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Purpose: Low vision reduces text visibility and causes difficulties in reading. A valid low-
vision simulation could be used to evaluate the accessibility of digital text for readers with
low vision. We examined the validity of a digital simulation for replicating the text visibility
and reading performance of low-vision individuals.

Methods: Low-vision visibility was modeled with contrast sensitivity functions (CSFs)
with parameters to represent reduced acuity and contrast sensitivity. Digital filtering
incorporating these CSFs were applied to digital versions of the Lighthouse Letter Acuity
Chart and the Pelli-Robson Contrast Sensitivity Chart. Reading performance (reading
acuity, critical print size, and maximum reading speed) was assessed with filtered
versions of the MNREAD reading acuity Chart. Thirty-six normally sighted young adults
completed chart testing under normal and simulated low-vision conditions. Fifty-eight
low-vision subjects (thirty with macular pathology and twenty-eight with non-macular
pathology) and fifteen normally sighted older subjects completed chart testing with
their habitual viewing. We hypothesized that the performance of the normally sighted
young adults under simulated low-vision conditions would match the corresponding
performance of actual low-vision subjects.

Results: When simulating low-vision conditions with visual acuity better than 1.50
logMAR (Snellen 20/630) and contrast sensitivity better than 0.15 log unit, the simulation
adequately reduced the acuity and contrast sensitivity in normally sighted young
subjects to the desired low-vision levels. When performing the MNREAD test with
simulated low vision, the normally sighted young adults had faster maximum reading
speed than both the Non-macular and Macular groups, by an average of 0.07 and
0.12 log word per minute, respectively. However, they adequately replicated the reading
acuity as well as the critical print size, up to 2.00 logMAR of both low-vision groups.

Conclusion: A low-vision simulation based on clinical measures of visual acuity
and contrast sensitivity can provide good estimates of reading performance and the
accessibility of digital text for a broad range of low-vision conditions.
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INTRODUCTION

Low vision refers to any vision impairment that cannot be
corrected by glasses or contact lenses. For readers with low
vision, text legibility is limited by acuity and contrast sensitivity.
In practical terms, reduced acuity and contrast sensitivity limit
the ability to see graphics and text on web pages and in other
digital formats. Other factors affecting vision, such as field
loss, light level and glare, often add to the difficulties in low-
vision function (Fletcher et al., 1999; Turano et al., 2004; Kiser
et al., 2005). While it is not always sufficient for successful
low-vision functioning, the visibility of key features is usually
a necessary condition for low-vision functioning. The goal of
our project is to validate a simulation of the loss of visibility
due to reduced acuity and reduced contrast sensitivity. The
simulation is based on image filtering that uses transformations
of the normal contrast sensitivity function (CSF) to represent
reduced visibility associated with low vision. We evaluated the
validity of the simulation by testing normally sighted subjects on
filtered images of text to determine if measures of acuity, contrast
sensitivity and reading performance match the performance
of people with actual low vision. A valid simulation of low-
vision visibility could be useful to eye-care clinicians, display
designers, website creators, and family members in evaluating the
accessibility of digital rendering of text or graphics for people
with low vision.

Low-vision simulations, such as diffusive filters, optical
defocus and digital blur, have been utilized for research or
education purposes (Peli, 1990; Dickinson and Rabbitt, 1991;
Bowers and Reid, 1997; Thompson et al., 2017; Jones and
Ometto, 2018; Jones et al., 2020). A desirable property of an
digital simulation is that it can be parameterized by measurable
properties of vision status such as acuity and contrast sensitivity
(Peli, 1990; Thompson et al., 2017).

The CSF is a detailed measurement of an individual’s acuity
limit and contrast sensitivity across a range of spatial frequencies
(Campbell and Robson, 1968), which determines the visibility of
any pattern. Compared to people with normal vision, people with
low vision often have reduced contrast sensitivity and a decreased
range of visible spatial frequencies (Ross et al., 1984; Sokol
et al., 1985; Chylack et al., 1993). Peli described a methodology
using low-vision CSF filters to process images to represent the
reduction in sensitivity of low-vision eyes (Peli, 1990). A key
assumption of the method is that target features in the original
image that are not visible or recognizable with specific levels of
low vision are not visible or recognizable to normally sighted
subjects viewing the filtered image.

It is difficult in practice to directly measure CSFs for people
with low vision, although recent development of a quick CSF
measurement facilitates such measurement (Lesmes et al., 2010;
Elfadaly et al., 2020). Another approach is to derive low-vision
CSFs from a typical CSF for normal vision. Chung and Legge
(2016) proposed that low vision CSFs can be approximated
by horizontal and/or vertical scaling of a normal vision CSF
template, with the horizontal scaling representing the loss in high
spatial frequency resolution, and the vertical scaling representing
the loss in peak contrast sensitivity (Chung and Legge, 2016).

Recent studies have further shown that the horizontal and
vertical scaling factors for deriving the low-vision CSF can be
estimated by clinical measures of visual acuity and contrast
sensitivity (Thurman et al., 2016; Thompson et al., 2017).
Specifically, clinical testing tools such as letter acuity charts
[e.g., the Early Treatment of Diabetic Retinopathy (ETDRS)
chart] and letter contrast sensitivity charts (e.g., the Pelli-
Robson Chart), were designed to provide convenient measures of
individual visual acuity and contrast sensitivity. These measures
provide reasonable estimations of the high spatial frequency
resolution and the peak contrast sensitivity of the individual’s
CSF curve (Thurman et al., 2016; Thompson et al., 2017). Using
the filtering method proposed by Peli (1990), Thompson and
colleagues (Thompson et al., 2017) parameterized their low-
vision filters using these clinical measures in an attempt to
simulate visibility experienced by individuals with reduced acuity
and contrast sensitivity. Their simulation was validated by a letter
recognition task, showing that the measured acuity for filtered
letters closely matched their intended visibility as specified by
the filter parameters. Despite the potential usefulness of the
method, it is unknown whether the method can also be used to
simulate the impact of reduced visibility on more complex tasks
such as reading.

A primary goal of the current study was to examine the validity
of the CSF filtering method for predicting visual performance
in a task beyond simple visibility. We simulated the reading
performance of people with low vision. Following Peli (1990)
and Thompson et al. (2017), we embedded an estimate of
the reader’s CSF in the simulation filter. The implementation
included two key steps: (1) clinical acuity and contrast sensitivity
measured by letter charts were used to estimate the scaling
factors used to derive the low-vision CSF; and (2) the low-
vision CSF thus derived was used to filter the input image to
generate the simulation.

To summarize, the current study was aimed to extend previous
work by using clinical measures of acuity and contrast sensitivity
to parameterize the simulation method and to systematically
validate the method by examining the impact of simulated
low vision on both simple tasks such as letter recognition and
complex tasks such as reading. Specifically, we asked two main
questions: (1) Do normally sighted subjects tested with filtered
images of the letter charts show reduced acuity and contrast
sensitivity close to the simulated low-vision levels? And (2) Do
the reduced acuity and contrast sensitivity have the same impact
on reading as real low vision? To this end, we compared the
reading performance of normally sighted subjects, tested with
simulated reduction of acuity and contrast sensitivity, with the
performance of low-vision subjects with the equivalent acuity
and contrast sensitivity. We also examined whether two other
factors beyond acuity and contrast sensitivity, namely age and
central vision status, need to be considered in the simulation.
It has been well studied that people with central field loss due
to macular diseases have greater difficulty in reading (Legge
et al., 1992), therefore we included low-vision groups with
non-macular and macular diseases, to compare the validity of
our simulation for low vision with or without central vision
disturbance. We included a group of normally sighted older
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subjects, to examine the need for age adjustment when simulating
older low-vision individuals.

MATERIALS AND METHODS

Subjects
One hundred and nine subjects participated in this study. All
subjects were native English speakers with no known visual
reading disabilities. Normal cognitive status was verified by the
Mini-Mental State Examination (score > 24). All subjects were
tested with their most up-to-date reading glasses, if any.

Thirty-six of the subjects were normally sighted young
adults (YN, 20.5 ± 3.6 years) recruited from the University
of Minnesota. Fifteen of the subjects were normally sighted
older adults (ON, 68.0 ± 5.0 years) recruited from the Retiree
Volunteer Center at the University of Minnesota. Fifty-eight
of the subjects (64.8 ± 18.0 years) were adults with low
vision whose data were included from two published studies
(Cheong et al., 2008; Calabrèse et al., 2018). The low-vision
data were separated into macular disease (Mac, n = 30) and
non-macular disease (Non-Mac, n = 28) groups based on
whether the diagnoses primarily affected the macular area (see
Supplementary Appendix 2 for individual diagnoses). This
study was approved by the University of Minnesota Institutional
Review Board and followed the Declaration of Helsinki. Consent
forms were acquired from all subjects prior to their participation.

Apparatus and Stimuli
Digital versions of the Lighthouse Letter Acuity Chart, Pelli-
Robson Contrast Sensitivity Chart and MNREAD Chart were
adapted from the original printed charts (Ferris et al., 1982; Pelli
et al., 1988; Mansfield and Legge, 2007), using Psychtoolbox 3.0
software (Pelli, 1997) with Matlab R2016a. In the digital acuity
test, a group of five letters was presented on the screen each time,
equivalent to a single line on the printed chart. In the digital
contrast sensitivity test, a group of three letters was presented
on the screen each time, equivalent to a single contrast level
on the printed chart. The MNREAD sentences were created by
a MNREAD sentence generator (Mansfield et al., 2019). Each
MNREAD chart had 21 sentences with decreasing sizes in 0.1
log unit steps from 1.7 logMAR to−0.3 logMAR (equivalent to a
range of x-heights from 4.18 to 0.04 degree). Each sentence was
formatted on three equal-length lines like the printed MNREAD
chart. Only one sentence was presented on the screen at one time.

A large LCD monitor was used (dimensions = 59.6 ×
33.4 cm) to ensure the presentation of large size letters (Cinema
Display, Apple, Inc.). The refresh rate was 60 Hz and the
resolution was 2,560 × 1,440. Stimuli were displayed with 14-bit
grayscale resolution using Bits++ (Cambridge Research Systems
Ltd., United Kingdom). The output luminance of the monitor
at each gray level was measured using a photometer (PR655
Spectroradiometer, Photo Research Inc.), and a look-up table
was created to present letters at each contrast level. The white
background had a fixed luminance of 298.5 cd/m2. For the
Lighthouse Letter Acuity Chart and MNREAD Chart, the high-
contrast black letters had a fixed luminance of 1.5 cd/m2. For

the Pelli-Robson Contrast Sensitivity Chart, the luminance of the
sixteen three-letter groups ranged from 1.5 to 296.8 cd/m2.

The viewing distance was 100 cm, with the exception that the
small print sizes (<0 logMAR) on the Lighthouse Letter Acuity
charts and MNREAD charts were tested at 160 cm to ensure
adequate resolution. To change the viewing distance, the test was
paused and subjects were moved back from 100 to 160 cm.

CSF Filters
In Figure 1A, the black curve illustrates a normal CSF template,
with the y-axis representing contrast sensitivity and x-axis
representing spatial frequency. The CSF was constructed based
on Barten’s simplified CSF formula (Equation 1, Barten, 1999,
2003). In Equation 1, SNV(f) is the contrast sensitivity at spatial
frequency f, equivalent to the inverse of the corresponding
Michelson contrast at threshold. There are two free parameters:
the luminance (L) of the image and the angular area (X0

2) of the
picture area. The luminance was fixed as the mean luminance
of the screen (150 cd/m2), and the image area was fixed as the
angular area of the screen (33× 19 deg2).

SNV
(
f
)
=

5200e−0.0016f 2(1+100/L)0.08√(
1+ 144

X2
0
+ 0.64f 2

)
×

(
63

L0.83 +
1

1−e−0.02f 2

) (1)

Low-vision CSF curves were created by shifting the normal
CSF curve horizontally along the spatial frequency axis by factor
a and vertically along the contrast sensitivity axis by factor b
(Equation 2; Chung and Legge, 2016). The scaling corresponds
to horizontal and vertical translations of the normal template in
the log-log coordinates of Figure 1A. The red curves in Figure 1A
provide three low-vision CSF examples of different combinations
of horizontal and vertical scaling. Note that in some conditions
the shifted low-vision sensitivities at lower spatial frequencies
would exceed that of the normal vision (Figure 1A, gray dashed
curves). To avoid this problem the low-vision CSF was clamped
at the value of the normal CSF.

SLV
(
f
)
= min

(
bSNV

(
f
a

)
, SNV

(
f
) )

(2)

The CSF filter is constructed by computing the attenuation in
spatial frequency components of the input image due to contrast
sensitivity loss across the low-vision CSF relative to the normal
CSF. It is defined as the ratio between a low-vision CSF and the
normal CSF (Equation 3, Figure 1B).

F
(
f
)
=

SLV
(
f
)

SNV
(
f
) (3)

The CSF filters can be applied to digital texts and pictures
to simulate pattern visibility to the corresponding low-vision
eyes. Specifically, the amplitude of the Fourier transform of
the input image at each spatial frequency is multiplied by the
corresponding value of the filter function to achieve spatial-
frequency specific attenuation, and then an inverse Fourier
transform is applied to create the filtered image. Figure 1C shows
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FIGURE 1 | Examples of CSF filters. (A) Normal vision CSFs are represented with black curves, and the low vision CSFs are represented by red curves with
horizontal and vertical scaling of the normal CSF. From left to right, the plots show examples of horizontal scaling, vertical scaling, and horizontal-plus-vertical scaling
conditions. The scaling factors are listed in each plot. (B) The CSF filters are defined by the ratio between the low vision and normal vision CSF in (A). (C) A
MNREAD sentence filtered by the three CSF filters. (D) Reading speed (log word per minute) as a function of print size under the three conditions.

examples of a MNREAD sentence after filtering by three CSF
filter conditions. Figure 1D shows the average reading curves
under each of the three simulated conditions.

As an aside, we comment on a methodological difference in
the implementation of the CSF filtering between the current
study and the previous studies of Peli (1990) and Thompson
et al. (2017). Specifically, in the two previous studies, a visual
image was decomposed into a discrete set of frequency bands.
A contrast threshold was then derived from the low-vision
CSF for each frequency band and applied to the corresponding
sub-image to completely eliminate the image contents with
sub-threshold contrasts. This non-linear filtering approach is
particularly suitable for the simulation of the appearance of
complex images where local contrast plays a vital role in

pattern perception. However, One issue with this approach is the
noticeable artifacts (i.e., banding or ringing effects) generated in
the filtered images due to the use of non-linear hard-thresholding.
Although a solution has been proposed by Thompson et al.
(2017) to minimize the artifacts, they are still visible and can be
distracting in deciphering letters in text.

In the current study, we adopted an alternative linear
approach, using a single-channel filter based on the CSF, that
does not involve decomposing the entire frequency range into a
discrete set of frequency bands and no explicit thresholding is
performed. Our previous work has preliminarily validated this
approach for simulating low-vision visibility (Lei et al., 2016). In
this approach, the ratios of low-vision and normal-vision contrast
sensitivities at all spatial frequencies spanning the CSFs were

Frontiers in Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 671121

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-671121 June 29, 2021 Time: 18:23 # 5

Xiong et al. Simulating Low Vision

calculated as the filter to represent the loss of contrast sensitivities
in low vision relative to normal vision. The filter was then used
to linearly scale the spatial frequency contents of an image, such
that each frequency component was attenuated by an amount
that is commensurate with the relative loss in contrast sensitivity
of a low-vision observer at that frequency. The linear approach
results in filtered images of text that are virtually free of artifacts.
Linear filtering is also simpler to implement with fewer parameter
settings than needed for the sub-band thresholding implemented
in the non-linear method.

Simulated Low-Vision Conditions
A close association can be established between the scaling
factors (a and b) used in the simulation of low vision and the
corresponding visual acuity (VA) and contrast sensitivity (CS)
values we intend to simulate. Briefly, VA provides an estimation
of the high frequency cut-off of the corresponding CSF, and CS
provides an estimation of the peak contrast sensitivity of the
corresponding CSF. For people with low vision, the reductions in
their VA and CS compared to the normal baselines can therefore
be associated with the horizontal and vertical scaling factors.
For purposes of our modeling, the normal baseline acuity was
−0.24 logMAR, corresponding to the high-frequency cutoff of
the normal CSF, and the normal baseline value for CS was 2.13 log
units, corresponding to the mean Pelli-Robson score of our YN
subjects (see footnotes in Table 1). Supplementary Appendix 1
describes the transformations relating the scaling factors a and
b to measured values of VA and CS. The parameterization
procedure is similar in logic to that of Thompson et al. (2017)
but different in implementation due to the adoption of a different
functional form for the CSF.

Forty hypothetical low-vision conditions were simulated using
different combinations of horizontal and vertical scaling. The
scaling factors a and b used in the forty hypothetical low-vision
conditions are listed in Table 1 and illustrated in Figure 2A.

Twenty-five of the low-vision conditions (Figure 2A, filled
circles; Table 1, Filter 1–25) were determined based on the
empirical relationship between VA and CS (adapted from Xiong
et al., 2020). Specifically, across a large sample of subjects
(N = 1,040) including those with normal ocular health and
various ocular pathologies, the reductions in VA and CS
compared to normal baselines were significantly correlated
following a linear relationship (the regression line and confidence
intervals are presented in Figure 2B). We first determined five
hypothetical low-vision conditions corresponding to 0.6, 0.9, 1.2,
1.5, and 1.8 logMAR reductions compared to normal VA. For
each level of VA reduction, five levels of CS reductions were
determined by steps of 0.25 log unit, with the middle level
centered approximately at the regression line (Figure 2B, black
dots). The remaining fifteen low-vision conditions (Figure 2A,
open circles; Table 1, Filter 26–40) were retrospectively included
to supplement the boundary conditions.

Procedure
All tests were conducted under binocular viewing. Each YN
subject was tested with a baseline condition where no filtering
was applied, and between 10 and 16 simulated low-vision

conditions. VA, CS, and reading performance were measured
under each condition, using digital versions of the Lighthouse
Letter Acuity charts, Pelli-Robson Contrast Sensitivity charts
and the MNREAD charts, respectively. The ON, Mac, and
Non-Mac groups also completed the three tests, under the no
filtering condition only.

All the testing and scoring followed the standard protocols for
the tests. VA was scored on a letter-by-letter basis with each letter
worth 0.02 logMAR (Ferris et al., 1982), and CS scored as the log
value of the lowest contrast at which subjects can correctly report
at least 2 letters in a triplet (Pelli et al., 1988).

Reading speed in log word per minute (log wpm) was obtained
at each tested print size. Reading speed as a function of print
size was fitted with a function (Equation 4) by non-linear mixed-
effects (NLME) modeling, in which subject variations were
modeled as random effects (Cheung et al., 2008).

Reading Speed = mrs× (1− e(−elrc
× (Print Size−xint))) (4)

where mrs is the plateau of the reading curve, lrc is the slope of
the reading curve, and xint is the intercept of the reading curve
with x-axis. Three standard reading indices were derived from
each fitted curve:

• Maximum reading speed: the fastest reading speed subjects
can achieve. Calculated as the asymptote of the fitted
exponential curve.
• Critical print size: the smallest print size yielding the

maximum reading speed. Calculated as the print
size corresponding to a reading speed of 90% of the
maximum reading speed.
• Reading acuity: the smallest print size that can just be read.

Reading acuity = smallest print size attempted + number of
errors× 0.01.

Table 2 provides a summary of the VA, CS, and reading
indices for each group.

Statistical Analysis
The statistical analyses were performed using the R package (R
Core Team, 2018). When examining the validity of simulating
reduced VA and CS, two Linear Mixed Effects (LME) models
(Pinheiro and Bates, 2000) were conducted on the VA or CS
values, with value types (expected and measured) and filter
conditions as fixed factors and subject as a random effect. In
addition, we used the test-retest reliabilities (95% coefficient of
repeatability) of VA (0.20 logMAR) and CS (0.30 log unit) for
low vision as the criterion of clinically significant difference
(Kiser et al., 2005).

Three LME models were fit to describe the impact of simulated
VA and CS reduction on reading performance (maximum
reading speed, critical print size, reading acuity), respectively.
Specifically, the models treated the reading indices as the
dependent variable, expected VA and CS as the fixed effect factors,
and subject and filter as random effects. For maximum reading
speed, an additional Non-linear Mixed Effect (NLME) model
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(Bates et al., 2015) was fit to further quantify the impact of
simulated CS reduction.

Lastly, when examining the validity of the simulation in
predicting reading performance in low-vision subjects and older
control subjects, again LME models were fit to compare the
predicted and actual reading performance (maximum reading

speed, critical print size and reading acuity). The models
treated the reading indices as the dependent variable, condition
(predicted vs. actual values) and group (Non-Mac, Mac, and ON)
as fixed effects, and subject as a random effect.

For all the LME analyses described above, the significance
of each fixed factor was examined by the ANOVA

TABLE 1 | Simulated low-vision conditions: scaling factors (a and b), expected VA and CS Reductions, expected VA and CS values, and measured VA and CS values
(mean [standard deviation]) in the normally sighted young group.

Filter Horizontal scaling a Vertical scaling b Expected VA reduction Expected CS reduction Expected VA Expected CS Measured VA Measured CS

0* 1.000 1.000 0.00 0.00 −0.24† 2.13‡
−0.09 [0.02] 2.13 [0.01]

1 0.288 0.288 0.60 −0.54 0.36 1.59 0.28 [0.01] 1.58 [0.02]

2 0.157 0.157 0.90 −0.80 0.66 1.33 0.62 [0.01] 1.33 [0.02]

3 0.086 0.086 1.20 −1.06 0.97 1.07 0.97 [0.01] 0.99 [0.02]

4 0.048 0.048 1.51 −1.31 1.27 0.82 1.31 [0.02] 0.64 [0.02]

5 0.027 0.027 1.81 −1.54 1.57 0.59 1.72 [0.01] 0.10 [0.02]

6 0.250 1.000 0.60 −0.07 0.36 2.05 0.25 [0.02] 2.11 [0.02]

7 0.134 0.534 0.90 −0.31 0.66 1.81 0.56 [0.01] 1.80 [0.03]

8 0.072 0.288 1.20 −0.57 0.97 1.55 0.93 [0.02] 1.44 [0.02]

9 0.039 0.157 1.51 −0.83 1.27 1.29 1.27 [0.03] 0.95 [0.07]

10 0.022 0.086 1.81 −1.09 1.57 1.03 1.67 [0.02] 0.35 [0.04]

11 0.267 0.534 0.60 −0.27 0.36 1.86 0.26 [0.01] 1.91 [0.04]

12 0.144 0.288 0.90 −0.54 0.66 1.59 0.57 [0.01] 1.60 [0.03]

13 0.078 0.157 1.20 −0.80 0.97 1.33 0.96 [0.02] 1.23 [0.03]

14 0.043 0.086 1.51 −1.06 1.27 1.07 1.30 [0.02] 0.72 [0.03]

15 0.024 0.048 1.81 −1.31 1.57 0.82 1.68 [0.01] 0.27 [0.03]

16 0.314 0.157 0.60 −0.80 0.36 1.33 0.30 [0.02] 1.26 [0.07]

17 0.172 0.086 0.90 −1.06 0.66 1.07 0.65 [0.03] 1.01 [0.06]

18 0.096 0.048 1.20 −1.31 0.97 0.82 1.01 [0.02] 0.69 [0.05]

19 0.055 0.027 1.51 −1.54 1.27 0.59 1.40 [0.04] 0.36 [0.03]

20 0.032 0.016 1.81 −1.76 1.57 0.42 1.77 [0.01] 0.00 [0.00]

21 0.345 0.086 0.60 −1.06 0.36 1.10 0.35 [0.02] 1.07 [0.04]

22 0.193 0.048 0.90 −1.31 0.66 0.85 0.69 [0.01] 0.79 [0.04]

23 0.110 0.027 1.20 −1.54 0.97 0.62 1.01 [0.03] 0.64 [0.05]

24 0.064 0.016 1.51 −1.76 1.27 0.40 1.38 [0.05] 0.30 [0.04]

25 0.038 0.010 1.81 −1.96 1.57 0.14 1.57 [0.01] 0.15 [0.00]

26 0.439 0.027 0.60 −1.54 0.36 0.58 0.50 [0.04] 0.62 [0.07]

27 0.256 0.016 0.90 −1.76 0.66 0.36 0.85 [0.04] 0.47 [0.05]

28 0.154 0.010 1.20 −1.96 0.97 0.16 1.31 [0.07] 0.29 [0.07]

29 0.033 0.534 1.51 −0.55 1.27 1.61 1.32 [0.03] 1.50 [0.04]

30 0.018 0.288 1.81 −0.81 1.57 1.35 1.63 [0.02] 0.77 [0.03]

31 0.125 1.000 0.90 −0.16 0.66 1.96 0.64 [0.02] 2.06 [0.04]

32 0.063 1.000 1.20 −0.29 0.97 1.85 0.97 [0.02] 1.93 [0.02]

33 0.031 1.000 1.51 −0.45 1.27 1.67 1.33 [0.01] 1.52 [0.08]

34 0.016 1.000 1.81 −0.63 1.57 1.49 1.55 [0.01] 0.69 [0.09]

35 1.000 0.355 0.05 −0.45 −0.19 1.65 −0.12 [0.01] 1.70 [0.03]

36 1.000 0.178 0.09 −0.75 −0.15 1.35 −0.07 [0.02] 1.43 [0.03]

37 1.000 0.089 0.14 −1.04 −0.10 1.06 −0.02 [0.03] 1.10 [0.03]

38 1.000 0.045 0.20 −1.34 −0.04 0.76 0.07 [0.03] 0.88 [0.03]

39 1.000 0.022 0.27 −1.63 0.03 0.47 0.17 [0.04] 0.58 [0.03]

40 1.000 0.011 0.36 −1.90 0.13 0.20 0.45 [0.09] 0.36 [0.04]

*Filter 0 represents no filtering condition.
†The baseline acuity value was directly obtained from the cut-off spatial frequency (51.9 cpd) of the normal CSF function, using Equation 11 in Supplementary
Appendix 2.
‡The baseline Pelli-Robson contrast sensitivity value obtained from the peak of the normal CSF function is 2.5 log units, which exceeds the test capacity of the Pelli-Robson
chart and therefore was normalized to the baseline value of our subject pool.
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FIGURE 2 | Simulated low vision conditions. (A) The horizontal and vertical scaling factors of the forty simulated low vision conditions. Twenty-five conditions (solid
dot) were determined so that the reductions in CS and VA would closely resemble the empirical distribution (see B for details). Fifteen conditions (empty dot) were
boundary conditions. (B) The empirical distribution of CS reduction as a function of VA reduction, both compared to Age-adjusted normal baselines, in a large sample
of subjects (N = 1,040) with various vision conditions (adapted from Xiong et al., 2020). The gray line represents the regression line, and the gray ribbon represents
the 95% confidence interval around the regression line. The black solid dots represent the CS and VA reductions in the 25 simulations. Note that in B the VA axis
was reversed, i.e., from large to small, to visualize the correspondence between A and B. In both figures, the cross represents the baseline condition without filtering.

TABLE 2 | Age, vision status, and reading performance of the young normal (YN), older normal (ON), non-macular (Non-Mac) and macular (Mac) groups (mean
[standard deviation]).

Groups Age (years) VA (logMAR) CS (log unit) Maximum reading speed (wpm) Critical print size (logMAR) Reading acuity (logMAR)

YN* 20.5 [3.6] −0.09 [0.11] 2.13 [0.07] 2.20 [0.06] 0.21 [0.10] −0.14 [0.07]

ON 68.0 [5.0] 0.00 [0.11] 2.02 [0.11] 2.17 [0.05] 0.26 [0.12] −0.05 [0.10]

Non-Mac 56.7 [16.1] 0.82 [0.40] 0.96 [0.52] 2.06 [0.16] 1.35 [0.82] 0.71 [0.41]

Mac 72.9 [16.7] 0.64 [0.31] 1.16 [0.33] 2.07 [0.21] 1.49 [0.90] 0.71 [0.40]

*For the YN group, the listed VA, CS and reading indices were under baseline condition with no filtering.

function in the “lme4” package. Post hoc analysis was
performed with Bonferroni corrections (“emmeans” package,
Piepho, 2004). p-values smaller than 0.05 were considered
statistically significant.

RESULTS

Validity: Simulating Reduced Acuities
and Contrast Sensitivities in Normally
Sighted Young Subjects
First, we asked if the CSF filter with certain parameters
would actually yield the expected VA and CS scores for
normally sighted young subjects. For example, for parameter
values a = 0.29 and b = 0.29 (Table 1, Filter 1), would the
filtered versions of the acuity and contrast sensitivity charts
yield the expected test scores of 0.36 logMAR and 1.59 log
unit? This validation is important to confirm that two key
assumptions underlying our simulation are valid—first, that
the use of a horizontally and vertically shifted normal CSF
template is a good approximation of a low-vision reader’s
CSF, and second, that clinical measures of visual acuity and

contrast sensitivity can be used to calculate the horizontal and
vertical shifts.

Figures 3A,B are scatter plots of the measured VA and CS vs.
the expected values from the simulation for the YN group. The
dots represent the group average for each low vision simulation,
and the solid line represents the equality line.

We used the test-retest reliability of VA and CS (0.20 logMAR
and 0.30 log unit, respectively) as criteria for clinically significant
differences (Kiser et al., 2005). The difference between the
measured and expected VA ranged from −0.11 to 0.35 logMAR,
with a median of 0.05 logMAR. LME analysis on VA showed
significant main effect of value type [expected and measured; F(1,
852) = 141.31, p < 0.001], filter conditions [F(40, 774) = 2098.15,
p < 0.001], and an interaction between them [F(40, 852) = 19.04,
p < 0.001]. Post hoc analysis with Bonferroni corrections
showed that only two conditions showed a significant difference
(p < 0.05) larger than 0.20 logMAR (Figure 3A, red triangles).

The difference between the measured and expected CS ranged
from −0.81 to 0.16 log unit, with a median of −0.03 log unit.
LME analysis on CS showed significant main effect of value type
[expected and measured; F(1, 829) = 278.05, p < 0.001], filter
conditions [F(40, 485) = 885.76, p < 0.001], and an interaction
between them [F(40, 829) = 38.73, p < 0.001]. Post hoc analysis
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FIGURE 3 | The validity of simulating reduced contrast sensitivity and visual acuity in the Young Normal (YN) group. (A) The measured VA as a function of the
expected VA. The circles represent the group average of each condition, and the error bars represent the standard errors. The red triangles represent conditions
where the differences between the measured and expected values were statistically (p < 0.05) and clinically significant (>0.20 logMAR). (B) The measured CS as a
function of the expected CS. The red triangles represented conditions where the differences between the measured and expected values were statistically (p < 0.05)
and clinically significant (>0.30 log unit). (C) The difference between measured and expected VA as a function of the expected CS. When the expected CS was close
to or worse than 0.15 log unit, the difference between measured and expected VA was the largest. (D) The difference between measured and expected CS value as
a function of the expected VA. When the expected VA values were close to or exceeded 1.50 logMAR, the difference between measured and expected CS were the
largest. In all four plots, the gray dashed lines represent the clinically significant difference in low vision (0.20 logMAR for VA and 0.30 log unit for CS), respectively.

with Bonferroni corrections showed that seven conditions had
significant differences (p < 0.05) that were larger than 0.30 log
unit (Figure 3B, red triangles).

We asked whether these deviant points are associated with
an interaction between poor acuity or contrast sensitivity. We
plotted the difference between the expected and measured
VA as a function of the expected CS (Figure 3C), and found
that the two conditions that reached clinical significance
both had the lowest expected CS (0.15 and 0.20 log
unit). Similarly, the seven conditions that reached clinical
significance in CS all had expected VA close to or larger than
1.5 logMAR (Figure 3D). LME modeling confirmed this
mutual impact between VA and CS. The difference between
measured and expected VA increase as CS worsens [F(1,
43) = 14.07, p < 0.001] and vice versa [F(1, 39) = 34.40,
p < 0.001].

Validity: Simulation of Reading
Performance
Do the simulated acuity and contrast sensitivity reductions show
similar impacts on reading as real low vision? If this is the case,

the real and simulated low-vision subjects with equivalent VA and
CS should have similar reading performance.

Figure 1D illustrated how reading speed changed with print
size when text images were filtered with three sample filters. To
quantify the impact of the simulated VA and CS on reading, we
built LME models across all simulation conditions for the YN
subjects on the three reading indices, with the expected VA and
CS as predictors. Maximum reading speed was only significantly
affected by CS [F(1, 32) = 30.83, p < 0.001], and it was mostly
unaffected until the simulated CS was very low (Figure 4A). We
quantified the impact of CS on the maximum reading speed by
an exponential function, which showed that when CS dropped
to 0.69 log unit, the maximum reading speed only decreased by
10%. VA and CS were both significant predictors for critical print
size and reading acuity (all p < 0.001). VA alone explained 88%
and 90% of the variations in the critical print size and reading
acuity, respectively (Figures 4B,C). With the addition of CS, they
explained 95% of the variance in the critical print size and 96% in
the reading acuity. The parameters of the three regression models
are provided in Table 3.

We then tested if the models we derived from simulation
can reasonably predict the reading performance of subjects
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FIGURE 4 | The impact of simulated acuity and contrast sensitivity reduction on the reading performance of the YN group. (A) Maximum reading speed as a function
of the expected CS. The red arrow represents the critical CS for a maximum reading speed of at least 90% of the maximum reading speed for normal vision
(asymptote). (B) Critical print size as a function of the expected VA. (C) Reading acuity as a function of the expected VA. In all three plots the circles represent the
group average of each simulated low vision condition, and the error bars represent standard errors.

TABLE 3 | Regression models on maximum reading speed, critical print size, and reading acuity with VA and CS as predictors.

VA CS R2 Regression model

Maximum reading speed F (1, 35) = 0.42, p = 0.52 F (1, 32) = 30.83, p < 0.001 0.25 Maximum reading speed=2.20 × (1– exp(−3.56 × (CS+0.40)))

Critical print size F (1, 38) = 1333.47, p < 0.001 F (1, 34) = 88.78, p < 0.001 0.95 Critical print size=0.65 + 0.95 × VA - 0.21 × CS

Reading acuity F (1, 35) = 1111.36, p < 0.001 F (1, 37) = 73.14, p < 0.001 0.96 Reading acuity=0.30 + 0.95 × VA - 0.21 × CS

with actual low vision. Specifically, the reading indices of
actual low-vision subjects were obtained from the curves
fitted to their reading data (individual data are provided
in Supplementary Appendix 2), and the predicted reading
indices were obtained by entering their VA and CS into the
regression models in Table 3. Figure 5 shows scatterplots
of the actual versus predicted reading indices for each low-
vision subject.

The predicted maximum reading speed (Figure 5A) was faster
than the actual value in both Non-Mac and Mac groups, by an
average of 0.07 log wpm (equivalent to 17%, p = 0.058) and
0.12 log wpm (equivalent to 32%, p < 0.001), respectively. The
predicted critical print size (Figure 5B) was in close agreement
with the actual values in the Non-Mac group (p = 0.27), but
it was significantly smaller than the actual values in the Mac
group (p < 0.001). Large deviations in the critical print size
mostly appeared when the actual critical print size values were
larger than 2.0 logMAR. These deviations may be due to the
fact that under severe low-vision simulation conditions, the
tested print size (−0.3 to 1.7 logMAR) was not sufficient to
reflect the plateau of the reading curve, therefore the fitted
curve may have yielded an unreliable estimation of critical
print size. Within the 2.0 logMAR limit, the predicted critical
print sizes were not significantly different from the actual
values in both groups (p = 0.13 for the Non-Mac group, and
p = 0.15 for the Mac group). The predicted reading acuity
(Figure 5C) was in close agreement with the actual values in the
Mac group (p = 0.13), and was slightly larger than the actual
value in the Non-Mac group by an average of 0.16 logMAR
(p < 0.001).

Consideration of Age as an Additional
Parameter for Low-Vision Simulation
Many low-vision conditions are age related, as shown by the age
and pathology distributions of our low-vision sample. Therefore,
we considered whether age should be included as an additional
parameter to fine tune the simulation. To answer this question,
we included a group of older subjects with normal ocular
health (ON group).

Compared to the YN group, the ON group had a significantly
larger value of VA by 0.09 logMAR (p = 0.017), and were lower in
CS by 0.11 log units (p = 0.002). When comparing their reading
performance with the YN group under the unfiltered condition,
the ON group showed lower maximum reading speed, and higher
logMAR values of critical print size and reading acuity, but only
reading acuity reached significance (by 0.09 logMAR, p = 0.005).
However, the reduced VA and CS in the ON group were sufficient
to explain the age-related change of the reading acuity. When
individual subject’s VA and CS values were entered into the
regression model in Table 3, the predicted reading acuity was
not significantly different from the actual reading acuity of the
ON group (p = 0.12, Figure 5C). This means that we found
no additional age effect on reading, once acuity and contrast
sensitivity are taken into account.

DISCUSSION

Digital images of test letters and text were constructed
based on the CSF filtering principle, to simulate low vision
with various combinations of acuity and contrast sensitivity
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FIGURE 5 | The validity of simulating the reading performance of low vision individuals. (A) The comparison of the maximum reading speed between actual low
vision and predicted low vision from the simulation. The blue crosses and red circles represent the Non-Mac and Mac groups, respectively. (B) Comparison of the
critical print size for actual and predicted low vision from the simulation. Note that critical print sizes larger than 2.0 logMAR (dashed lines) may be unreliable due to
limitations on the tested print size range. (C) Comparison of reading acuity for actual and simulated low vision from the simulation. Comparisons between actual and
simulated reading acuity of the Older Normal (ON) group are also shown (black triangles). Note that for the ON group this comparison was only conducted on
reading acuity.

FIGURE 6 | A flowchart illustrating the conceptual design of an accessibility checker for web pages. A web page with text, pictures and links is presented on a
laptop screen. The accessibility checker functions as a plug-in for the web browser, which can be initiated by the user. Once initiated, the accessibility checker
requests user input including acuity, contrast sensitivity (if available) and preferred viewing distance. The accessibility checker then transforms the web page to
demonstrate visibility for the corresponding low-vision condition. This simulation will show an eye-care clinician, family member or web designer how visible the web
content is expected to be for the person with low vision. Lastly, the user can adjust the display properties such as overall zoom or print size, font, line spacing etc. to
make the page more accessible. The user can repeat this process until the web page appears accessible under the corresponding low vision condition.

reduction. We examined the validity of this simulation by
attempting to replicate low-vision performance by testing
normally sighted subjects with test-chart letters and text
reading. Regarding visibility, we found that our simulation
reproduced the desired visual acuity and contrast sensitivity
we intended to simulate in normally sighted young subjects.
Regarding reading, we found that the simulation overestimated
the maximum reading speed but provided a good estimate

of critical print size and reading acuity, for real low-
vision individuals with corresponding acuity and Pelli-Robson
contrast sensitivity.

There has been increasing interest in estimating low-
vision CSFs from clinical measures of acuity and contrast
sensitivity (Chung and Legge, 2016; Thurman et al.,
2016; Thompson et al., 2017). Our simulation of low-
vision visibility rests on a simple model in which images
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are filtered by shifted versions of the normal CSF. The
shifts along the log spatial frequency and log contrast
sensitivity axes are related to clinical measures of letter
acuity and contrast sensitivity by equations described in
Supplementary Appendix 1.

The first step in validating the simulation was to verify
that the filtered images of letter charts would produce the
expected values of reduced acuity and contrast sensitivity when
viewed by normally sighted subjects. We simulated forty low-
vision conditions based on the empirical distributions of VA
and CS across a large sample of subjects with normal vision
and vision pathologies (Xiong et al., 2020). We found that
when simulating low-vision conditions with acuities better than
1.5 logMAR (approximately 20/630) and contrast sensitivities
above 0.15 log unit, the measured acuities and contrast
sensitivities closely matched the expected values. For low-
vision conditions outside these boundaries, the simulation had
poorer performance. It is noteworthy that Pelli-Robson letter
size (2 × 2 inches) subtends 2.91 degrees (1.54 logMAR)
at a typical viewing distance of 1m used for low vision.
This print size is difficult to recognize for individuals whose
acuity is 1.5 logMAR or worse, even if they have good
contrast sensitivity. This may explain the upper bound of
logMAR acuity for our simulation, and indicate that in clinical
practice the viewing distance of Pelli-Robson letters should be
reduced for patients whose acuity is worse than 1.5 logMAR
(Njeru et al., 2021).

We then asked if this simulation generalizes to more
interesting real-world stimuli such as digital text or
graphics. We compared the reading performance of real
low-vision subjects with normally sighted subjects who
read under simulated low-vision conditions with equivalent
VA and CS. The simulation overestimated the maximum
reading speed. The lack of correlation between maximum
reading speed and acuity and the weak correlation between
maximum reading speed and contrast sensitivity are
consistent with previous findings in normal and low-vision
reading (Legge et al., 1987; Rubin and Legge, 1989). It is
likely that visual factors other than acuity and contrast
sensitivity, e.g., visual field loss or unstable reading eye
movements (Fletcher et al., 1999; Crossland et al., 2004;
Calabrèse et al., 2014), may have detrimental effects on
maximum reading speed.

The current simulation only considered acuity and contrast
sensitivity reductions associated with low vision, but other visual
or non-visual factors might be incorporated to improve the
simulation. We examined whether an age adjustment should be
included to account for the slight decline of reading performance
in older age (Owsley, 2016; Calabrèse et al., 2016). We also
compared the validity of the current approach in simulating low
vision with or without central vision disturbance.

We found that the simulation based on acuity and contrast
sensitivity reductions was sufficient to account for the decrements
in reading in our older subjects. However, differences were
shown between the Mac and Non-Mac groups, with the
overestimations of the simulation for the reading indices
being more prominent in the Mac group. These differences

are consistent with the adverse impact of central field loss
on reading that has been reported in earlier studies. Legge
et al. (1985) found that low-vision subjects with central field
loss showed slower peak reading speeds than acuity-matched
subjects with remaining central vision. Crossland et al. (2004)
found that subjects with macular diseases showed impaired
fixation stability when reading texts. Therefore, although the
visibility-based simulation can adequately replicate the reading
performance of the majority of our low-vision subjects, including
central field status as a third factor might improve the validity
of the simulation.

Digital simulation makes it possible to visualize the
information available to a person with low vision. Our study
examined the feasibility of utilizing clinically measured acuity
and contrast sensitivity to estimate low-vision CSFs across
a wide range of low-vision conditions for the purpose of
simulating the visibility of image features. What practical
value might such a simulation have? Such digital simulation
could serve as an “accessibility checker” in the development
of architecture and reading related products, and assist people
with low vision in choosing optimal reading configurations.
Lei et al. (2018) and Thompson et al. (2021) have used
similar CSF-based filtering methods to predict the visibility
of architectural hazards for people with specified levels of
reduced acuity and contrast sensitivity. In the context of
reading displays for low vision, it may be possible to construct
a web-based accessibility checker for low vision to predict
whether a particular combination of print size, font and
viewing distance would be legible for someone with specified
acuity and contrast sensitivity. Such simulation could also be
valuable for educational purposes, to help people with normal
vision better understand constraints on visual performance
due to low vision. Figure 6 is a flowchart illustrating how
an “accessibility checker” might be used for web pages,
potentially as a plug-in for a web browser. When initiated by
the user, who might be an eye-care clinician, web designer
or family member of a low vision reader, the accessibility
checker would take as input a potential user’s acuity, contrast
sensitivity and desired viewing distance. If contrast sensitivity
is not known, an estimate can be made based on the linear
relationship between acuity and contrast sensitivity (Xiong
et al., 2020). The accessibility checker will then transform
the appearance of the web page to simulate visibility of the
screen features for the corresponding low-vision condition.
Lastly, the user can adjust the overall zoom or properties (e.g.,
print size, font, line spacing etc.) of the web page to make it
more accessible to the potential low-vision reader. Clinicians
can also use this accessibility checker to examine whether
the icons and texts of operating systems are accessible for
a particular low vision patient. These examples refer to the
appearance a single page or website might appear in a static
view. In our reading test, the processing time of sentence
transformation ranged from 0.5 to 0.7 s. This processing time
is likely to be acceptable for evaluating the appearance of static
text or other static web content. To simulate the appearance
of dynamic content, such as web videos, faster processing
would be necessary.
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