SPE 0.68 ± 0.01 0.52 ± 0.01 0.51 ± 0.02 0.54

SEN 0.75 ± 0.01 0.54 ± 0.02 0.49 ± 0.04 0.50

SPHARM

ACC 0.71 ± 0.02 0.56 ± 0.02 0.52 ± 0.02 0.60

B-ACC 0.71 ± 0.02 0.56 ± 0.03 0.51 ± 0.04 0.60

SPE 0.74 ± 0.02 0.61 ± 0.03 0.56 ± 0.03 0.61

SEN 0.68 ± 0.04 0.51 ± 0.03 0.46 ± 0.05 0.60

PASS-MP

ACC 0.79 ± 0.01 0.73 ± 0.02 0.71 ± 0.02 0.74

B-ACC 0.79 ± 0.01 0.73 ± 0.02 0.70 ± 0.03 0.73

SPE 0.78 ± 0.02 0.75 ± 0.02 0.73 ± 0.03 0.74

SEN 0.79 ± 0.01 0.72 ± 0.03 0.67 ± 0.03 0.73

PASCS-MP

ACC 0.91 ± 0.01 0.89 ± 0.01 0.79 ± 0.02 0.81

B-ACC 0.91 ± 0.01 0.89 ± 0.01 0.79 ± 0.03 0.80

SPE 0.91 ± 0.01 0.91 ± 0.01 0.80 ± 0.02 0.82

SEN 0.90 ± 0.01 0.88 ± 0.01 0.79 ± 0.05 0.79

Values are mean ± 95% confident interval where applicable.
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We leverage the OASIS dataset as an external validation set
to further evaluate the performance of our new framework. We
firstly generate new representations with our proposed PASCS-
MP for all the CU subjects from ADNI and OASIS cohorts. Then,
we train a binary random forest model on the ADNI dataset and
test it with the OASIS dataset. Since there is no cross-validation
here, there is no confident interval in the last column of Table 2.
We also compute the AUC of the ROC. The ROC curve and
AUC for these classification tasks are illustrated in Figure 4.
This comparison analysis classification performance shows that
the combination of PASCS-MP and hippocampal MMS measures
have superior performance when detecting individuals with
different Aβ status, compared to other similar methods.

DISCUSSION

In this article, we propose a novel surface feature dimension
reduction scheme, PASCS-MP, to correlate the hippocampus
MMS with different levels of Aβ burden in individual
subjects. We develop a hippocampal structure-based Aβ burden
prediction system that involves hippocampal MMS computing,
sparse coding and classification modules. We apply the proposed
system on two independent datasets, ADNI and OASIS. We have
two main findings. Firstly, the hippocampal surface-based MMS
measure practically encodes a great deal of neighboring intrinsic
geometry information that would otherwise be inaccessible
or overlooked in classical hippocampal volume and surface
area measures. Experimental results show that the MMS
measure provides better classification accuracy than hippocampal
volume, surface area measures and SPHARM for detecting
the relationships between hippocampal deformations and Aβ

positivity. Secondly, we propose a novel sparse coding method,
PASCS-MP. It has all the advantages of our previous proposed
PASS-MP (Zhang et al., 2016a,b) and improves the follow-up
classification performance compared to PASS-MP.

Comparison Analysis of MRI, PET, and
BBB
Amyloid plaques, together with neurofibrillary tangles, are
among the earliest signs of AD, appearing before any cognitive
impairment and brain structure changes. Measuring Aβ burden
at preclinical AD stages is believed to facilitate identifying
individuals appropriate for a given intervention and improving
the probability of therapeutic trial success (Brookmeyer et al.,
2007; Jack et al., 2016; Sperling et al., 2011a). Brain Aβ

pathology can be measured using PET with amyloid directly in
the brain, CSF measures, or, more recently, BBBs, which are
showing great promise.

Nevertheless, assessment of Aβ pathology using CSF or PET
scans can easily become inefficient due to the degree of their
acceptance, invasiveness, costs, and/or PET facility availability
(Tosun et al., 2016, 2014; Ansart et al., 2020; Pekkala et al., 2020).
Developing computational models for detecting Aβ pathology
based on less invasive, less costly, and more readily available
procedures could help identify a target population with a high
prevalence of Aβ pathology. With or without more affordable

BBBs as an alternative for inferring Aβ burden in the brain
(Bateman et al., 2019; Janelidze et al., 2020; Palmqvist et al., 2020),
especially after their diagnosis viabilities are further reduced,
sMRI scans will always be an option that is largely accessible,
cost-effective, and widely used as a standard-of-care procedure.
Structural MRI will also identify pathologies that AD BBB’s do not
assess, e.g., stroke, tumor, and subdural hematoma. Therefore, a
patient will get an MRI scan whether or not they also get BBB.
Furthermore, our proposed framework will not only work on AD,
but also other diseases like autism spectrum disorder (Fu et al.,
2021), major depressive disorder (Yao et al., 2020). Overall, our
work will provide important research tools and good insights for
computational neuropathology research.

Comparison Analysis of Hippocampal
MMS, Volume, and Surface Area
The hippocampus is a primary target region for studying early
AD progression. Its structure can be measured using the widely
used overall hippocampal volume, surface area, and our proposed
hippocampal MMS. Our prior studies (Shi et al., 2011; Wang
et al., 2011; Li et al., 2016; Dong et al., 2019) show that
hippocampal MMS performs robustly in distinguishing clinical
groups at different AD risk levels. In particular, we previously
found that hippocampal MMS can detect APOE4 gene dose
effects on the hippocampus during the preclinical stage, while
the hippocampal volume measure cannot (Dong et al., 2019).
A study by Wu et al. (2018) demonstrates that hippocampal MMS
performs better than traditional hippocampal volume measures
in classifying 151 Aβ+ AD and 271 Aβ− CU subjects.

This work evaluates the performance of the above three
hippocampal measurements for predicting Aβ status at the
individual subject level. Classification results (see Table 2 and
Figure 4) show that hippocampal MMS has better performance
as measured by ACC, SPE, SEN, and AUC. These results validate
our hypothesis that hippocampal MMS-based analysis methods
provide improved statistical accuracy than hippocampal volume
and surface area measures in predicting the subjects with different
Aβ status in the AD continuum. Our prior work (Wang et al.,
2011) shows that MMS may offer a surrogate biomarker for
PET/CSF Aβ biomarkers. This work further shows it can be used
to classify brain Aβ burden on an individual basis.

Comparative Analysis of PASCS-MP,
PASS-MP, and SPHARM
The MMS measure for brain structures performs well in clinical
group comparisons (Wang et al., 2013; Shi et al., 2014, 2015;
Li et al., 2016; Yao et al., 2018; Dong et al., 2019, 2020b),
and as we have shown, it has the potential to further be
applied for individual Aβ classification. To achieve this goal,
we need to solve the challenge that the MMS dimension is
usually much larger than the number of subjects, i.e., the so-
called high dimension, small sample size problem. A reasonable
solution is to reduce the feature dimension. Existing feature
dimension reduction approaches include feature selection (Jain
and Zongker, 1997; Fan et al., 2005), feature extraction (Mika
et al., 1999; Jolliffe, 2002; Guyon et al., 2008) and sparse learning
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FIGURE 4 | Receiver operating characteristic curves for the classification tasks, Aβ+ AD vs. Aβ– CU, Aβ+ MCI vs. Aβ– MCI, Aβ+ CU vs. Aβ– CU (ADNI), and Aβ+ CU
vs. Aβ– CU (OASIS). OASIS is used as an external validation set for the model trained by ADNI CU.

methods (Donoho, 2006; Vounou et al., 2010; Wang et al., 2013).
In most cases, information is lost when mapping data into a
lower-dimensional space. By defining a better lower-dimensional
subspace, this information loss can be limited. Sparse coding (Lee
et al., 2007; Mairal et al., 2009) has been previously proposed
to learn an over-complete set of basis vectors (also called a
dictionary) to represent input vectors efficiently and concisely
(Donoho and Elad, 2003). Sparse coding has been shown to be
effective for many tasks such as image imprinting (Moody et al.,
2012), image deblurring (Yin et al., 2008), super-resolution (Yang
et al., 2008), classification (Mairal et al., 2009), functional brain
connectivity (Lv et al., 2015, 2017), and structural morphometry
analysis (Zhang et al., 2017a).

Our previous studies (Zhang et al., 2016a,b, 2017a) propose
a PASS-MP method, consisting of sparse coding (Lee et al.,
2007; Mairal et al., 2009), and Max-pooling (LeCun et al., 2015),
for surface feature dimension reduction. PASS-MP has excellent

impressive performance for the sparse coding of our MMS
features. Our prior studies successfully apply these sparse codes
in detecting individual brain structure abnormalities and obtain
state-of-art performance (Wu et al., 2018; Dong et al., 2020a; Fu
et al., 2021).

Even so, there typically exists non-Gaussian and localized
sources of noise in surface-based morphometry features, this can
dramatically influence the learned dictionary and further lead
to poor sparse coding based on the loss function of PASS-MP.
The correntropy measure is a very robust method for correcting
such sources of noise (Nikolova and Ng, 2006; Liu et al., 2007;
He et al., 2012). In this article, we improve upon the PASS-
MP method by introducing correntropy measures into the loss
function (Gui et al., 2017). Therefore, our proposed sparse coding
method, PASCS-MP, incorporates all the advantages of PASS-MP
and meanwhile improves the classification performance. We also
test SPHARM-based hippocampal shape features as they have
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frequently been studied in prior AD research (e.g., Gerardin et al.,
2009; Cuingnet et al., 2011; Gutman et al., 2013). In such an
approach, we use a series of SPHARM to model the shapes of
the hippocampus segmented by FSL. The SPHARM coefficients
are computed using SPHARM-PDM (Spherical Harmonics-Point
Distribution Model) software developed by the University of
North Carolina and the National Alliance for Medical Imaging
Computing (Styner et al., 2006). The classification features are
based on these SPHARM coefficients, which are represented by
two sets of three-dimensional SPHARM coefficients for each
subject (in fact, one set for the hippocampus in each brain
hemisphere). In Gerardin et al. (2009), they use a feature
selection step because the subject groups are much smaller
(fewer than 30 subjects in each group). When the number
of subjects is small, the classifier can be more sensitive to
uninformative features. In the current study, the number of
subjects is relatively large, so a feature selection step is less
necessary and may increase the risk of overfitting. We adopt the
same approach in Cuingnet et al. (2011), who chose to avoid
this selection step. The classification results (see Table 2 and
Figure 4) based on PASCS-MP, PASS-MP, and SPHARM meet
our expectation that the classification performances based on
PASCS-MP have an apparent improvement measured by ACC,
B-ACC, SPE, SEN, and AUC.

Aβ Burden Prediction Using MRI
Biomarkers
Beta-amyloid accumulation is a major feature of AD
neuropathology (Brier et al., 2016; Cummings, 2019). Detecting
it early and accurately provides a potential opportunity
for effective therapeutic interventions before the advanced
stages of AD (Tosun et al., 2014). Compared to PET and
CSF Aβ measurement techniques, MRI is less expensive
(than PET) and less invasive (than both PET and lumbar
puncture). AD-related biomarker studies (Sperling et al., 2011b;

Jack and Holtzman, 2013; Jack et al., 2018) have shown that
abnormal brain Aβ accumulation typically precedes detectable
structural brain abnormalities. There is emerging literature using
MRI biomarkers to predict brain Aβ burden, and hippocampal
structural measurement is one of the major predictors (Tosun
et al., 2014, 2016; Ansart et al., 2020; Pekkala et al., 2020). Tosun
et al. (2014) applied LASSO penalized logistic regression classifier
to MRI-based voxel-wise anatomical shape variation measures
and cerebral blood flow measures to predict Aβ positivity in 67
people with early MCI (34 Aβ+); the classification accuracy was
83%. Ansart et al. (2020) applied LASSO feature selection and
a random forest classifier to MRI-based cortical thickness and
hippocampal volume measures to classify 596 people with MCI
scanned as part of ADNI MCI (375 Aβ+); the AUC was 0.80.
Trzepacz et al. (2016) also leveraged logistic regression models
with elastic net and hippocampal volume to predict Aβ status
in 252 EMCI patients (120 Aβ+) and 136 LMCI patients (92
Aβ+), the AUCs were 0.70 and 0.71. Our proposed classification
framework has a higher ACC = 89% or AUC = 0.90 than each
of these two studies (Tosun et al., 2014; Ansart et al., 2020)
for predicting Aβ status in people with MCI. Of the studies
predicting Aβ positivity in CUs, Ansart et al. (2020) applied
LASSO feature selection and random forest classifier to MRI-
derived cortical thickness and hippocampal volume measures
to classify 431 ADNI CUs (162 Aβ+) and 318 INSIGHT CUs
(88 Aβ+); the AUCs were 0.59 and 0.62, respectively. Pekkala
et al. (2020) used the DSI machine learning algorithm and
MRI-based biomarkers (total cortical and gray matter volumes,
hippocampus, accumbens, thalamus, and putamen volumes)
to predict Aβ burden in 48 CUs (20 Aβ+); the AUC was 0.78.
Tosun et al. (2021) utilized MRI-score extracted from MRI by a
trained deep learning model to classify the groups with different
Aβ status in 269 CU patients (100 Aβ+). The AUC and ACC
were 0.74 and 0.67. Our proposed classification framework has
AUC = 0.78 on 348 ADNI CUs (116 Aβ+) and AUC = 0.89 on
260 OASIS CUs (52 Aβ+). Table 3 and Figure 4 present the

TABLE 3 | Studies to impute Aβ status from MRI biomarkers in key clinical groups in AD research.

Method Subjects (Aβ+/−) MRI biomarkers ACC AUC

PASCS-MP-Random forest classifier (this
work)

342 ADNI MCI (171/171) Hippocampal multivariate morphometry statistics
(MMS)

0.89 ± 0.01 0.90

348 ADNI CU (116/232) 0.79 ± 0.02 0.78

260 OASIS CU (52/208) 0.81 0.89

LASSO penalized logistic regression
classifier (Tosun et al., 2014)

67 early MCI (34/33) Voxel-wise anatomical shape variation measures
and cerebral blood flow (including frontoparietal
cortical, hippocampal regions, among others)

0.83 ± 0.03

LASSO feature selection and random forest
classifier (Ansart et al., 2020)

596 ADNI MCI (375/221) Cortical thickness and hippocampal volume 0.80

431 ADNI CU (162/269) 0.59

318 INSIGHT CU (88/230) 0.62

Disease State Index machine learning
algorithm (Pekkala et al., 2020)

48 CU (20/28) Total cortical and gray matter volumes,
hippocampus, accumbens, thalamus, and putamen
volumes

0.78

Logistic regression analyses including
elastic net classifier (Trzepacz et al., 2016)

ADNI EMCI (120/132) Hippocampal volume 0.70

ADNI LMCI (92/44) 0.71

Random forest (Tosun et al., 2021) ADNI CU (109/224) MRI-score extracted by a deep learning model 0.67 ± 0.04 0.74
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AUC or ACC values from this work and from similar studies
predicting Aβ positivity using brain MRI biomarkers. Compared
to these similar studies, our proposed classification system
only uses hippocampal structural features but still consistently
outperforms other recently published methods for predicting Aβ

positivity in people with MCI and CUs.

Parameter Selection and Accuracy
Sparse coding is a representation learning method to generate
a sparse representation of the input data in the form of
the linear combination of sparse code and a dictionary. Grid
search is an effective way to select rational regularization
parameters and sparse code dimensionality. However, the
accuracy of classification with different parameter settings
may not always follow a perfect Gaussian distribution. In
Figure 3, the regularization parameter (0.19) and the sparse code
dimensionality (1900) have an erratic effect on the classification
accuracy. In some other similar work for sparse coding (Xu et al.,
2014; Plenge et al., 2015; Quan et al., 2016), the regularization
parameter and the sparse code dimensionality also had similar
erratic effects on the classification accuracy. It may be due to
data insufficiency. Even so, the two cohorts studied in this
work arguably had one of the largest imaging data in exiting
amyloid prediction research. Further research is warranted to
carefully study the relationship between parameter settings and
the accuracy results.

Limitations and Future Work
Despite the promising results are obtained by applying our
proposed Aβ positivity classification framework, there are two
important caveats. First, when applying the PASCS-MP method
to refine MMS, we generally cannot visualize the selected features.
To some extent, this decreases the interpretability of the effects,
although it is still possible to visualize statistically significant
regions as in our prior group difference studies (Shi et al.,
2013a; Wang et al., 2013). However, in our recent work (Wu
et al., 2020), instead of randomly selecting patches to build
the initial dictionary, we use group lasso screening to select
the most significant features first. Therefore, the features used
in sparse coding may be visualized on the surface map. In
the future, we will incorporate this idea into the PASCS-MP
framework to make it more interpretable. Second, this work
only applies hippocampal MMS to predict Aβ positivity. In
future work, we plan to introduce more AD risk factors (such
as demographic information, genetic information, and clinical
assessments) (Tosun et al., 2014; Ansart et al., 2020; Pekkala
et al., 2020), and more AD regions of interest (ROIs; e.g.,
ventricles, entorhinal cortex, and temporal lobes) (Brier et al.,
2016; Foley et al., 2017; Dong et al., 2020b) into our proposed
framework; these additional features are expected to improve the
Aβ positivity prediction.

CONCLUSION

In this article, we explore the association between hippocampal
structures and Aβ positivity on two independent databases using

our hippocampal MMS, PASCS-MP method and a random
forest classifier. Compared to traditional hippocampal shape
measures, MMS have superior performance for predicting Aβ

positivity in the AD continuum. Besides, the proposed PASCS-
MP outperforms our previous sparse coding method (PASS-MP)
on refining MMS features. Compared to similar studies, this
work achieves state-of-the-art performance when predicting Aβ

positivity based on MRI biomarkers. In the future, we plan to
apply this proposed framework to other AD ROIs and further
improve the comprehensibility of the framework by visualizing
morphometry features selected in the classification.
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